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Abstract

Background: Sickle cell disease (SCD) is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events
cause endothelial dysfunction and vasculopathies in multiple systems. However, the lack of atherosclerotic lesions has led to the
idea that there are adaptive mechanisms that protect the endothelium from major vascular insults in SCD patients. The molecular
bases for this phenomenon are poorly defined. This study was designed to identify the global profile of genes induced by heme
in the endothelium, and assess expression of the heme-inducible cytoprotective enzymes in major organs impacted by SCD.

Methods and Findings: Total RNA isolated from heme-treated endothelial monolayers was screened with the Affymetrix
U133 Plus 2.0 chip, and the microarray data analyzed using multiple bioinformatics software. Hierarchical cluster analysis of
significantly differentially expressed genes successfully segregated heme and vehicle-treated endothelium. Validation
studies showed that the induction of cytoprotective enzymes by heme was influenced by the origin of endothelial cells, the
duration of treatment, as well as the magnitude of induction of individual enzymes. In agreement with these
heterogeneities, we found that induction of two major Nrf2-regulated cytoprotective enzymes, heme oxygenase-1 and
NAD(P)H:quinone oxidoreductase-1 is organ-specific in two transgenic mouse models of SCD. This data was confirmed in
the endothelium of post-mortem lung tissues of SCD patients.

Conclusions: Individual organ systems induce unique profiles of cytoprotective enzymes to neutralize heme in SCD.
Understanding this heterogeneity may help to develop effective therapies to manage vasculopathies of individual systems.
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Introduction

Sickle cell disease (SCD) is a chronic inflammatory disease

characterized by abnormally shaped red blood cells with a

devastating impact on the endothelium [1]. A major clinical hallmark

of the disease is episodes of painful vaso-occlusion, leading to

ischemia/reperfusion injury, tissue hypoxia and organ damage [1].

Studies in transgenic SCD mice have demonstrated a cardinal role

for adhesion molecules in the interaction of leukocytes and

erythrocytes with the endothelium [2,3,4,5,6]. Antioxidants attenuate

experimentally induced stasis in transgenic mice with SCD [2,3,4],

while activation of the redox-sensitive transcription factor NF-kB is

implicated in vascular inflammation [7]. Collectively, these findings

suggest that reactive oxygen species (ROS) and oxidative interme-

diates contribute to the vaso-occlusive process in SCD.

Heme is arguably the major source of oxidative stress in SCD.

Circulating blood contains virtually no detectable free heme as it is

bound instantly with high affinity by plasma proteins, notably,

hemopexin [8,9]. The heme-hemopexin complex is transported to

the liver and removed via a CD91-mediated endocytosis.

However, it is estimated that approximately 30g of hemoglobin

is released per day from hemolyzed erythrocytes in patients with

SCD [10] with 30% of the total hemolysis being intravascular

[11]. Thus, the plasma of patients with SCD contains excess cell-

free hemoglobin and heme [10,12] and is depleted of hemopexin

[9]. The high plasma heme in these patients is due largely to

oxidation of hemoglobin to ferric (Fe3+) methemoglobin, which in

turn readily releases free heme into the circulation [13]. While

sustained oxidant stress inevitably causes cell and tissue damage,

and vascular injury [12,14,15], patients with SCD do not develop
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atherosclerotic disease. This relatively mild endothelial dysfunction

is attributed partly to the activation of adaptive cytoprotective

mechanisms in SCD patients. This idea is supported by the

increased expression of heme oxygenase-1 (HO-1) in renal tissues,

and in circulating endothelial cells of patients, as well as in multiple

tissues of transgenic SCD mice [16,17]. HO-1 is the inducible

form of heme oxygenase, and it converts heme to carbon

monoxide and biliverdin, byproducts with vasodilatory and

cytoprotective properties [18,19,20]. Concurrent up-regulation of

biliverdin reductase and p21 in mononuclear leukocytes is

consistent with the enhanced expression of HO-1 in patients with

SCD [21]. The vasculoprotective property of HO-1 is evident in

other experimental disease models of ischemia-reperfusion [22],

atherogenesis [23] and vascular constriction [24]. However, the

scope of cytoprotection in SCD has not previously been defined,

and recent studies in transgenic SCD mice indicate that the level

of induction of HO-1 alone is insufficient to neutralize the

oxidative burden of the disease [25,26]. We hypothesized that

transcriptional profiling of endothelial cells exposed to heme

would provide a means to dissect the full extent of the

endothelium’s capacity to neutralize heme, and provide a non

biased approach to identifying cytoprotective enzymes in SCD.

