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Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual
cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and
GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if
those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here, we use an animal
model to explore the effects of 3 visual treatments started during the CP (n = 24, 10 male and 14 female): binocular vision (BV) that
promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We
measured the recovery of a collection of glutamatergic and GABAergic receptor subunits in the V1 and modeled recovery of
kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased
data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes.
Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a
maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with a high expression of GluA2, and the BD
phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity.
After 2-4 days of BV, the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to
normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.

1. Introduction

Since the earliest demonstrations that monocular deprivation
(MD) during a critical period (CP) causes ocular dominance
plasticity and acuity loss [1–3], this model has been used to
deepen our understanding of the neural changes associated
with amblyopia. There have been fewer studies, however,
about cortical changes associated with the acuity deficits that
often persist after treatment for amblyopia [4–8]. Here, we
use an animal model to classify the expression patterns (phe-
notypes) of a collection of synaptic proteins that regulate
experience-dependent plasticity and explored if treatments
that promote good versus poor acuity reinstate CP-like plas-
ticity phenotypes in the visual cortex (V1).

Many animal studies have highlighted the roles of glu-
tamatergic and GABAergic mechanisms for regulating

plasticity during the CP [9–15]. For example, the subunit
composition of AMPA, NMDA, and GABAA receptors
regulates the bidirectional nature of ocular dominance plas-
ticity [16–21]. Some of the changes caused by MD include
delaying the maturational shift to more GluN2A-containing
NMDARs [22, 23] and accelerating the expression of
GABAAα1-containing GABAARs [20, 23]. Together, those
changes likely decrease signal efficacy and dysregulate the
spike-timing-dependent plasticity that drives long-term
depression (LTD) and weakens deprived-eye response
[24]. Furthermore, silencing activity engages homeostatic
mechanisms that scale the responsiveness of V1 neurons
by inserting GluA2-containing AMPAR into the synapse
[25]. Importantly, many of the receptor changes have been
linked with specific acuity deficits [26, 27] suggesting that
visual outcomes may reflect changes to a collection of
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glutamatergic and GABAergic receptor subunits that
together represent a plasticity phenotype for the V1.

Animal studies of amblyopia have also identified treat-
ments that promote good versus poor recovery of acuity
after MD. For example, reverse occlusion (RO) gives a com-
petitive advantage to the deprived eye that promotes an ocu-
lar dominance shift, but the acuity recovered by the deprived
eye is transient and can be lost within hours of introducing
binocular vision [6–8]. Similarly, closing both eyes after
MD to test a form of binocular deprivation therapy (BD)
leads to poor acuity in both eyes that does not recover even
after months of binocular vision [28]. In contrast, just open-
ing the deprived eye to give binocular vision (BV) after MD
appears to engage cooperative plasticity that promotes both
physiological recovery [29] and long-lasting visual recovery
in both eyes [27].

Here, we quantified the expression of glutamatergic and
GABAergic receptor subunits in the V1 of animals reared
with MD and then treated to promote either good visual
recovery (BV) or persistent bilateral amblyopia (RO, BD).
Next, we developed an unbiased high-dimensional analysis
approach to identify plasticity features in the pattern of
subunit expression and to construct plasticity phenotypes.
Finally, we used cluster analysis to classify plasticity pheno-
types associated with good versus poor acuity and analyzed
those to determine which features suggest the recovery of
adaptive versus maladaptive plasticity mechanisms.

2. Materials and Methods

2.1. Animals and Rearing Conditions. All experimental pro-
cedures were approved by the McMaster University Animal
Research Ethics Board. We quantified the expression of 7
glutamatergic and GABAergic synaptic proteins in the V1
of cats reared with MD from eye opening until 5 weeks of
age and then given one of the 3 treatments: RO for 18 d,
BD for 4 d, or BV for either short-term (ST-BV; 1 hr, 6 hrs)
or long-term (LT-BV; 1 d, 2 d, or 4 d) (n = 7, 4 male and 3
female) (Figure 1). The lengths of RO and BD were selected
because they have well-documented and consistent visual
changes that result in poor acuity in both eyes [7, 8, 30].
The BV periods were selected to match the lengths used
previously to study rapid and dynamic changes caused by
MD in both cat and mouse V1 [27, 31, 32]. Also, the short-
and long-term BV groups were based on the data-driven
analysis of protein expression described in detail below
and that analysis placed the samples from ST-BV (1 hr or
6 hrs) versus LT-BV (1 d, 2 d, or 4 d) rearing conditions
into separate clusters. The raw data collected previously
[23] from animals reared with normal binocular vision until
2, 3, 4, 5, 6, 8, 12, 16, or 32 wks of age (n = 9 animals, 2 male
and 7 female) or MD from eye opening (6-11 d) to 4, 5, 6, 9,
or 32 wks (n = 8 animals, 4 male and 4 female) were used
for comparison.

