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Head and neck squamous cell carcinoma (HNSCC) is broadly classified into HNSCC associated with human pap-
illoma virus (HPV) infection, and HPV negative HNSCC, which is typically smoking-related. A subset of HPV neg-
ative HNSCCs occur in patients without smoking history, however, and these etiologically ‘atypical’ HNSCCs
disproportionately occur in the oral cavity, and in female patients, suggesting a distinct etiology.
To investigate the determinants of clinical and molecular heterogeneity, we performed unsupervised clustering
to classify 528 HNSCC patients from The Cancer Genome Atlas (TCGA) into putative intrinsic subtypes based on
their profiles of epigenetically (DNA methylation) deregulated genes.
HNSCCs clustered intofive subtypes, including oneHPVpositive subtype, two smoking-related subtypes, and two
atypical subtypes. One atypical subtypewas particularly genomically stable, but featuredwidespreadgene silenc-
ing associated with the ‘CpG island methylator phenotype’ (CIMP).
Further distinguishing features of this ‘CIMP-Atypical’ subtype include an antiviral gene expression profile asso-
ciatedwith pro-inflammatoryM1macrophages and CD8+ T cell infiltration, CASP8mutations, and a well-differ-
entiated state corresponding to normal SOX2 copynumber and SOX2OThypermethylation.Wedeveloped a gene
expression classifier for the CIMP-Atypical subtype that could classify atypical disease features in two indepen-
dent patient cohorts, demonstrating the reproducibility of this subtype. Taken together, these findings provide
unprecedented evidence that atypical HNSCC is molecularly distinct, and postulates the CIMP-Atypical subtype
as a distinct clinical entity that may be caused by chronic inflammation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most
common cancer by incidence (Siegel et al., 2016), and a leading cause
of cancer-related death (Belcher et al., 2014). HNSCC displays substan-
tial variability in prognosis and response to standard therapies
(Belcher et al., 2014), whichmay reflect underlying etiological and mo-
lecular heterogeneity. For example, it is now well-understood that
HNSCCs caused by high risk strains of human papilloma virus (HPV)
are molecularly distinct from HPV negative (HPV−) HNSCCs and that
they have better prognosis and therapy response (Wise-Draper et al.,
2012; Kimple et al., 2013). Smoking is the major risk factor for HPV−
HNSCC, causing genetic mutations in tumor suppressor genes including
TP53 (DeMarini, 2004; Vettore et al., 2015). Alcohol consumption is a
modest risk factor for HNSCC and is thought to increase risk particularly
in smokers (Dal Maso et al., 2016). However, there is an increasingly
recognized incidence of HPV− HNSCCs in individuals with no smoking
history, indicating that etiological factors other than smoking and HPV
. This is an open access article under
exist (Heaton et al., 2014; Harris et al., 2011; Chaturvedi et al., 2013;
Toner and O'Regan, 2009; MacKenzie et al., 2000; Patel et al., 2011;
Koch et al., 1999; Koo et al., 2013; Brown et al., 2012; Montero et al.,
2012; Perry et al., 2015; Toporcov et al., 2015). HNSCCs lacking these
classic risk factors, referred to as ‘atypical’ HNSCCs, are usually oral
squamous cell carcinomas (OSCCs), occur with higher relative frequen-
cy in women (particularly women of low socioeconomic status
(Conway et al., 2008; Conway et al., 2015)) than smoking-related
HNSCCs, and may be increasing in incidence (Chaturvedi et al., 2013;
Patel et al., 2011; Koch et al., 1999; Koo et al., 2013; Katzel et al.,
2015). While molecular differences between HPV positive (HPV+)
and HPV− HNSCC have been described in recent years (Lleras et al.,
2013; Fertig et al., 2013; Seiwert et al., 2015), molecular attributes of
smoking-related, atypical, or other etiological HNSCC subgroups have
not been established.

Unsupervised clustering of molecular data, such as gene expression
or DNAmethylation, provides amethod of classifying intrinsic subtypes
within cancer populations (Heiser et al., 2012; Hoadley et al., 2014).
Identification of cancer subtypes has provided insight into the etiologi-
cal factors underlyingmolecular and clinical heterogeneity in other can-
cers and has provided clinical biomarkers to predict prognosis and
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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subtype-specific therapeutic response (Heiser et al., 2012; Hoadley et
al., 2014;Marisa et al., 2013). FourHNSCC subtypes have been identified
by clustering of gene expression data (Chung et al., 2004; Keck et al.,
2015; Lawrence et al., 2015;Walter et al., 2013).Wehave previously re-
ported our identification of five HNSCC subtypes based on clustering of
integrated DNA methylation and gene expression data from 310
HNSCCs from The Cancer Genome Atlas (TCGA) study (Gevaert et al.,
2015).

DNAmethylation, i.e., the covalent addition ofmethyl groups to CpG
dinucleotides to form 5-methylcytosine (5mC), is the best-known epi-
genetic mechanism of transcriptional regulation, and is widely altered
in virtually all cancers, as an early and potentially causative event
(Jones and Baylin, 2002; Fernandez et al., 2012). Typical patterns of ab-
normal methylation in cancer include silencing of tumor suppressor
genes by aberrant methylation (hypermethylation) of gene promoters,
particularly at promoter CpG islands, as well as general loss of DNA
methylation overall (hypomethylation), potentially resulting in geno-
mic instability and reactivation of oncogenes (Jones and Baylin, 2002;
Jones, 2012).

DNA methylation patterns are altered by smoking (Shenker et al.,
2013; Massion et al., 2008), HPV (Lleras et al., 2013) and age (Xu and
Taylor, 2014), and may therefore capture important information about
etiological drivers of HNSCC. Moreover, cancer molecular subtypes
tend to differ depending on the molecular analyte (such as DNA meth-
ylation and gene expression) used for clustering (Heiser et al., 2012).
Therefore, we have investigated the clinical, etiological, and molecular
attributes of DNA methylation HNSCC subtypes in the complete set of
TCGAHNSCC patients (n=528), in order to gain insight into the factors
that drive intertumoral heterogeneity.

We have reproduced five DNA methylation subtypes, which differ
from the reported gene expression subtypes, and which more clearly
segregate with etiological subgroups defined by HPV status and
smoking. As most research into molecular heterogeneity has focused
on differences between HPV+ and HPV−HNSCC, we have focused pri-
marily on heterogeneity within HPV− HNSCC. Most importantly, we
identified two atypical HNSCC subtypes, including amolecularly distinct
subtype that is reproducible in additional data sets, providingmolecular
classification for atypical HNSCC.
2. Methods

2.1. Data processing

Preprocessed TCGA DNA methylation data (generated using the
Illumina Infinium HumanMethylation450 BeadChip array), gene ex-
pression data (generated by RNA sequencing), somatic point mutation
data (generated using genome sequencing), DNA copy number data
(generated by microarray technology) and clinical data were
downloaded using the Firehose pipeline (Samur, 2014). Preprocessing
for these data sets was done according to the Firehose TCGA pipelines
described elsewhere (Samur, 2014).

Mutation data was accessed asMutation Analysis reports, generated
using MutSig CV v2.0 (Lawrence et al., 2013). For analysis of individual
significantly mutated genes (e.g., CASP8, NSD1), mutations predicted as
silent by MutSig CV were removed. For analysis of smoking mutation
signatures, GNT & CNA transversions in all genes, including silentmuta-
tions, were included. DNA copy number data was accessed as Copy
Number reports, generated using GISTIC 2.0 (Mermel et al., 2011).