Materials and Methods

Ethics Statement
Studies on post-mortem human tissues were approved by the

Institutional Review Board of Emory University and Grady

Memorial Hospital and written informed consents obtained from

next of kin (protocol 00008845). Experiments using mice was

approved by the Institutional Animal Care and Use Committee

(IACUC) of Emory University (protocol 113-2007).

Materials
Hemin (Sigma-Aldrich, St. Louis, MA) was dissolved in 0.25M

NaOH solution, pH was adjusted to 7.6 with HCl and the solution

was then filter-sterilized before treating endothelial cells. Primary

antibody against HO-1 was obtained from Stressgen (Assay Design

Inc, Ann Arbor, Michigan). Primary antibodies for NAD(P)H

quinone oxidoreductase 1(NQO1), and b-actin used in immunoblot

experiments were purchased from Santa-Cruz Biotech Inc (Santa

Cruz, CA). Primary antibodies for NQO1 and von Willebrand

factor (vWF) used in immunohistochemistry were procured from

Abcam Inc (Cambridge, MA). Horse radish peroxidase (HRP)

conjugated secondary antibodies used included anti-mouse, anti-

goat and anti-rabbit IgG (Santa Cruz Biotech Inc).

Primary endothelial cell cultures
The following primary human endothelial cells: pulmonary

artery (PAECs), pulmonary microvascular (PMVECs) and dermal

microvascular (DMVECs) were purchased from Lonza Inc

(Allendale, NJ), while brain microvascular endothelial cells

(BMVECs) were purchased from Cell System Corp. (Kirkland,

WA). PAECs, PMVECs and DMVECs were cultured at 37uC and

5% CO2 in a humidified incubator in EGM-2 endothelial media

(Lonza), supplemented with growth factors and 5% fetal bovine

serum, while BMVECs were cultured with CSC complete

Medium (Cell System Corp) in culture dishes precoated with

attachment factor (Cell System Corp). These cells were fed at 48-h

intervals and required remarkably strict attention for in vitro

culture. PAECs, PMVECs, DMVECs and BMVECs were treated

with a concentration range (0–25 mM) of freshly prepared hemin.

Cells were replenished with fresh medium containing hemin every

48 hours for 1–7 days, and harvested for analysis. Endothelial cell

cultures of passage 3–5 were used in all experiments.

RNA isolation, hybridization and microarray analysis
Total RNA was isolated from endothelial cells using the Trizol

Reagent (Invitrogen, Carlsbad, CA), treated with 2.5 ml of DNase

I, purified on a Qiagen Cleanup column (Qiagen, Valencia, CA)

and eluted in 20 ml of RNase-free water. Ribosomal RNA was

depleted using RiboMinus Human/Mouse Transcriptome Isola-

tion Kit (Invitrogen). RNA quality and yield was assessed on an

Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA).

Sense strand expression analysis of RNA was performed using the

Affymetrix GeneChip Whole Transcript (WT) Sense Target

Labeling Assay protocol (Affymetrix). cDNA was synthesized

using the GeneChip WT cDNA Synthesis and Amplification Kit

(Affymetrix) as directed by the manufacturer as template for in vitro

transcription (IVT) amplification with T7 RNA Polymerase to

produce multiple copies of cRNAs. In the second cycle of cDNA

synthesis, random primers were used in reverse transcription to

convert the cRNA into single-stranded DNA. Single-stranded

cDNA was fragmented and end-labeled with the GeneChip WT

Terminal Labeling Kit (Affymetrix). Labeled single-stranded DNA

(5.5 mg) was hybridized to the Affymetrix GeneChip Human U133

Plus 2.0 Array, stained on a GeneChip Fluidics Station 450 and

scanned on a GeneChip Scanner 3000 7G (Affymetrix). The

Affymetrix Expression Console was used to record probe cell

intensity files (.CEL) and probe level summarization files (.CHP)

generated. All microarray data is MIAME compliant and has been

deposited in NCBI’s Gene Expression Omnibus (GEO) with

accession number GSE25014 and can be accessed at http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25014.

Validation of microarray data in cultured endothelial cells
Low Density Arrays were custom designed by Applied

Biosystems. Real-Time PCR was performed on an optical plate

in a 10-ml reaction volume containing 10 ng of cDNA per reaction

with TaqMan Gene Expression Master Mix (Applied Biosystems).

Sequences were amplified using the Applied Biosystems 7900HT

Sequence Detection System with the PCR profile: 50uC for 2 min,

95uC for 10 min, followed by 45 cycles at 95uC for 15 s, and 60uC
for 1 min. Samples were tested in duplicate, in parallel with four

housekeeping genes (18S, ACTB, GAPDH, GUSB) in the low-

density array assays, or in parallel with a single housekeeping gene

(GUSB) in analysis of single gene targets. Gene expression data

were normalized relative to the geometric mean of the four

housekeeping genes (18S, ACTB, GAPDH, GUSB) for the low-

density array studies. Raw data were obtained by using SDS2.3

software (Applied Biosystems), and Real-Time StatMinerTM

software (Integromics) used to perform a quality control for all

runs and to determine DDCt values as previously described [27].