MD was started at the time of eye opening by suturing
together the eyelid margins of one eye (5-0 Coated VICRYL
Ethicon P-3) using surgical procedures described previously
[8]. Sutures were inspected daily to ensure the eyelids
remained closed. At 5 weeks of age, the period of MD was

stopped and either BV was started by carefully parting the
fused eyelid margins, RO was started by opening the closed
eye and closing the open eye, or BD was started by closing
the open eye. All of these surgical procedures were done
using gaseous anesthesia (isoflurane, 1.5-5%, in oxygen)
and aseptic surgical techniques.

At the end of the rearing condition, animals were
euthanized using sodium pentobarbital injection (165 mg/kg,
IV) and transcardially perfused with cold 0.1 M phosphate-
buffered saline (PBS) (4°C; 80-100 ml/min) until the circu-
lating fluid ran clear. The brain was removed from the
skull and placed in cold PBS. A number of tissue samples
(2mm × 2mm) were taken from the regions of the V1 repre-
senting the central (C), peripheral (P), and monocular (M)
visual fields (Figure 1(c)). Each tissue sample was placed in
a cold microcentrifuge tube, flash frozen on dry ice, and
stored in a -80°C freezer.

2.2. Synaptoneurosome Preparation. Synaptoneurosomes
were prepared according to a subcellular fractionation proto-
col [16, 33]. The tissue samples were suspended in 1 ml of
cold homogenization buffer (10 mM HEPES, 1 mM EDTA,
2 mM EGTA, 0.5 mM DTT, 10 mg/l leupeptin, 50 mg/l soy-
bean trypsin inhibitor, 100 nM microcystin, and 0.1 mM
PMSF) and homogenized in a glass-glass Dounce tissue
homogenizer (Kontes, Vineland, NJ, USA). Homogenized
tissue was passed through a 5 μm pore hydrophobic mesh
filter (Millipore, Billerica, MA), centrifuged at low-speed
(1,000xg) for 20 min, the supernatant was discarded, and
the pellet was resuspended in 1 ml of cold homogenization
buffer. The sample was centrifuged for 10 min (1,000xg),
the supernatant was discarded, and the pellet was resus-
pended in 100 μl boiling 1% sodium-dodecyl-sulfate (SDS).
Samples were heated for 10 min and then stored at -80°C.

Total protein concentrations were determined for each
sample and a set of protein standards using the bicinchoninic
acid (BCA) assay (Pierce, Rockford, IL, USA). A linear func-
tion was fit to the observed absorbance values of the protein
standards relative to their expected protein concentrations. If
the fit was less than R2 = 0 99, the assay was redone. The
slope and the offset of the linear function were used to deter-
mine the protein concentration of each sample, and then the
samples were diluted to 1 μg/μl with sample (M260 Next Gel
Sample loading buffer 4x, Amresco) and Laemmli buffer
(Cayman Chemical). A control sample was made by combin-
ing a small amount from each sample to create an average
sample that was run on every gel. Each sample was run twice
in the experiment.

2.3. Immunoblotting. Synaptoneurosome samples and a
protein ladder were separated on 4-20% SDS-PAGE gels
(Pierce, Rockford, IL) and transferred to polyvinylidene fluo-
ride (PVDF) membranes (Millipore, Billerica, MA). The
blots were blocked in PBS containing 0.05% Triton-x (Sigma,
St. Louis, MO) (PBS-T) and 5% skim milk (wt/vol) for 1
hour. Blots were then incubated overnight at 4°C with con-
stant agitation in one of the 7 primary antibodies (Table 1)
and washed with PBS-T (Sigma, St. Louis, MO)
(3 × 10 min).
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The appropriate secondary antibody conjugated to
horseradish peroxidase (HRP) (1 : 2,000; Cedarlane Labora-
tories LTD, Hornby, ON) was applied to membranes for 1
hour at room temperature, then blots were washed in PBS
(3 × 10 min). Bands were visualized using enhanced chemi-
luminescence (Amersham, Pharmacia Biotech, Piscataway,
NJ) and exposed to autoradiographic film (X-Omat, Kodak,
Rochester, NY). After each exposure, blots were stripped
(Blot Restore Membrane Rejuvenation kit (Chemicon Inter-
national, Temecula, CA, USA)) and probed with the next
antibody so each blot was probed for all 7 antibodies
(Figure 1(d)).