Additional data preprocessing of gene expression and DNA methyl-
ation data was done as follows: Genes and patients with N10% missing
values for gene expression, and N20% missing values for DNA methyla-
tion, were removed. All remainingmissing values were estimated using
KNN impute (Troyanskaya et al., 2001). TCGA data were generated in
batches, creating a batch effect for most data sets. Batch correction
was done using Combat (Johnson et al., 2007).
TCGA assignments for gene expression subtypes for 279 HNSCCs
were derived from Stransky et al. (2011). Assignments for HPV and
other viral infection status for 304 HNSCCs was derived from Tang et
al. (2013), a recent study in which TCGA cancers were screened for ex-
pression of viruses in RNA-Seq data.We compared these HPV status as-
signments with those derived using in situ hybridization and P16
staining for smaller numbers of samples in standard TCGA clinical
data:While HPV status determined by RNA-Seq analysis was consistent
withHPV status defined by in situ hybridization, as reported (Tang et al.,
2013), three HNSCCs that were found HPV− based on RNA-Seq detec-
tion were found HPV+ based on p16 staining. However, p16 staining
is an indirect method of HPV detection, and is considered less accurate
than measurement of HPV RNA expression (Mirghani et al., 2015),
therefore RNA-Seq analysis was used as a primary measure of HPV sta-
tus in our analysis.

Oral squamous cell carcinomaswere defines as cancers of the alveo-
lar ridge, buccal mucosa, floor of mouth, hard palate, oral cavity, oral
tongue, and oropharynx.
2.2. Clustering of DNA methylation data

Methylation of neighboring CpG sites tends to be highly correlated.
To reduce multiple testing of highly correlated CpG probes, and to re-
duce the dimensionality of the methylation array data, probes for each
gene were clustered using hierarchical clustering with complete link-
age, and average methylation was calculated for each CpG cluster.
2.3. Classification of abnormally methylated genes

MethylMixwas applied to CpG cluster data to systematically identify
CpG clusters (referred to as ‘MethylMix genes’) that are abnormally
methylated in cancer versus normal tissue, where DNA methylation is
inversely associated with RNA expression of the same gene, using
beta-mixture models, as previously described (Gevaert, 2015). For
each MethylMix gene, MethylMix ascribes either normal or abnormal
(hypomethylated or hypermethylated) DNA methylation states to
each patient, providing lists of hypermethylated and hypomethylated
genes for each cancer.
2.4. Consensus clustering of MethylMix driver genes

Unsupervised Consensus clustering was applied to MethylMix gene
DNA methylation state data for 528 HNSCCs, to identify robust patient
clusters (Putative subtypes). Consensus clustering was performed
using the ConsensusClusterPlus R package (Wilkerson and Hayes,
2010), using 1000 rounds of k-means clustering, with a maximum of
k = 10 clusters. Selection of the best number of clusters was based on
visual inspection of plots provided in the ConsensusClusterPlus output.
2.5. Survival analysis

To test for overall survival differences between the MethylMix sub-
types, the chi-square statistic test for equality was used to compare sur-
vival curves for each subtype. Survival data was censored at five years,
to exclude deaths that were not HNSCC-related.
2.6. Application of gene expression signatures

The xenobiotic metabolism gene signature included 95 human
genes annotated to the term ‘xenobiotic metabolic process’
(GO:0006805), derived from the AmiGO web application (Carbon et
al., 2009). Wilcoxon rank sum tests were used to test for differences in
mean expression of these genes between MethylMix subtypes.
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2.7. Development of a gene expression classifier to predict the CIMP-Atypi-
cal subtype

Prediction Analysis of Microarrays (PAM) was used to develop a
gene expression classified to predict the CIMP-Atypical subtype, as pre-
viously described (Tibshirani et al., 2002). PAM analysis uses a nearest
shrunken centroids machine learning method that predicts the class
(MethylMix subtype) of an individual based on the squared distance
of the gene expression profile for that individual to the centroids of
known CIMP-Atypical and other subtype patient groups. Shrinkage is
used to select the optimum number of genes for class prediction, such
that the model selects only a subset of genes to develop the centroids.
We first used PAM in combination with 10-fold cross validation to de-
termine the ability of the gene expression data to predict the CIMP-
Atypical subtype within TCGA data. For each fold of cross validation,
the PAMmodel was trained on 90% of patients and assigned class prob-
ability for belonging to the CIMP-Atypical subtype to the each of the re-
maining 10% of patients based on the distance of the patient to its
closest centroid. We used the area under the ROC curve (AUC) to evalu-
ate the performance of the model in accurately predicting the class of
samples.

We applied this gene expression classifier signature to two indepen-
dent gene expression data sets to classify them into either a ‘Predicted
CIMP-Atypical’ group or a ‘Not predicted CIMP-Atypical’ group, using
gene expression data for the top 25% most varying genes (i.e., with the
highest mean absolute deviation). These included GSE65858
(Wichmann et al., 2015) which included 253 primary HNSCCs, with
gene expression measured using the Illumina HumanHT-12 V4.0 ex-
pression beadchip, and GSE39366 (Walter et al., 2013), which included
139 primary HNSCCs, with gene expression measured using an Agilent-
UNC-custom-4X44K array. Normalized gene expression data for these
data sets was accessed. To classify a new sample, its distance is calculat-
ed to each of the centroids by using theweights as an inner product, and
the sample is classified to its closest centroid. We only used classifica-
tion results when probabilities were N60% or b40%, excluding low con-
fidence assignments for the remaining borderline individuals from
analyses.

2.8. Inference of tumor associated leukocyte levels

CIBERSORT was applied to gene expression (RNA-Seq) data to infer
the levels of specific TAL types, as previously described (Newman et
al., 2015; Gentles et al., 2015b). Only patients for with estimation p-
values b 0.05 (Indicating high confidence TAL estimation) were includ-
ed in downstream analyses.

2.9. Identification of genes associated with the CIMP-Atypical subtype

SAM analysis (Tusher et al., 2001) was used to identify genes that
were overexpressed and underexpressed in the CIMP-Atypical subtype
relative to other subtypes (combined).

2.10. Functional gene set enrichment analysis

Functional gene set enrichment analysis (GSEA) was carried out
using MSigDB (Subramanian et al., 2005), selecting all 18,026 gene-set
libraries for comparison with the input prognostic gene-set. The top
100most enriched gene setswere visualized as a networkmap generat-
ed using EnrichmentMapas a plugin for Cytoscape (Isserlin et al., 2014).

3. Results

3.1. Unsupervised clustering of HNSCC patients

To investigate possible sources of clinical and biological heterogene-
ity in HNSCC, we subtyped 528 HNSCC cases according to their profiles
of epigenetically deregulated genes. We applied MethylMix (Gevaert,
2015) to whole genome DNA methylation and gene expression data,
to identify abnormally methylated genes in HNSCC, i.e., genes that are
hypermethylated or hypomethylated in all or a subgroup of HNSCCs rel-
ative to normal adjacent tissue andwhere thismethylation is associated
with altered RNA expression. MethylMix identified 2227 differentially
methylated ‘MethylMix genes’ (Supplementary Table 1, see methods
for definition of MethylMix genes). MethylMix assigned each cancer
to a categorical DNA methylation class (hypermethylated,
hypomethylated or normal-like) for each gene, with differential meth-
ylation (DM) values indicating the direction and mean difference in
methylation between cancer and normal tissue. We then performed
Consensus clustering to DM value data to cluster HNSCCs into clusters
or putative intrinsic subtypes.

To identify the optimum number of HNSCC clusters, consensus clus-
tering was performed iteratively with incremental numbers of clusters,
and the cluster number at which consensus was strongest was chosen.
Consistent with our previous report (Gevaert et al., 2015), greatest con-
sensus was achieved for 5 clusters (Supplementary Fig. 1). These clus-
ters were considered putative subtypes, including one HPV+ subtype
(subtype 4), and four HPV− subtypes (Fig. 1, Supplementary Table 2).
We named these subtypes the ‘Non-CIMP-Atypical’, ‘NSD1-Smoking’,
‘CIMP-Atypical’, ‘HPV+’, and ‘Stem-like-Smoking’ subtypes, according
to their most distinctive clinical and molecular attributes.