Transgenic mice with SCD
A colony of the Berkeley knock-out homozygous sickle mice

developed by Paszty et al.[28], is maintained in our institution.

The recently described knock-in transgenic mice with SCD were

provided by Dr. Townes [29]. Mouse genotypes were confirmed

either by hemoglobin gel electrophoresis or by PCR.

Analysis of NQO1 and HO-1 gene expression in mouse
tissues

Organs were isolated whole, immediately immersed in liquid

nitrogen, and total RNA extracted using RNeasy kits (Qiagen) and

reverse-transcribed with a High-Capacity cDNA Archive Kit

Induction of Cytoprotection in SCD
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(Applied Biosystems). We carried out the relative quantitative real-

time PCRs following TaqMan Applied Biosystems protocols. We

tested samples in triplicate in parallel with the housekeeping gene

GUSB. We used StatMiner software (Integromics) to perform

quality controls for all runs and relative quantification DDCt

analyses to calculate the fold differences as previously described

[27], between AA vs AS and AA vs SS mouse samples.

Immunoblot
Endothelial cells seeded in 100-mm culture dishes were rinsed

with ice cold phosphate buffered saline (PBS), supplemented with

1% complete protease inhibitor cocktail (PIC)(Roche, Indianap-

olis, IN) and 1 mM PMSF. Lysates were prepared with 200 ml of

ice-cold Cell Lysis Buffer (Cell Signaling Technology, Beverly,

MA) containing 1% triton X-100 (v/v) supplemented with fresh

1 mM PMSF and 1% PIC and incubated on ice for 30 min. To

prepare tissue homogenates, organs from mice were harvested

and snap-frozen in liquid nitrogen. The frozen tissues were

homogenized in ice-cold RIPA buffer (Cell Signaling Technol-

ogy, Beverly, MA) containing 1% complete PIC, 1% phosphatase

inhibitor cocktail (Sigma) and 1 mM PMSF. Homogenates were

clarified by centrifugation at 14,000 rpm for 15 min at 4oC. The

supernatant soluble proteins were quantified using a Lowry

protein assay (Sigma, St Louis, MO). Thirty micrograms of

cellular protein or 50 mg homogenate of tissue protein was

combined with 2X Laemmli buffer (Sigma, St Louis), boiled for

5 min and resolved by electrophoresis on a 10% polyacrylamide

gel (BioRad). Samples were blotted onto nitrocellulose mem-

branes, probed with appropriate antibodies, and protein bands

were identified by chemiluminescence and quantified using a

Fujifilm LAS-3000 plus quantitative imaging system (FujiFilm,

Valhalla, NY).

Immunohistochemistry
Sections (5 mm) of formalin fixed paraffin embedded (FFPE)

tissues were de-paraffinized, rehydrated and processed for antigen

retrieval using Dako Antigen Retrieval Solution. Tissue peroxi-

dases were inactivated by treatment with 3% H2O2 for 10 min,

and the sections pre-treated with antibody diluent solution

containing 1% BSA, followed by an overnight incubation at 4uC
with primary antibodies for NQO1 (10 mg/ml), HO-1 (10 mg/ml)

or vWF (5 mg/ml). Labeling was accomplished with biotinylated

secondary antibodies and streptavidin-HRP using Biotinylated

Link Antibody kit (Dako North America Inc, Carpinteria, CA),

Figure 1. Heme regulated genes in endothelial cells. Hierarchical cluster analysis of differentially expressed genes in primary lung endothelial
cells, PMVECs (A) and PAECs (B) successfully segregates cultures treated with vehicle from those treated with 5 mM hemin. The unpaired student’s t-
test was used on a gene-by-gene basis to test for differential expression between hemin and vehicle-treated cultures. (C) Venn diagram showing the
number of genes differentially regulated by hemin in PMVECs and PAECs.
doi:10.1371/journal.pone.0018399.g001
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AEC substrate chromogen, and counterstained with hematoxylin.

Sections were mounted with aqueous media, examined using

Olympus AX70 microscope and images were recorded with

camera (Olympus U-CMAD3 DP70) and software (Olympus

DP70/DP30 BW, ver.02.0201.147). Semi-quantitative histological

scores based on a scale of 0-3, where 0 = no stain, and 3 = most

intense staining, was performed by an experienced pathologist

blinded.