2.4. Analysis of Protein Expression. The autoradiographic film
and an optical density wedge (Oriel Corporation, Baltimore,
MD) were scanned (16 bit, AGFA Arcus II, Agfa, Germany),
and the bands were identified based on molecular weight.
The bands were quantified using densitometry, and the
integrated grey level of the band was converted into optical
density units (OD) using custom software (MATLAB, The
MathWorks Inc., Natick, Massachusetts). The background
density between the lanes was subtracted from each band,
and the density of each sample was normalized relative to
the control sample run on each gel (sample band density/-
control band density).
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Figure 1: Study design diagram. Timelines for the rearing conditions used in this study. (a) Normal visual experience and monocular
deprivation (MD), (b) treatment conditions (RO, BD, and BV) after MD to 5 wks. Filled bars indicate that an eye was closed. Black arrows
indicate the age of animals used in the study. A timeline for the critical period (CP) in cat visual cortex [34] highlights the peak of the CP
between 4 and 6 weeks of age. (c) Map of the sampling regions in the V1 representing the central (C, n = 2), peripheral (P, n = 8), and
monocular (M, n = 2) visual fields. (d) Representative bands from the Western blots for the 7 proteins quantified in the study and the
molecular weights (kDa).
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The data were normalized relative to the average expres-
sion of the 5 wk normal cases. Table 2 summarizes the num-
ber of tissue samples and replication of runs for the 5 wk
normal, 5 wk MD, and recovery conditions across the 3
regions of the V1 and 7 proteins that were studied. Descrip-
tions of the expression for the individual proteins in each of
the conditions can be found in [35]. Those univariate com-
parisons confirmed the complex nature of these data and
led us to develop and implement the data analysis workflow
that is summarized in Figure 2.

2.5. Protein Network Analysis. A network analysis of protein
expression was done for each rearing condition by calculat-
ing the pairwise Pearson’s R correlations among the 7 pro-
teins using the rcorr function in the Hmisc package in R
[36]. The networks were visualized as correlation matrices

(heatmap2 function in gplots [37]), and the proteins were
ordered using the dendextend [38] and seriation [39] pack-
ages to place proteins with similar patterns of correlations
nearby in the dendrogram. Significant correlations were
identified using the Bonferroni-corrected p values and indi-
cated by asterisks on the cell in the correlation matrix.

2.6. Principal Component Analysis. We used principal com-
ponent analysis (PCA) to reduce the dimensionality of the
data, identify potential biological features, and create plastic-
ity phenotypes. We applied the PCA following the proce-
dures we used previously [23, 40, 41] and included data
from all of the normal animals and MDs as well as the 3
recovery conditions. We assembled the protein expression
for GluA2, GluN1, GluN2A, GluN2B, GABAAα1, GABAAα3,
and synapsin into an mxn matrix. The m columns

Table 1: List of primary antibody concentrations.

Antibody Concentration Company Lot number Location RRID

Anti-GluN1 1 : 2,000 BD Biosciences Pharmingen 556308 San Diego, CA RRID: AB_396353

Anti-GluN2A 1 : 2,000 MilliporeSigma 24826 Burlington, MA RRID: AB_95169

Anti-GluN2B 1 : 2,000 MilliporeSigma 28629 Burlington, MA RRID: AB_2112925

Anti-GluA2 1 : 1,000 Thermo Fisher Waltham, MA RRID: AB_2533058

Anti-GABAAα1 1 : 500 Santa Cruz Biotechnology L3102 Santa Cruz, CA

Anti-GABAAα3 1 : 2,000 MilliporeSigma Burlington, MA

Anti-Synapsin 1 : 2,000 Thermo Fisher Waltham, MA

Table 2: The number of animals, cortical tissue pieces, and WB measurements for each condition and V1 region. Rows summarize the
number of runs from the central (C), peripheral (P), and monocular (M) regions of the V1 within a rearing condition. The columns list
each of the 7 proteins analyzed using Western blotting. Column sums detail the number of runs across rearing conditions and cortical
areas. The information for normal animals is in Table 2-1 and for MD animals is in Table 2-2.