3.2. MethylMix subtypes differed from TCGA gene expression subtypes

Four gene expression subtypes have been identified for HNSCC, each
associated with distinct etiological HNSCC features (Chung et al., 2004;
Keck et al., 2015; Lawrence et al., 2015;Walter et al., 2013).Weassessed
the distribution of these expression subtypes within our MethylMix
subtypes, based on assignments by the TCGA study for 279 cancers
(Lawrence et al., 2015) (Supplementary Fig. 2). While our HPV+ sub-
type was comprised almost entirely of the Lawrence et al. designated
HPV-related ‘Atypical’ (AT) gene expression subtype, all other
MethylMix subtypes were comprised of mixtures of multiple gene ex-
pression subtypes. Notably, the ‘Mesenchymal’ (ME) expression sub-
type distributed almost evenly between four MethylMix subtypes.
This indicates that integrated DNA methylation and expression sub-
types capture unique sources of molecular heterogeneity.

3.3. Identification of a single HPV positive subtype

A recent study inferred infection status for HPV and other human vi-
ruses by measuring expression of viral transcripts in tumor RNA-Seq
data (Tang et al., 2013).We utilized this, themost complete data source
in terms of patient numbers, as ameasure of HPV status. 97% of patients
within the HPV+ MethylMix subtype were positive for either HPV16
(89% (32/36)) or HPV33 (8% (3/36)), comparedwith 0–7% of other sub-
types (Fig. 1, Supplementary Fig. 3, Table 1). The HPV+ subtype was
enriched for classic features of HPV+ HNSCC, including enrichment
for base of tongue and tonsil cancer (Supplementary Fig. 4, Table 1),
few smokers (Fig. 1, Fig. 2), and the lowest overall mutation burden
(Table 1), with lack of TP53 and CDKN2Amutations (Fig. 1, Supplemen-
tary Fig. 5). The HPV+ subtype was associated with significantly im-
proved overall survival compared with other subtypes
(Supplementary Fig. 6), consistent with previous reports (Sethi et al.,
2012; Ang et al., 2010). OurMethylMix subtypes segregatedmore clear-
ly with HPV status than the TCGA gene expression subtypes: While
most HPV+ HNSCCs occurred within the AT gene expression subtype,
57% HNSCCs within this subtype have had no detected virus (Supple-
mentary Fig. 7). This suggests that integrated DNA methylation and
gene expression is a more accurate biomarker of HPV status than gene
expression alone and demonstrates that ourMethylMix subtypes repre-
sent biologically meaningful groups. Moreover, separation of
MethylMix subtypes according to HPV status allowed us to



Fig. 1. Heatmap indicating differential methylation and distribution of key etiological and molecular factors between MethylMix subtypes. MethylMix subtypes identified by consensus
clustering of abnormally methylated genes, identified using MethylMix (Gevaert, 2015). ‘Smokers’ refers to current or reformed former smokers (b15 years). OSCC: oral squamous cell
carcinoma.
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unambiguously investigate variability of other factors, such as smoking,
between HPV− subtypes, independent of HPV.

3.4. Identification of smoking-related and atypical subtypes of HPV−
HNSCC

Two HPV− subtypes, the NSD1-Smoking and Stem-like-
Smoking subtypes, were overrepresented for current and recent
former smokers (b15 years), compared with the Non-CIMP-Atypi-
cal and CIMP-Atypical subtypes (Fig. 2a). Consistently, the NSD1-
Smoking and Stem-like-Smoking subtypes had the highest overall
mutation burden, primarily driven by significantly higher levels
of CNA and GNT transversions, the primary mutation signatures as-
sociated with smoking (Helleday et al., 2014; Stransky et al., 2011;
Hainaut and Pfeifer, 2001; Kandoth et al., 2013; Ding et al., 2008;
Henderson et al., 2005) (Fig. 2b, Table 1). These subtype also
displayed higher mean numbers of copy number aberrations (Fig.
2c, Table 1), also associated with smoking intensity in cancer
(Huang et al., 2011). Moreover, the NSD1-Smoking and Stem-
like-Smoking subtypes had higher levels of expression of xenobiot-
ic metabolism genes (Fig. 2d, Table 1), a measure of cellular re-
sponse to xenobiotic substances such as those found in tobacco
smoke (Fang et al., 2013). Each of these smoking measures were
correlated with smoking pack years (Supplementary Fig. 8), and
with each other, but taken together, they provide platform-inde-
pendent evidence that the NSD1-Smoking and Stem-like-Smoking
subtypes are smoking related, and driven by smoking-related
damage.

Conversely, theNon-CIMP-Atypical and CIMP-Atypical subtypes, but
particularly the CIMP-Atypical subtype, had low levels of all smoking re-
lated measures that were more similar to the HPV+ subtype, which is
not primarily caused by smoking (Poling et al., 2014). Consistent with
clinical descriptions of atypical HNSCC (Patel et al., 2011; Koo et al.,
2013; Pickering et al., 2014), the CIMP-Atypical and Non-CIMP-Atypical
subtypeswere overrepresented for female patients (Supplementary Fig.
9, Table 1), and were enriched for OSCC (Primarily oral tongue and oral
cavity), while the NSD1-Smoking and Stem-like-Smoking subtypes
comprised of approximately equal numbers OSCC and laryngeal squa-
mous cell carcinoma (LSCC) (Supplementary Fig. 4). Importantly, the
differential distributions of these smoking-related features between
subtypes were consistent in OSCC and LSCC analyzed separately
(Supplementary Table 3), indicating that the degree of smoking-relat-
edness of subtypes is not simply driven by the proportions of different
anatomic subsites.

Taken together, these findings indicate that our HPV− MethylMix
subtypes differ in their degree of smoking-relatedness, and that the
CIMP-Atypical subtype particularly matches the profile of atypical
HNSCC.

3.5. DNA methylation profiles of MethylMix subtypes

We next investigated the general patterns of DNA methylation per-
turbation that define each MethylMix subtype. These subtypes differed
greatly in their average numbers of hypermethylated and
hypomethylated genes (Fig. 3). The NSD1-Smoking subtype had a sig-
nificantly higher number of hypomethylated genes than other subtypes,
but the lowest number of hypermethylated genes. Conversely, the
CIMP-Atypical subtype had a strikingly higher number of
hypermethylated genes and lower number of hypomethylated genes
compared with all other subtypes. The degree of hypermethylation in
the CIMP-Atypical subtype was consistent when OSCC and LSCC were
analyzed separately (Supplementary Table 3).

MethylMix ‘genes’ comprise clusters of concordantly methylat-
ed neighboring CpG sites. The proportion of hypermethylated CpG
sites that were within CpG islands was highest in the NSD1-
Smoking and CIMP-Atypical subtypes, while the proportion of
hypomethylated CpG sites within CpG islands was highest in the
HPV+ subtype (Fig. 3c), suggesting different epigenetic mecha-
nisms that define DNA methylation landscapes within different
subtypes. The methylation profile of the CIMP-Atypical subtype,
i.e., a strongly elevated number of hypermethylated CpG islands,
matches the description of the ‘CpG island methylator phenotype’
(CIMP) (Hughes et al., 2013; Teodoridis et al., 2008). CIMP defines
clinically distinct subtypes in other cancers (Hughes et al., 2013),
and can be caused by various factors such as oncogenic viruses or
IDH1/IDH2 mutations (Turcan et al., 2012; Figueroa et al., 2010),
however CIMP is not well characterized in HNSCC. We found that
the degree of CIMP, i.e., the overall number of hypermethylated
CpG sites, was correlated with increasing age (Supplementary Fig.
10), suggesting that it is caused by age-related epigenetic instabil-
ity, an etiological factor that increases with age, or increasing dura-
tion of exposure to a given cause.