Statistical analysis
Microarray summarization files were analyzed using the

Bioconductor in the R framework. [30] Two methods were used

to generate gene-level expression index: the Li-Wong dChip model

[31] and the RMA. [32] Genes assigned as "absent" call in all

samples were excluded. The unpaired student’s t-test was used on

a gene-by-gene basis to test for differential expression between

hemin and vehicle treated endothelial cells. The p-values were

Table 1. Genes differentially regulated by hemin in PMVECs.

Probeset ID Accession Gene Name Fold change

203665_at NM_002133 heme oxygenase (decycling) 1 10.72

234986_at AA630626 Full-length cDNA clone CS0CAP007YJ17 2.37

236140_at/ NM_002061 glutamate-cysteine ligase, modifier subunit 2.25

1555854_at AA594609 Homo sapiens cDNA clone 1058763 2.13

200748_s_at/214211_at NM_002032 ferritin, heavy polypeptide 1 1.29

209699_x_at/ U05598 aldo-keto reductase family 1, member C2 1.81

210519_s_at/ NM_000903 NAD(P)H dehydrogenase, quinone 1 1.77

244804_at/ AW293441 Sequestosome 1 1.55

201387_s_at NM_004181 ubiquitin carboxyl-terminal esterase L1 1.49

201890_at/ BE966236 ribonucleotide reductase M2 polypeptide 1.46

205749_at NM_000499 cytochrome P450, family 1 1.46

218883_s_at NM_024629 MLF1 interacting protein 1.45

218542_at NM_018131 centrosomal protein 55 kDa 1.43

212311_at/ AA522514 KIAA0746 protein 1.42

204222_s_at/ NM_006851 GLI pathogenesis-related 1 (glioma) 1.42

215870_s_at AL158172 phospholipase A2, group V 1.39

204058_at AL049699 Malic enzyme 1, NADP(+)-dependent, 1.34

225241_at AA570507 coiled-coil domain containing 80 1.32

226541_at AI808182 F-box protein 30 1.31

220637_at NM_024785 hypothetical protein FLJ22746 1.28

212226_s_at AA628586 phosphatidic acid phosphatase type 2B 0.78

223395_at AB056106 ABI gene family, member 3 0.78

205692_s_at NM_001775 CD38 molecule 0.76

221307_at NM_014592 Kv channel interacting protein 1 0.76

204602_at NM_012242 dickkopf homolog 1 (Xenopus laevis) 0.76

223126_s_at/ AI159874 chromosome 1 open reading frame 21 0.73

202207_at BG435404 ADP-ribosylation factor-like 4C 0.73

238720_at AV661099 Homo sapiens cDNA clone GLCGOF063 0.72

239761_at AI088120 glucosaminyl (N-acetyl) transferase 1, core 2 0.72

228654_at AU145277 hypothetical protein LOC139886 0.71

213478_at AB028949 kazrin 0.71

236863_at BF592860 chromosome 17 open reading frame 67 0.70

201761_at NM_006636 methylenetetrahydrofolate dehydrogenase 0.69

210512_s_at AF022375 vascular endothelial growth factor 0.68

224997_x_at/224646_x_at AL575306 H19, imprinted maternally expressed untranslated mRNA 0.57

205047_s_at NM_001673 asparagine synthetase 0.66

1553972_a_at BC007257 cystathionine-beta-synthase 0.63

218574_s_at NM_014583 LIM and cysteine-rich domains 1 0.63

202409_at X07868 chromosome 11 open reading frame 43 0.57

205633_s_at NM_000688 aminolevulinate, delta-, synthase 1 0.53

223062_s_at BC004863 phosphoserine aminotransferase 1 0.37

doi:10.1371/journal.pone.0018399.t001

Induction of Cytoprotection in SCD

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e18399



adjusted to false-discovery rate (FDR) [33]. Differentially

expressed genes were selected based on an FDR cutoff of 0.2,

and a fold-change cutoff of 1.25. Genes identified as differentially

expressed using both dChip and RMA results were taken as the

final selection. Differences in relative quantities of mRNA and

protein expression were analyzed using unpaired student’s t-test

with two-tailed distribution, with the GraphPad Prism Software

(version 5.0).

Table 2. Genes differentially regulated by hemin in PAECs.

Probeset ID Accession Gene Name Fold Change

203665_at NM_002133 heme oxygenase (decycling) 1 5.23

217767_at NM_000064 complement component 3 /// similar to Complement C3 precursor 2.11

236140_at/ NM_002061 glutamate-cysteine ligase, modifier subunit 1.98

234986_at AA630626 Full-length cDNA clone CS0CAP007YJ17 of Thymus of
Homo sapiens (human)

1.92

1555229_a_at BC007010 complement component 1, s subcomponent 1.81

210548_at/210549_s_at U58913 chemokine (C-C motif) ligand 23 1.72

201468_s_at/ NM_000903 NAD(P)H dehydrogenase, quinone 1 1.57

219181_at NM_006033 lipase, endothelial 1.53

214211_at AA083483 ferritin, heavy polypeptide 1 1.51

223551_at AF225513 protein kinase (cAMP-dependent, catalytic) inhibitor beta 1.43

215223_s_at W46388 superoxide dismutase 2, mitochondrial 1.37

228097_at AW292746 myosin regulatory light chain interacting protein 1.36

204567_s_at NM_004915 ATP-binding cassette, sub-family G (WHITE), member 1 1.33

1554485_s_at BI825302 transmembrane protein 37 1.32

207426_s_at NM_003326 tumor necrosis factor (ligand) superfamily, member 4
(tax-transcriptionally activated glycoprotein 1, 34kDa)

1.29

213988_s_at BE971383 spermidine/spermine N1-acetyltransferase 0.8

213094_at AL033377 G protein-coupled receptor 126 0.76

40687_at M96789 gap junction protein, alpha 4, 37 kDa (connexin 37) 0.75

205633_s_at NM_000688 aminolevulinate, delta-, synthase 1 0.7

207332_s_at/208691_at NM_003234 transferrin receptor (p90, CD71) 0.46

doi:10.1371/journal.pone.0018399.t002

Figure 2. Induction of Nrf-2 regulated genes by hemin. (A) Central role of Nrf2 in the response of the endothelium to heme. Genes whose
expression was altered by hemin in both PAECs and PMVECs are shown. ROS = reactive oxygen species. (B) Microarray data of differentially expressed
genes regulated by Nrf2 in PAECs and PMVECs treated with hemin. Data shown is mean fold change in gene expression as arbitrary units relative to
the level of expression by control cells (n = 5).
doi:10.1371/journal.pone.0018399.g002
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Results

Gene expression profile of endothelial cells treated with
hemin

In preliminary studies we determined that relatively low (1–

5 mM) concentrations of hemin were not toxic to endothelial cells

in culture (data not shown). Thus, PAECs and PMVECs were

treated with freshly prepared hemin (5 mM) every 48 hours for 7

days, RNA was isolated from these cultures followed by

microarray analysis. Differentially expressed genes successfully

segregated endothelial cell cultures treated with hemin from those

treated with vehicle in hierarchical cluster analysis (Figure 1A, B).

Forty-one and twenty genes, respectively, were significantly

differentially regulated by hemin in PMVECs and PAECs

(Table 1 and Table 2). Among this list were three genes which

are already known to be regulated by heme, HMOX1

(NM_002133), which codes for HO-1, and genes for ferritin heavy

chain (AA083483) and delta aminolevulinate synthase 1

(NM_000688). This finding provided validation for the experi-

mental, statistical and bio-informatics approach we used in this

study. Two additional genes glutamate-cysteine ligase modifier

(GCLM; NM_002061) and NADPH:quinone oxidoreductase-1

(NQO1; NM_000903), were significantly induced by hemin in

both PAECs and PMVECs. Thus a total of 5 genes were induced

in both endothelial cell types and 51 genes were uniquely induced

in either PAECs or PMVECs (Figure 1C). Ingenuity Pathway

analysis revealed that all the 5 genes induced by hemin in both

endothelial cell types are regulated by the redox-sensitive master

transcription factor NF-E2 related factor 2 (Nrf-2). They include

gene products, such as HO-1 and FTH1 that act directly on heme,

and others (e.g. NQO1 and GCLM), that detoxify oxidative

intermediates generated by heme (Figure 2A). The level of

induction of these cytoprotective genes was variable in both

PMVECs and PAECs, and ranged from 1.3 to 10 fold (Figure 2B).