Table 1
Distribution of key clinical and etiological variables between MethylMix subtypes.

MethylMix subtype

Non-CIMP-Atypical
(N = 150)

NSD1-Smoking
(N = 80)

CIMP-Atypical
(n = 114)

HPV+ (N = 64) Stem-like-Smoking
(N = 120)

Smoking status (n (%)) Never 34 (29%) 6 (10%) 28 (29%) 18 (39%) 10 (11%)
Former N 15
years

17 (15%) 6 (10%) 24 (25%) 5 (11%) 11 (12%)

Former b15
years

32 (27%) 16 (27%) 17 (18%) 12 (26%) 33 (35%)

Current 34 (29%) 31 (53%) 27 (28%) 11 (24%) 39 (42%)
p-Valuesa 0.162 b0.001 – 0.775 b0.001

HPV status (n (%)) HPV− 81 (99%) 44 (100%) 63 (98%) 1 (3%) 72 (92%)
HPV16 0 (0%) 0 (0%) 0 (0%) 32 (89%) 5 (6%)
HPV33 1 (1%) 0 (0%) 1 (2%) 3 (8%) 1 (1%)
p-Valuesb 1 1 – b0.001 0.197

Gender (n (%)) F 45 (37%) 12 (20%) 42 (43%) 5 (11%) 18 (19%)
M 77 (63%) 49 (80%) 56 (57%) 41 (89%) 77 (81%)
p-Valuesc 0.446 0.005 – b0.001 b0.001

Anatomic subsite (n (%)) Base of
tongue

4 (3%) 2 (3%) 1 (1%) 11 (24%) 4 (4%)

Hypopharynx 2 (2%) 0 (0%) 1 (1%) 1 (2%) 2 (2%)
Larynx 15 (12%) 27 (44%) 7 (7%) 1 (2%) 44 (46%)
Lip 1 (1%) 0 (0%) 0 (0%) 0 (0%) 1 (1%)
Oral 94 (77%) 31 (51%) 89 (91%) 8 (17%) 44 (46%)
Tonsil 6 (5%) 1 (2%) 0 (0%) 25 (54%) 0 (0%)
p-Valuesd 0.011 b0.001 – b0.001 b0.001

Pathological grade (n (%)) 1 15 (12%) 5 (8%) 20 (21%) 1 (2%) 5 (6%)
2 82 (68%) 39 (65%) 59 (61%) 15 (37%) 60 (67%)
3 23 (19%) 16 (27%) 18 (19%) 19 (46%) 24 (27%)
4 0 (0%) 0 (0%) 0 (0%) 6 (15%) 1 (1%)
p-Valuese 0.152 0.069 – 0.014 0.005

Age (mean (IQR)) p-valuef 61 (52–70) p = 0.406 58 (52–65) p = 0.016 63 (53–73) 56 (50–62)
p = 0.002

63 (56–68) p = 0.947

Overall mutation burden (mean (IQR))
p-valuef

124 (62–115)
p = 0.08

188 (97–252)
p = 0.004

114 (695–145) 99 (38–117)
p = 0.004

Smoking mutation rates (mean (IQR))
p-valuef

GNT
transversions

7 (3–9) p = 0.574 24 (6–34) p ≤ 0.001 6 (3–8) 5 (2–5) p = 0.037 17 (5–20) p ≤ 0.001

CNA
transversions

7 (3–8) p = 0.875 25 (6–36) p ≤ 0.001 7 (4–9) 4 (1–7) p = 0.003 17 (5–21) p = 0.002

# CNAs (mean (IQR)) p-valuef CNAScore 10,420 (6145–14,060)
p ≤ 0.001

11,850 (8055–15,560)
p ≤ 0.001

6805
(2550–9738)

6838 (3886–8006)
p = 0.294

11,550 (8476–15,680)
p ≤0.001

Xenobiotic metabolism expression
(mean (IQR)) p-valuef

−0.3 (−0.8–0.1)
p ≤0.001

0.8 (0.2–1.3) p ≤0.001 0 0.2 (−0.2–0.6)
p ≤0.001

0.6 (0.1–1.2) p ≤0.001

Abnormally methylated genes (mean
(IQR)) p-valuef

# hyper
genes

954 (878–1033)
p ≤ 0.001

724 (621–804)
p ≤ 0.001

1282
(1184–1362)

866 (736–943)
p ≤ 0.001

760 (674–850)
p ≤ 0.001

# hypo genes 422 (384–461)
p ≤ 0.001

587 (542–627)
p ≤ 0.001

370 (344–394) 462 (424–496)
p ≤ 0.001

439 (380–494)
p ≤ 0.001

IFN gene expression (mean (IQR))
p-valuef

0.2 (−0.4–0.9)
p ≤ 0.001

−0.4 (−1.1–0.4)
p ≤ 0.001

0.8 (0.3–1.3) −0.2 (−0.5–0.3)
p ≤ 0.001

−0.6 (−1.2–0.1)
p ≤ 0.001

a Pearson chi-squared test for difference in distribution of non-smokers (never or former N 15 years) between CIMP-Atypical subtype and other subtypes.
b Pearson chi-squared test for difference in distribution of HPV− patients between CIMP-Atypical subtype and other subtypes.
c Pearson chi-squared test for difference in distribution of female patients between CIMP-Atypical subtype and other subtypes.
d Pearson chi-squared test for difference in distribution of OSCC patients between CIMP-Atypical subtype and other subtypes.
e Pearson chi-squared test for difference in distribution of grade 1 cancers between CIMP-Atypical subtype and other subtypes.
f Wilcoxon rank sum test for mean difference in continuous variable between CIMP-Atypical subtype and other subtypes.
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3.6. Somatic mutation profiles differ between smoking-related and atypical
HNSCC subtypes

We next assessed the distribution of significantly mutated genes
within our MethylMix subtypes. Of all genes, NSD1 mutations were
most significantly differentially distributed between MethylMix sub-
types (p = 2.2e−16), occurring almost exclusively within the
hypomethylated NSD1-Smoking subtype (Supplementary Fig. 5, Sup-
plementary Table 4), consistent with our previous report (Gevaert et
al., 2015). Our NSD1-Smoking subtype corresponding to the
H3K36me-impared subtype of HNSCC reported by Papillon-Cavanagh
et al. (2017). Thirty percent of patients within the CIMP-Atypical sub-
type featured CASP8mutations, compared with 0–7% in other subtypes,
a highly significant enrichment (Supplementary Fig. 5). Mutations in
HRAS, a gene co-mutedwith CASP8, andNOTCH1,were also significant-
ly enriched in the CIMP-Atypical subtype, though HRAS was only
mutated in 8/66 (12%) of CIMP-Atypical subtype patientswithmutation
data. CASP8 and NOTCH1mutations that were not in the CIMP-Atypical
subtypeweremostly found in the Non-CIMP-Atypical subtype, suggest-
ing that theymay be related to atypical, rather than smoking or HPV-re-
lated HNSCC etiology.