To validate the microarray data, cultures of PAECs and

PMVECs were treated with a concentration range of hemin (0-

25 mM) for 1–7 days. Total RNA was extracted and mRNA

expression analyzed using a multiplex low-density array qRT-

PCR platform, or single-gene qRT-PCR assay. The fold increase

in HO-1 and NQO1 mRNA due to 5 mM hemin as determined by

qRT-PCR in the validation experiments was similar to the

expression level identified from the initial microarray analysis

(Figure 3A). NQO1 mRNA level was virtually identical in PAECs

and PMVECs at all hemin concentrations studied. HO-1 mRNA

was induced by over 40-fold in PMVECs at the highest

concentration tested. The number of genes impacted by hemin,

and the magnitude of fold-change was dose-dependent, as shown

for a selection of 14 genes, which were positively or negatively

regulated by hemin (Figure 3B). Next, we determined whether

hemin-induced alterations in HO-1 and NQO1 mRNA level were

reflected at the protein level. For cultures treated with hemin for 7

days, both HO-1 and NQO1 proteins were induced in a

Figure 3. Validation of microarray data by qRT-PCR. (A) Total RNA from PAECs and PMVECs treated with hemin (0–25 mM) was analyzed for the
expression of HO-1 and NQO1. Data shown is mean fold change relative to the vehicle (0 mM hemin) +/2 SD for three independent experiments each
in triplicate (n = 9). (B) Low-density array data showing changes in expression of fourteen genes in PMVECs treated with a concentration range (0–
25 mM) of hemin for 7 days. Note the concentration-dependent increase in the number of genes altered by hemin (n = 12).
doi:10.1371/journal.pone.0018399.g003
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concentration dependent manner (Figure 4A). Induction of HO-1

was markedly more robust than NQO1 in both PMVECs and

PAECs, while the level of HO-1 protein was consistently higher in

PAECs than in PMVECs (Figure 4B). To determine the relevance

of these findings in other vascular beds, endothelial cells derived

from the brain (BMVECs) and skin (DMVECs) were studied.

Hemin strongly induced expression of HO-1 protein in DMVECs,

while the induction of HO-1 in BMVECs and of NQO1 in both

cell types was modest (Figure 4C). HO-1 induction occurred

within 24 hours of treatment, while significant induction of NQO1

occurred after 5-days of treatment (Figure 4D and data not

shown). While these validation studies confirmed the data from

our microarray results, they showed that the induction of HO-1

and NQO1 by hemin is influenced by the duration of treatment

and the origin of the endothelial cells.

Organ-specific expression of HO-1 and NQO1 in
transgenic SCD mice

To investigate the relevance of our microarray data in the

context of SCD, transgenic mice expressing exclusively sickle

hemoglobin (Townes SS or Berkeley sickle), and their correspond-

ing controls (AS, AA, hemi) were studied. Using the DDCt values

for samples from control AA mice, we calculated the relative

quantities of HO-1 and NQO1 mRNA for the various organs

from AS and SS mice. We found that HO-1 transcripts in the

kidneys and liver were over 10-fold higher in the SS mouse

compared to the level in control AS littermate, or AA mice, while

the level in the SCD heart and spleen were 3-4 fold higher

compared to the controls (Figure 5A). The difference in HO-1

mRNA level in SS, AS and AA lungs did not reach statistical

significance, while no differences were found for this transcript in

the brains of SS, AS and AA mice (Figure 5A). These findings were

confirmed in organs isolated from the Berkeley sickle and

hemizygote mice (data not shown). The pattern of induction of

NQO1 in the SCD mice was different from that observed for HO-

1. In particular, NQO1 mRNA level was significantly higher in

the SCD mouse lungs of both the Townes and Berkeley models

while the relative quantity in the SCD mouse hearts were similar

to the level in control AS and AA mice (Figure 5B and data not

shown).

Since, mRNA levels do not always correspond to protein

expression, tissues were examined by immunoblots using identical

Figure 4. Concentration- and time-dependent induction of HO-1 and NQO1 by hemin in endothelial cells. (A) Western blot analysis
confirming concentration dependent induction of HO-1 and NQO1 in PMVECs and PAECs treated with hemin for 7 days. Blots were probed for EF-
1ato control protein loading. (B, C) Quantification of HO-1 and NQO1 protein expression in PAECs, PMVECs, BMVECs and DMVECs treated with hemin
and vehicle, assayed by western blot analysis. Data shown is mean fold change in protein level as arbitrary units relative to the EF-1a-normalized
expression in vehicle treated cells (n = 9). (D) Quantification of western blot showing variable timing of HO-1 and NQO1 induction by hemin (5 mM) in
PAECs (n = 9).
doi:10.1371/journal.pone.0018399.g004
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conditions to permit rigorous comparisons of the amount of

individual enzymes in tissues from the same mice, and allow

comparisons across genotypes. There was low-to-undetectable

HO-1 expression in the brain and heart in mice of all genotypes,

while abundant expression was evident in the SS kidney and liver,

and in the spleen and lungs of mice of all genotypes (Figure 6A).

Quantification of the data in Figure 6A confirmed that HO-1

expression in the SS kidney and liver is significantly elevated, on

the contrary, expression in the lung was only modestly higher than

in control AS and AA mice (Figure 6B). Moreover, there was no

difference in lung HO-1 expression in the Berkeley sickle and

hemizygote mice (Figure 6C-D). There was increased expression

of NQO1 in the SS mice kidney, liver, lung and spleen, but not in

the brain or heart (Figure 7A), and this interpretation was

confirmed by quantitative analysis (Figure 7B). The result in the

lung was confirmed in the Berkeley model (Figure 7C–D).

Collectively, our data in two mouse models of SCD demonstrate

a highly variable induction of two major cytoprotective enzymes

(HO-1 and NQO1) in major organs impacted by SCD for the first

time.

Expression of HO-1 and NQO1 in lung endothelium of
SCD patients

Results showing that HO-1 expression was not elevated in the

lungs of two murine models of SCD were unexpected and contrary

to a general assumption supported by our own results in other

organs, that HO-1 expression is upregulated in SCD. The lung

pathology in SCD mice is relatively mild compared to the more

severe phenotype in humans [34]. Therefore, we considered

whether the HO-1 expression in the lung was reflective of a

relatively low oxidative stress below the threshold for activating

Nrf2. Alternatively, our data represented a hitherto unrecognized

tissue diversity in HO-1 expression in SCD. To resolve this issue,

we studied HO-1 in post-mortem lung tissues from an archive at

Grady hospital in Atlanta [35]. We found comparable intensities

of HO-1 staining in the endothelium of SCD (n = 17) and normal

lung tissues (n = 9) (Figure 8A i-ii), consistent with our data in the

mouse models. NQO1 staining in the endothelium of the same

tissues was however markedly more intense in the SCD samples

(Figure 8A iii-iv). Histological scoring using a semi-quantitative

method by a pathologist unaware of the identity of individual

specimens confirmed these observations (Figure 8B-C).

Discussion

Cytoprotective enzymes offer a strategy for therapy of sickle

vasculopathies, and they may also be involved in the wide clinical

spectrum of SCD. Previous studies have examined HO-1

expression in mononuclear leukocytes and in selected tissues in

patients and transgenic mice with SCD [16,17,21]. However, HO-

1 expression in the endothelium in SCD, where plasma heme is

likely to have the most impact had not previously been studied.

Moreover, the cytoprotective profile of many organs impacted by

SCD remained unknown. This study was designed to address these

inter-related issues.

In conditions of oxidant stress, the transcription factor Nrf2

binds to antioxidant response elements to induce expression of

both phase I (acute) and phase II (late-stage) detoxifying enzymes.

Our microarray data showed that several enzymes belonging to

both classes were induced in endothelial cells treated with hemin

(Figure 1, 2 and Table 1, 2). Enzyme induction was heterogeneous

with respect to duration of treatment with hemin, magnitude of

gene expression and the vascular origin of the cells (Figure 3, 4 and

data not shown). These in vitro findings were mirrored in vivo as

expression of two major cytoprotective enzymes were variably

elevated in different organs, in two murine models of SCD

Figure 5. Organ-specific induction of HO-1 and NQO1 in SS mice. Total RNA was isolated from the indicated organs from transgenic mice of
the Townes model, expressing normal human hemoglobin (Hb AA n = 4), or with sickle trait (Hb AS n = 7) or SCD (Hb SS, n = 6). Expression of HO-1 (A)
and NQO1 (B) was determined by relative quantitative real-time PCR. Data shown are the mean 6 SD. *p,0.05.
doi:10.1371/journal.pone.0018399.g005
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(Figure 5, 6, 7). The lack of significant upregulation of HO-1 in the

lungs of SS mice was unexpected, and contrary to the findings

from a previous study [16]. This discordance is likely due to the

use of different control animals in this, and the previous study.

Here, we compared HO-1 expression in SCD and control mice of

identical genetic backgrounds, in both the Townes and Berkeley

models (Figure 5, 6, 7). Our findings in the sickle mice were

supported by results of HO-1 expression in human lung

endothelium (Figure 8), and is pertinent to the lack of lung

pathology in the only patient described thus far with HO-1

deficiency [36,37,38] as well as in mice with deletion of the HO-1

gene [39].

The lack of association between HO-1 activity or expression

and specific clinical phenotype in SCD patients is a major

limitation of our understanding of the role of this cytoprotective

enzyme in SCD. Nonetheless, it is reasonable to assume that HO-

1 exerts some influence on this disease including in the lung given

its indirect effects via carbon monoxide and biliverdin. For

instance, HO-1 null mice are rescued from death from ischemic

lung injury by the administration of carbon monoxide [40]. A

sleeping beauty gene construct delivered to the liver, and inhaled

carbon monoxide improve vascular stasis in the skin of SCD mice

[16,26]. Unlike these distant effects, however, the degradation of

heme requires direct HO-1 enzymatic action, particularly during

episodes of acute hemolysis. Our results highlight a relatively

blunted capacity for this direct function in the brain and lung in

SCD mice suggesting that these organs may be more vulnerable to

hemolytic crises. However, our data in postmortem lung

endothelium does not provide a comprehensive account of HO-

1 expression in the lung of SCD patients. We therefore caution

against generalizations of our findings in the context of the whole

lung in SCD patients. This prudence is supported by the results of

a pilot study showing there is wide variation of HO-1 mRNA level

in a small number of FFPE lung tissues of SCD patients (data not

shown). Unfortunately, FFPE tissues from SCD patients are not

readily available, and moreover, they are difficult to analyze due to

the degradation of nucleic acids by formalin and long periods of

storage. Thus, an alternative approach is required to assess

whether HO-1 expression is variably regulated in different

compartments of the same tissue, and by factors that are

independent of tissue type.