3.7. Driver copy number aberrations lacking in the CIMP-Atypical subtype

Given the depletion of CNAs in atypical MethylMix subtypes relative
to smoking-related subtypes, we assessed the distribution between
subtypes of frequent driver CNA events that were previously described
in the TCGA patient cohort (Lawrence et al., 2015) (namely 3q26.33,
5p12, 8q11.21 and 8q24.21 amplifications, and 3p12.1, 3p24.1 and
8p23.2 deletions). The CIMP-Atypical subtype had fewer 5p12 amplifi-
cations, 3p12.1 deletions, and 3p24.1 deletions than other HPV− sub-
types (Supplementary Fig. 11), indicating that this subtype lacks CNAs



Fig. 2. Differential distribution of smoking measures between MethylMix subtypes. Distribution of a) smoking status categories (Pearson's chi-squared test), b) smoking mutation
signature rates (overall number of GNT and CNA transversions per individual) (Wilcoxon rank sum test, p-values are shown for CNA and GNT mutations signatures separately), c)
copy number aberration rate (Wilcoxon rank sum test) and d) mean expression of xenobiotic metabolism genes (Wilcoxon rank sum test), between MethylMix subtypes. p-Values
indicate significance of the differences in smoking variables between the CIMP-Atypical subtype (green) and each other subtype separately. *p b 0.05, **p b 0.01, ***p b 0.001.
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that are frequent in HNV−HNSCC, but lacking inmore genomically sta-
ble HPV+HNSCC. Notably, the CIMP-Atypical subtypewas depleted for
3q26.33 amplifications, among themost frequent andwell studied focal
CNA event in HNSCC (Maier et al., 2011), compared with all (both
HPV+ and HPV−) subtypes (Supplementary Fig. 11). 3q26.33 encom-
passes SOX2, a major oncogenic driver of stem-like gene expression in
SCC (Maier et al., 2011; Boumahdi et al., 2014; Keysar et al., 2017).

Intriguingly, SOX2 amplifications co-occurred with DNA hypome-
thylation of a region of the SOX2 overlapping transcript (SOX2OT)
(Fig. 4a), lying adjacent to a SOX upstream enhancer (Catena et al.,
2004). This SOX2OT region was hypomethylated in most patients with-
in smoking-related and HPV+ subtypes, but hypermethylated in atyp-
ical HNSCC subtypes (Supplementary Fig. 12).

SOX2 amplification and SOX2OT methylation were each indepen-
dently associated with expression of SOX2 (Supplementary Fig. 13a),
SOX2 target genes, i.e., genes whose promoters were bound by SOX2
in human embryonic stem cells (ESCs) (Lee et al., 2006) (Fig. 4b), and
ESC marker genes (Assou et al., 2007) (Supplementary Fig. 13b). Ex-
pression of SOX2 (Supplementary Fig. 13c), and both of these gene
sets was lowest in the CIMP-Atypical subtype (Supplementary Figs. 4b
and 13d, Fig. 5c). Taken together, these findings indicate that the
CIMP-Atypical HNSCC subtype lacks both mechanisms that drive SOX2
overexpression in other HNSCC subtypes, that results in more stem-
like transcriptional identity.

Expression of these SOX2 target and ESCmarker gene sets was asso-
ciated with a more undifferentiated state in breast and other cancer
types (Ben-Porath et al., 2008). Consistently, we found that mean ex-
pression of SOX2 target genes is correlated with increasing pathological
grade (Fig. 4d), and that the CIMP-Atypical included a higher frequency
of well-differentiated HNSCCs than other subtypes (Supplementary Fig.
14).

3.8. The CIMP-Atypical subtype features an antiviral gene expression
signature

In order to identify potential driver pathways and etiological factors
associated with the CIMP-Atypical subtypes, we identified genes
overexpressed in the CIMP-Atypical subtype (Supplementary Table 5),
and performed gene expression enrichment analysis (GSEA) to identify
gene sets that significantly overlapped with these genes. The most
enriched gene sets represented genes that are activated by type I and
II interferons (IFNs), i.e. genes activated during interferon-mediated in-
nate immune response to viral or other pathogen infection (Supple-
mentary Table 6).

A network map illustrating the top 100 most overexpressed gene
sets revealed a dense cluster of partially redundant enriched gene sets
(Fig. 5a). Three of the top five hub gene sets, i.e., gene sets with the
highest number of edges/mutually overlapping genes between gene
sets, represented IFNα responsive genes: These included sets of genes
upregulated by treatment with IFNα in ovarian cancer side-population
cells (Moserle et al., 2008), primary fibroblasts (Browne et al., 2001),
and primary hepatocytes (Radaeva et al., 2002). Curiously, although
the CIMP-Atypical subtype was not associated with any known onco-
genic virus (see above, Supplementary Fig. 3), most of these enriched
gene sets represent interferon-inducible antiviral response gene sets.
The CIMP-Atypical gene expression signature is also remarkable similar



Fig. 3. Different aberrant DNAmethylation profiles associated with MethylMix subtypes. Variation in the mean number of a) hypermethylated and b) hypomethylated MethylMix genes
per patient, between MethylMix subtypes, with a significantly higher number of hypermethylated genes, and lower number of hypomethylated genes in the CIMP-Atypical subtype
(green) compared with each other subtype (Wilcoxon rank sum test). c) The proportion of CpG sites in hypermethylated genes that were within CpG islands was highest within the
NSD1-Smoking (olive) and CIMP-Atypical (green) subtypes, while the number of hypomethylated CpG siteswithin CpG islands was highest within the HPV+ subtype (blue). ***p b 0.001.
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to the set of genes upregulated by expression of double-stranded RNA
(dsRNA) derived from reactivated endogenous retroviruses (ERVs), as
a result of inhibition of DNA methylation in cancer (Chiappinelli et al.,
2015; Roulois et al., 2015). Indeed, all of the IFN-inducible genes upreg-
ulated by DNAmethylation inhibition in ovarian cancer (Chiappinelli et
al., 2015) were upregulated in the CIMP-Atypical subtype (Supplemen-
tary Fig. 15).

The co-occurrence of IFN responsive gene overexpression and CASP8
mutations within the CIMP-Atypical subtype is intriguing, as CASP8 ini-
tiates apoptosis in response to type I and II interferon-mediated signal-
ing (Mocarski et al., 2012; Kantari and Walczak, 2011; Parker et al.,
2016; Tekautz et al., 2006). CASP8 was the only significantly mutated
gene associated with an IFN response signature (the top hub enriched
gene set (Moserle et al., 2008)) (Fig. 5b), and is therefore uniquely relat-
ed to IFN response in HNSCC.

Immune gene expression signatures in solid tumors typically reflect
the distribution of tumor infiltrating leukocytes (TALs) within the
tumor (Gentles et al., 2015a). To gain insight into the immune transcrip-
tional profile of the CIMP-Atypical subtype, we inferred the levels of
specific immune cell types within each TCGA patient using CIBERSORT
(Newman et al., 2015). Patients of the CIMP-Atypical subtype were
enriched for pro-inflammatoryM1macrophages (Fig. 5c, Supplementa-
ry Table 7), consistentwith upregulation of IFN responsive genes, asM1
macrophages are activated by IFNγ, and M1 activation or ‘polarization’
induces upregulation of many IFN responsive genes (Hu et al., 2008;
Martinez et al., 2006).

The CIMP-Atypical subtype also featured elevated levels of CD8 pos-
itive (CD8+) T cells (Fig. 5c, Supplementary Table 7), a marker of anti-
cancer immune response, and a favorable prognostic marker in HNSCC
(Balermpas et al., 2015), compared with other HPV− subtypes, and al-
most as high as the HPV+ subtype.

As MethylMix filters differentially methylated genes to include only
those at which methylation is associated with gene expression, the
CIMP-Atypical subtype featured an elevated number of epigenetically
silenced genes.

GSEA did not reveal any consistent themes among genes downregu-
lated of hypermethylated in the CIMP-Atypical subtype (data not
shown), suggesting that CIMP does not selectively silence any particular
class of genes. However, genes that were downregulated and/or
hypermethylated in the CIMP-Atypical subtype included tumor sup-
pressor genes listed by TSgene (Zhao et al., 2016) and genes that are
causally implicated in cancer, listed within COSMIC cancer Gene Census
(Forbes et al., 2008) (Supplementary Table 8), indicating that CIMP al-
ters cancer gene expression pathways.