The potential benefits of NQO1 in SCD is likely evident in

adults, given the late induction of this enzyme in endothelial cells

treated with hemin (Figure 4D). Indeed, we found that NQO1 is

Figure 6. Heterogeneity of enhanced HO-1 expression in SS mice. (A) Western blot analysis, of snap-frozen organs isolated from Townes SS,
AS and AA mice, for HO-1 expression. (B) Quantitative data of western blot experiments. Data shown are mean arbitrary units of b-actin-normalized
HO-1 expression in the indicated organs and genotypes of Townes mice (n = 6). (C) Western blot analysis of HO-1 in whole lungs of Berkeley sickle
mice and control hemizygotes. (D) Quantitative data of western blot experiments for HO-1 in the Berkeley mice (n = 4). **p,0.01.
doi:10.1371/journal.pone.0018399.g006
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not induced in young SS mice aged 4-8 weeks (data not shown).

On the contrary, expression is markedly increased in lungs of adult

SS mouse aged 13–27 weeks (Figure 7A–D), presumably timed to

combat the increasing burden of oxidant stress in adults. We tested

this idea and found that cytosolic fractions of adult SS mouse lungs

reduce 2,6-dichlorophenol-indophenol (DCPIP), a potent oxidant,

in an NQO-1 dependent manner, while fractions from young SS

mouse lungs failed to reduce DCPIP (data not shown). NQO1

directly scavenges superoxide anion [41,42], this property may be

critical in the sickle vasculature because of the high oxidant burden

of the disease, and the relatively low expression of super oxide

dismutase in endothelium [42]. Finally, NQO1 may play a

broader role in redox protection in SCD to prevent a variety of

malignancies that develop in NQO1-null mice exposed to high

oxidative burdens [43,44,45]. Naturally occurring polymorphisms

that reduce NQO1 expression are associated with higher rates of

solid tumors [46,47,48], poor survival in breast cancer [49] and

carotid artery plaques in type II diabetes [50]. Therefore, the

putative benefits of NQO1 in SCD may be subject to variation in

a manner analogous to the variable NQO1 expression in the

postmortem SCD lung tissues (Figure 8C).

We focused this study on HO-1 and NQO1 and therefore

recognize the limitation imposed by this strategy in not examining

further the expression of the three other Nrf2-regulated genes

(ALAS1, GCLM and FTH1) identified in our micro array.

Moreover, we did not investigate expression of HO-1 and NQO1

in other tissues in SCD patients in this study. We have begun to

address the latter limitation in a follow-up study by measuring

HO-1 level in the plasma of SCD patients. Preliminary results

from that study show that plasma HO-1 level is markedly variable,

and it correlates positively with multiple markers of endothelial

activation and injury in SCD patients. These initial findings are

consistent with the conclusion of the current study that upregula-

tion of HO-1 expression in SCD is context dependent.

In conclusion, our study provides evidence that major organs

impacted by SCD have uniquely different cytoprotective pheno-

types in mouse models, with the brain apparently refractory to the

oxidant stress of SCD. Expression of HO-1 in SCD patients

requires further studies, including evaluating the role of endothe-

lial dysfunction, inflammation and genetic heterogeneity in this

process. NQO1 is induced in multiple organs in SCD, and may

play a multifunctional protective role, most likely at later stages of

the disease. The molecular heterogeneity of the response to

hemolytic/oxidative stress defined in this study may help to

develop more effective cytoprotective/antioxidant therapy for

SCD.

Figure 7. Enhanced expression of NQO1 in SS mice. (A) Western blot analysis for NQO1 expression in snap-frozen organs from Townes SS, AS
and AA mice. (B) Quantitative data of western blot experiments. Data shown are mean arbitrary units of b-actin-normalized NQO1 expression in the
indicated organs and genotypes (n = 6). (C) Western blot analysis of NQO1 in whole lungs of Berkeley sickle mice and control hemizygotes. (D)
Quantitative data for NQO1 protein in the Berkeley mice lungs showing arbitrary units of b-actin-normalized expression (n = 4). *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0018399.g007
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