3.9. Validation of the CIMP-Atypical subtype

Overall, our findings indicate that the CIMP-Atypical subtype is clin-
ically atypical and molecularly distinct, and may therefore represent a
distinct etiological and clinical entity. We therefore focused on validat-
ing this subtype in independent patient cohorts. We developed a gene
expression classifier using prediction of microarrays (PAM) analysis
(Tibshirani et al., 2002) to predict the CIMP-Atypical subtype based on
gene expression data, and tested the ability of this model to classify
the CIMP-Atypical subtype using 100-fold cross validation within the
training (TCGA) data set. This classifier could classify the CIMP-Atypical
subtypewith an area under the curve (AUC) of 0.92 (95% confidence in-
terval 0.89–0.94) (Supplementary Fig. 16). The genes used by themodel



Fig. 4. SOX2OThypomethylation and SOX2 amplifications drive SOX2 pathway expression, and are lacking in the CIMP-Atypical subtype. a) i)Mixturemodel plot indicating two abnormal
SOX2OTDNAmethylation states. Histogram illustrates the frequency of patients at levels of SOX2OTmethylation in tumor. DNAmethylation states (mixturemodel components) include a
hypomethylated andhypermethylated state in tumor, indicated by red andgreen curves, respectively. The 95% confidence interval for the range of SOX2OTmethylation innormal adjacent
tissue is indicated by the black horizontal bar. ii) The SOX2OT hypomethylated state occurred in only one patient within the CIMP-Atypical subtype, but occurred in 10–61% of patients in
other subtypes. iii) The SOX2OT hypomethylated state (red) was more frequent among patients with either monoallelic (Siegel et al., 2016) or biallelic (Belcher et al., 2014) SOX2
amplifications, but did not differ between patients with SOX2 deletions and normal SOX2 copy number (Pearson's chi-squared test). b) Mean expression of SOX2 target genes (Blue
horizontal line) was higher in patients with SOX2 amplifications compared with patients without SOX2 amplifications (Wilcoxon rank sum test), and was negatively correlated with
SOX2OT methylation in both groups, indicating that both mechanisms contribute independently to SOX2-related transcription in HNSCC. Linear regression lines and p values, as well
as Spearman correlation coefficients (rho) are indicated. SOX2OT MethylMix methylation states are indicated by point colors. c) Mean expression of SOX2 target genes, i.e., genes with
promoters bound by SOX2 in embryonic stem cells (ESCs) (Lee et al., 2006) was lower in the CIMP-Atypical subtype compared with each other subtypes (Wilcoxon rank sum test). d)
Mean expression of SOX2 target genes displays a stepwise increase with increasing pathologic grade (Wilcoxon rank sum test). **p b 0.01, ***p b 0.001.
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to classify the CIMP-Atypical subtype were highly consistent across
folds of cross-validation, and included 10 upregulated and 22 downreg-
ulated genes (in the CIMP-Atypical subtype relative to other subtypes)
that were consistently used across all cross-validation folds (Supple-
mentary Table 9). The upregulated genes generally comprised of IFN re-
sponsive genes, and included notable TAM expressed genes with
important functions related to tumor-immune interactions, including
VEGFC (Schoppmann et al., 2006), CD274 (PD-L1) (Schalper et al.,
2015), and PDCD1LG2 (PD-L2) (Zhang et al., 2006).

We then applied this classifier to the two largest independent pa-
tient cohorts with gene expression and relevant clinical data,
GSE65858 (n = 253) (Wichmann et al., 2015) and GSE39366 (n =
138) (Walter et al., 2013). We found that 11% (28/253) patients within
GSE65858, and 59% (81/138) patients within GSE39366,were predicted
as the CIMP-Atypical subtype. Patients predicted as CIMP-Atypical were
overrepresented for HPV− cancers, females, and OSCCs in both valida-
tions sets (Fig. 6, Supplementary Table 10). Within HPV− HNSCCs (to
exclude confounding by HPV status), patients predicted as CIMP-Atypi-
cal were overrepresented for non-smokers in both data sets (Fig. 6a,
Supplementary Table 10). In GSE39366 (for which differentiation status
data were available), patients predicted as the CIMP-Atypical subtype
weremore likely to be ‘well-differentiated’, consistent with enrichment
of grade 1 tumors in this subtype in the TCGA study (Supplementary
Table 10, Fig. 6a, Supplementary Fig. 14). Thus, these findings demon-
strate that the gene expression signature of the CIMP-Atypical subtype
can robustly classify atypical HNSCC patients. Finally, we confirmed
that the IFNα response gene expression signature (Moserle et al.,
2008) (the top hub gene set enriched in the CIMP-Atypical subtype)
was higher in atypical HNSCCs than smoking-related (HPV−) HNSCCs
in GSE39366 and GSE65858 (Supplementary Fig. 17), though this only
reached statistical significance in GSE39366.

3.10. Genes associated with atypical OSCC are consistent with a previous
study

To further validate the CIMP-Atypical subtype, we examined a previ-
ously reported set of genes that were differentially expressed in non-
smoking, non-alcohol relatedHNSCC relative to smoking and alcohol re-
lated HNSCC (Farshadpour et al., 2012) including 28 upregulated, and
21 downregulated genes. This study included only OSCC and oropha-
ryngeal HNSCCs, sites primarily associated with HPV− HNSCC; there-
fore these gene signatures were considered putative atypical



Fig. 5.The CIMP-Atypical subtype features an inflammatory gene expression signature. a) Networkmap illustrating enrichment for immune response genes amonggenes overexpressed in
the CIMP-Atypical subtype. Nodes represent enriched gene sets and edges representmutual overlap between gene sets, indicating redundancy between enriched gene sets. Hub gene sets,
i.e., the top five gene sets with the highest number of edges are highlighted yellow. The top 100 gene sets identified by gene set enrichment analysiswere included in theNetworkMap. b)
Higher mean expression of a reported IFN response gene expression signature (Moserle et al., 2008) in HNSCCs with CASP8 mutations, versus those without CASP8mutations (Wilcoxon
rank sum test). c) Levels of infiltrating M1macrophages and CD8+ T cells, inferred using CIBERSORT (Newman et al., 2015) within MethylMix subtypesWilcoxon rank sum test p values
for difference in mean TAL levels between the CIMP-Atypical subtype and other subtypes are indicated. **p b 0.01, ***p b 0.001.
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signatures: We confirmed this by validating these signatures as associ-
ated with atypical HNSCC within the TCGA, GSE65858, and GSE39366
studies (Supplementary Fig. 18).

Next,Mean expression of the upregulated and downregulated genes
was found to be significantly higher and lower, respectively, in the
CIMP-Atypical subtype, compared with all other subtypes (Fig. 6b),
and this was consistent in OSCC and LSCC analyzed separately (Supple-
mentary Table 11). This confirms the existence of gene expression pat-
terns reproducibly associated with atypical HNSCC, and indicates that
such expression patterns pertain particularly to the CIMP-Atypical
HNSCC subtype.

4. Discussion

Herein,we confirmed our previous finding of five HNSCCMethylMix
subtypes (Gevaert et al., 2015), now within the complete TCGA HNSCC
data set. These MethylMix subtypes segregated with HPV status and
smoking, the best-known risk factors for HNSCC, indicating that they
represent biologically meaningful subtypes.

HPV+ HNSCCs clustered into a single, almost ubiquitously HPV+
MethylMix subtype, agreeing with previous studies reporting a clear
HPV DNA methylation signature (Lleras et al., 2013; Anayannis et al.,
2015). Moreover, our MethylMix subtypes segregated with HPV status
more perfectly than gene expression subtypes, consistent with previous
reports that HPV+ HNSCCs occur in two gene expression subtypes
(Keck et al., 2015), or make up a subset of the AT expression subtype
(Chung et al., 2004; Lawrence et al., 2015). This provided proof of prin-
ciple that ourMethylMix subtypes capture key etiological heterogeneity
in HNSCC, as HPV+ HNSCC is known to be a clinically and biologically
distinct subtype (Sethi et al., 2012; Poling et al., 2014). The original
TCGA paper (Lawrence et al., 2015), and other reports (Seiwert et al.,
2015); (Lawrence et al., 2015) have focused on molecular differences
between HPV+ and HPV− HNSCC, while Lleras et al. described DNA
methylation features of HPV+ HNSCC (Lleras et al., 2013). Therefore,
we took advantage of the segregation of HPV+ from HPV− HNSCC in
our study to investigate less well-studied heterogeneity within the
four HPV− subtypes.

Overall, our findings indicate that smoking is a major driver of mo-
lecular heterogeneity in HNSCC, as two HPV− subtypes were clearly
more smoking-related, indicated by smoking behavior measures
(smoking status, pack years), rates of smoking-related genetic damage
(smoking mutation signatures, copy number aberration rate), and ex-
pression of xenobiotic response genes as a measure of cellular response
to smoking.

Smoking mutation signatures provide a long-term historical record
of damage caused by smoking, the primary mutagen in HNSCC, as
these signatures are elevated in cancers of former smokers (Stransky
et al., 2011; Kandoth et al., 2013). These smokingmeasures are correlat-
ed, but capture different facets of smoking as it relates to cancer, includ-
ing exposure level and levels of biological response to smoking.

The major difference between the two smoking-related subtypes
was a striking enrichment for NSD1 mutations in one subtype,



Fig. 6. Validation of the CIMP-Atypical subtype gene expression signature. a) Differences in the distribution of clinical features that define the CIMP-Atypical subtype between patients
within (red) or not within (grey) the CIMP-Atypical subtype in the TCGA cohort (shown for reference), and in within patients predicted as belonging to the CIMP-Atypical subtype
(red) or not (grey), by a gene expression classifier, in two additional patient cohorts (GSE65858 (Wichmann et al., 2015), GSE39366 (Walter et al., 2013)). There was a higher
percentage of non-smokers* (never smokers or long-term reformed former smokers), female patients, OSCCs and well-differentiated/pathologic grade 1 tumors, among patients
predicted as belonging to the CIMP-Atypical subtype. Pearson's chi-squared p values are indicated. b) Mean expression of genes reported as i) upregulated and ii) downregulated, in
atypical HNSCC compared with typical HNSCC (smoking and alcohol-associated) (Farshadpour et al., 2012), was significantly higher and lower, respectively, within the CIMP-Atypical
subtype (green) compared with within each other subtype (Wilcoxon rank sum test). *Difference in the proportion of non-smokers was restricted to HPV− HNSCCs only, as HPV+
HNSCC are frequently non-smokers. Abbreviations for anatomic subsites: Oral squamous cell carcinoma (OSCC), hypopharyngeal squamous cell carcinoma (HSCC), laryngeal
squamous cell carcinoma (LSCC), oropharyngeal squamous cell carcinoma (OPSCC), base of tongue (BT), tonsil (T) lip (L). *p b 0.05, **p b 0.01, ***p b 0.001.
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associated with widespread DNA hypomethylation. This agrees with
previous findings by ourselves and others in a subset (n = 258) of the
cohort used here (Lawrence et al., 2015; Gevaert et al., 2015). Papil-
lon-Cavanagh have recently reported on the NSD1 inactivated HNSCC
subtype, which also features mutations in K36M-encoding mutations
in histone 3 genes, and is defined by impairment of histone 3 lysine
36 (H3K36) methylation (Papillon-Cavanagh et al., 2017).

Two MethylMix subtypes lacked the classic risk factors, i.e., they
were HPV−, yet had levels of smoking-related measures similar to
the HPV+ HNSCC. These subtypes comprised mostly OSCCs and had
an overrepresentation of female patients, matching the clinical descrip-
tion of elusive atypical HNSCC (Chaturvedi et al., 2013; Toner and
O'Regan, 2009; MacKenzie et al., 2000; Patel et al., 2011; Koch et al.,
1999; Koo et al., 2013; Brown et al., 2012; Montero et al., 2012; Perry
et al., 2015). Epidemiological evidence indicates that smoking is less of
a risk factor for OSCC than it is for LSCC (Maasland et al., 2014;
Maasland et al., 2015). Consistent with this, we have found that LSCCs
are primarily (though not exclusively) found in the smoking-related
MethylMix subsets, while OSCCs are more heterogeneous and can be
smoking-related, HPV-related, or atypical.

We named the more atypical of these subtypes the CIMP-Atypical
subtype, due to its hypermethylated CpG island phenotype, among
other distinguishing molecular features. A gene expression signature
for this subtype was predictive of atypical HNSCC features in indepen-
dent patient population data sets from two previous studies (Walter
et al., 2013; Wichmann et al., 2015). Moreover, the CIMP-Atypical sub-
type displayed differential expression of genes previously reported as
markers of non-smoking, non-drinking OSCCs (Farshadpour et al.,
2012), that we found to be reproducibly associated with atypical
HNSCC. This confirms that atypical HNSCCs display distinct gene ex-
pression patterns independent of anatomic subsite. These atypical
gene expression patterns pertain particularly to the CIMP-Atypical sub-
type, rather than non-smoking-related HNSCC in general, as they were
altered in the CIMP-Atypical subtype relative to other (HPV+ and
HPV−) non-smoking related subtypes.

CIMP is a driver of cancer development, conferring epigenetic silenc-
ing of tumor suppressor genes (Teodoridis et al., 2008; Hill et al., 2014).
CIMP has rarely been reported in HNSCC (Hughes et al., 2013) and only
usingmethods based onmethylation of a small panel of genes (Shaw et
al., 2007). CIMP implies a distinct etiological basis for this subtype, as
CIMP marks clinically relevant etiological subtypes of other cancers
and is caused by key oncogenic drivers, including oncogenic viruses
(Chang et al., 2006); (Goel et al., 2006) and driver mutations affecting
DNA demethylation (Hughes et al., 2013).
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Patients of the CIMP-Atypical subtype had few CNAs, in contrast
with a previous report that oral tongue squamous cell carcinomas
(OTSCC) of young non-smoking patients have similar CNA profiles to
those of older smokers (Pickering et al., 2014). We found that the
CIMP-Atypical subtype had lower frequency of CNAs that occur in
other HPV− subtypes and are also infrequent in HPV+ HNSCC. Partic-
ularly interesting, however, was a low frequency of SOX2 amplifications
within the CIMP-Atypical subtype compared with all other subtypes.
SOX2 is a major driver of pluripotency in ESCs and its overexpression
maintains a cancer stem cell-like cellular population in HNSCC and
other cancers (Maier et al., 2011; Boumahdi et al., 2014; Keysar et al.,
2017). SOX2 protein expression is reproducibly associated with poor
prognosis and development of lymph node metastases in HNSCC
(Dong et al., 2014). Previous studies have shown that SOX2 amplifica-
tion and protein overexpression more frequently occurs in a smoking-
related gene expressionHNSCC subtype in independent patient popula-
tions (Keck et al., 2015;Walter et al., 2013).We found that SOX2 ampli-
fications co-occur with hypomethylation of SOX2OT, the long non-
coding RNA that overlaps with SOX2 and positively regulates SOX2 ex-
pression (Shahryari et al., 2015), in both smoking and HPV+ subtypes,
driving overexpression of SOX2 and SOX2 target/ESC marker genes in
these subtypes. SOX2OT hypomethylation has only been reported, to
our knowledge, in systemic sclerosis (Altorok et al., 2014), but
SOX2OT overexpression in lung cancers promotes proliferation (Hou
et al., 2014). The CIMP-Atypical subtype had lower frequency of both
mechanisms driving SOX2 overexpression, apparently resulting in over-
all lower expression of SOX2 target and ESCmarker genes. Thismay be a
mechanism underlying lower pathological grade of the CIMP-Atypical
subtype, as SOX2 target gene expression was associated with higher
grade, as previously reported in other cancers (Ben-Porath et al.,
2008), and SOX2protein expression of was associatedwith pathological
grade in a previous report (He et al., 2014).

The CIMP-Atypical subtype features a gene expression signature
characteristic of IFN immune response, overlapping with multiple
gene sets related to viral infection, and this signature was reproducibly
associatedwith atypical HNSCC in independent patient population. IFNs
are best known as mediators of innate immune response to pathogens
(Bekisz et al., 2013), but play diverse roles in cancer. This interferon sig-
nature coincidewith infiltration of pro-inflammatoryM1macrophages,
typifying an inflammatory signature, as M1 macrophages are activated
by IFNγ, and M1 macrophage polarization stimulates expression of
IFN responsive genes (Hu et al., 2008; Martinez et al., 2006).

Tumor associated macrophages (TAMs) are broadly classified into
pro-inflammatory M1 TAMs and anti-inflammatory M2 TAMs. While
M2 TAMs are generally considered to be pro-oncogenic, M1 TAMs are
considered anti-oncogenic, as they can kill tumor cells and oncogenic
pathogens (Costa et al., 2013; Ostuni et al., 2015).M1 TAMs co-occurred
with CD8+ T lymphocytes in the CIMP-Atypical subtype, consistent
with evidence thatM1 TAMs stimulate activate CD8+T cell immune re-
sponse (Crouse et al., 2015;Duray et al., 2010). CD8+T cells are the best
known mediators of anti-cancer immune response, and CD8+ T cell
levels are favorably prognostic in both HPV+ and HPV− HNSCC
(Balermpas et al., 2015; Balermpas et al., 2014).

We have found evidence that CD8+T cell responsemay be inhibited
in the CIMP-Atypical subtype, however, as CD274 (PD-L1) and
PDCD1LG2 (PD-L2), ligands for immune checkpoint receptor PD-1,
were overexpressed. Binding of PD-L1 and PDCD1LG2 to PD-1 on T
CD8+ T cells is well known to inhibit CD8+ T cell response (Zhang et
al., 2006; Schalper et al., 2015).

PD-L1 is expressed on both tumor cells and TAMs (Schalper et al.,
2015), howeverwehave recently show thatM1 TAM levels are correlat-
edwith PD-L1 expression acrossmultiple cancer types (Champion et al.,
Manuscript in preparation), suggesting that M1 TAMs represent an im-
portant source of PD-L1 expression in cancer. Given strong CD274 over-
expression in CIMP-Atypical subtype, CIMP-Atypical HNSCCs may be
uniquely sensitive to PD-1/PD-L1 checkpoint blockade.
Another key oncogene that is apparently expressed by M1 TAMs is
VEGFC, which may contribute to metastasis by promoting
lymphangiogenesis (Schoppmann et al., 2006). Investigation of poten-
tial pro-tumorigenic roles ofM1 TAMs in CIMP-Atypical HNSCC is there-
fore warranted.

The CIMP-Atypical subtype featured enrichment of mutations in
CASP8, a frequently mutated gene in OSCC (Vettore et al., 2015;
Stransky et al., 2011; Cancer and Consortium, 2013). This is consistent
with a previous report that CASP8 mutations marked a HNSCCmolecu-
lar subtype featuring fewCNAs (Pickering et al., 2013). CASP8mutations
reportedly driving growth, migration and invasion in HNSCC (Li et al.,
2014). CIMP in glioblastoma (G-CIMP) can be caused by IDH1mutations
(Heiser et al., 2012). BRAF V600E mutations in colorectal cancer only
found in cancers with CIMP, but approximately 50% of CIMP positive co-
lorectal cancers have BRAF mutations, indicating that BRAF mutations
are unlikely to cause CIMP (Hoadley et al., 2014). CASP8 mutations are
less tightly associated with CIMP in HNSCC than either IDH1 or BRAF
mutations in their respective cancers, occurring within 30% of the
CIMP-Atypical subtype, while 26% of CASP8 mutations occurred in
other subtypes, indicating that CASP8 mutations and CIMP are unlikely
to be causally related. Nonetheless, the strong enrichment of CASP8mu-
tations in the CIMP-Atypical subtype suggests that they play a patho-
genic role that is inherent to this subtype. We hypothesize that CASP8
mutations enable cell survival within the CIMP-Atypical subtype by
blocking the normal apoptotic process induced by IFN signaling: IFNs in-
duce apoptosis via the extrinsic pathway by activating the JAK-STAT
pathway, in turn inducing expression and activation of CASP8/Cas-
pase-8 Mocarski et al., 2012; Kantari and Walczak, 2011; Parker et al.,
2016. Restoration of CASP8 function, or stimulation of its effectors
may represent a therapeutic option for CASP8 inactivated HNSCCs.

The occurrence of an inflamed phenotype in CIMP-Atypical HNSCC
raises the intriguing possibility that CIMP-Atypical HNSCC is caused by
chronic inflammation: This corresponds to an emerging hypothesis
that pathogen-related chronic inflammation causes some OSCCs, as
periodontal disease is associated with increased OSCC incidence
(Moergel et al., 2013; Tezal et al., 2009; Fitzpatrick and Katz, 2010;
Feller et al., 2013). The inflammatory state may reflect innate immune
response to an infectious agent that cause periodontal disease or oral in-
flammation (Whitmore and Lamont, 2014), given the role ofM1macro-
phages and IFNs response to infection (Liu et al., 2014; McNab et al.,
2015). The notion that the CIMP-Atypical subtype may be caused by
an infectious agent is further supported by the presence of CIMP,
which is caused by viruses in some cancers (Lleras et al., 2013; Goel et
al., 2006;Minarovits et al., 2016; Birdwell et al., 2014), and the lowmu-
tation burden, suggesting a non-carcinogenic origin. The IFN signature
of the CIMP-Atypical subtype is strikingly similar to a reported ‘interfer-
on-inducible antiviral signature’, caused by expression of double-
stranded RNA (dsRNA) derived from reactivated ERVs as a result of in-
hibition of DNA methyltransferases in ovarian and colorectal cancer
cell lines (Chiappinelli et al., 2015; Roulois et al., 2015). Moreover, this
ERV-induced signature is associatedwith the CIMP subtype of colorectal
cancer (Roulois et al., 2015). Given that many of the antiviral genes
overexpressed in the CIMP-Atypical subtype, such as members of the
2′-5′-oligoadenylate synthase (OAS) family (Kristiansen et al., 2011)
and DDX58 (Jang et al., 2015), sense viral dsRNA, and the ancient role
played by DNA methylation in regulation of ERVs (Stoye, 2012), it
seems plausible that reactivation of ERVs may explain the co-occur-
rence of CIMP and the anti-viral signature in the CIMP-Atypical subtype.

Whether the CIMP-Atypical antiviral signature reflects response to
exogenous or endogenous retroviruses, other pathogens, or whether
this signature reflects a more general IFN response to a non-pathogen
stimulus such as age, obesity (Nishimura et al., 2009) or cancer itself, re-
main to be resolved by future molecular and epidemiological research.

Ourfindings provide conclusive evidence that atypical HNSCC ismo-
lecularly distinct from smoking and HPV-related HNSCC across multiple
platforms/molecular levels, provide a molecular classification system
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for atypical HNSCC, and postulate that CIMP-Atypical HNSCC represents
a distinct etiological and clinical entity. DNA methylation-based valida-
tion of the CIMP-Atypical subtype in independent patient cohorts is
warranted, particularly as the DNA methylation signature may be used
to develop molecular biomarkers to clinically diagnose and investigate
CIMP-Atypical HNSCC.

The incidence of atypical OSCC in women appears to be rising, de-
spite the decline of smoking-related HNSCC in males in western coun-
tries (Koo et al., 2013; Brown et al., 2012). Identification of the
etiological andmolecular drivers of atypical subtypes, and development
of appropriate prevention and treatment strategies, remain a priority.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2017.02.025.
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