Condition
Number
of animals

Region
Number of Western blot measurements after 2 replications

Number of
cortical pieces

GluN1 GluN2A GluN2B GABAAα1 GABAAα3 GluA2 Synapsin

Normal (5 wks) 1

C 2 4 4 4 4 4 4 4

P 8 16 16 16 15 16 16 16

M 2 4 4 4 4 4 4 4

MD (5 wks) 2

C 3 6 6 6 6 6 6 4

P 9 18 18 18 18 18 18 12

M 3 5 5 5 5 5 5 4

RO (18 d) 1

C 2 4 4 4 4 4 4 4

P 8 19 19 19 19 19 14 14

M 2 3 3 3 3 3 2 2

BD (4 d) 1

C 3 6 6 5 6 5 6 5

P 9 18 18 17 16 18 18 17

M 2 4 4 3 4 4 4 3

ST-BV (1 hr, 6 hr) 2

C 4 8 8 8 8 8 8 8

P 16 32 32 32 32 32 32 32

M 4 8 8 8 8 8 8 7

LT-BV (1 d, 2 d, and 4 d) 3

C 6 12 10 12 11 12 12 10

P 24 43 40 43 43 42 43 40

M 6 12 12 12 12 12 12 12

Sum 222 217 219 218 220 216 198
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represented the 7 proteins, and the n rows were the average
protein expression for each of the 12-14 samples from an ani-
mal. For a few of the rows, data was missing from a single cell,
and so those samples were omitted for a total of n = 279 rows
in the matrix and 1,953 observations.

The data were centered by subtracting the mean col-
umn vector and applying singular value decomposition
(SVD) to calculate the principal components (RStudio).
SVD represents the expression of all 7 proteins within a sin-
gle tissue sample as a vector in a high dimensional space, and
the PCA identifies variance captured by each dimension in
that “protein expression space.” The first 3 dimensions
accounted for 82% of the total variance and were used for
the next analyses.

We plotted the basis vectors for the first 3 dimensions
(Dim) and used the weight, quality (cos2), and directionality
of each protein, as well as known protein interactions, to help
identify potential biological features accounting for the
variance. We identified 9 potential features, calculated those
features for each sample, and correlated each feature with
Dim1, Dim2, and Dim3 to create a correlation matrix (see
results). The p values for the correlations were Bonferroni
corrected, and significant correlations were used to identify
the features that would be part of the plasticity phenotype.

Eight of the features were significantly correlated with at
least one of the first 3 dimensions. A measure associated with
the E:I balance was not significantly correlated with the
dimensions, and so it was not included in the tSNE or cluster
analysis. The E:I measure, however, was used for analyzing
the composition of the clusters and as a component of

the plasticity phenotype because of the importance of the
E:I balance for experience-dependent plasticity.

2.7. tSNE Dimension Reduction and Cluster Analysis. The
average expression for the 8 features (Table 3) was com-
piled into an mxn matrix, with m columns (m = 8) repre-
senting the significant features and n rows representing
each sample from the 3 V1 regions (central, peripheral,
and monocular) for 5 wk normal, 5 wk MD, RO, BD,
and BV animals (n = 109). t-distributed stochastic neighbor
embedding (tSNE) was used to reduce this matrix to 2-
dimensions (2D). tSNE was implemented in R [42], and the
tSNE output was sorted using k-means to assign each sample
to a cluster. To determine the optimal number of clusters (k),
we calculated the within-groups sum of squares for increas-
ing values of k, fit a single-exponential tau decay function
to those data, found the “elbow point” at 4τ which was 6,
and used that as the optimal number of clusters. The clusters
were visualized by color-coding the dots in the tSNE plot, and
the composition of the clusters was analyzed.

To facilitate analysis of the tSNE clusters, we grouped the
BV cases into short-term BV (1 hr and 6 hr) (ST-BV) or
long-term BV (1 d, 2 d, and 4 d) (LT-BV), color-coded the
samples by rearing condition, and used different symbols
to indicate the V1 region. For each cluster, we annotated
the composition based on the rearing condition of the sam-
ples to create “subclusters” (e.g., LT-BV 1) that were used for
the next analyses.

We evaluated the similarity/dissimilarity among the sub-
clusters by calculating the pairwise correlations (Pearson’s R)
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between subclusters using the features identified by the PCA
as input to the R package rcorr. The correlations were visu-
alized in a matrix with the cells color-coded to indicate the
strength of the correlation [37]. The order of the subcluster
in the matrix was optimized using hierarchical clustering,
and a dendrogram was created based on the pattern of cor-
relations (using dendextend and seriation packages in R)
so that subclusters with strong correlations were nearby in
the dendrogram.

2.8. Visualization and Comparison of Plasticity Phenotype.
The features identified in the PCA were used to indicate the
plasticity phenotype for each of the subclusters. In addition
to the 8 significant features, the E:I measure was included
in the visualization of the plasticity phenotype. The features
were color-coded using grey scale for the 3 protein sum
features and a color gradient (red = -1, yellow = 0, and
green = +1) for the 6 protein indices. The plasticity pheno-
types were displayed as a stack of color-coded bars with
one bar for each feature. For the subclusters, the plasticity
phenotypes were ordered by the dendrogram to facilitate
comparison among subclusters that were similar versus
dissimilar. We also calculated the plasticity phenotypes
for the full complement of normally reared and MD animals
and displayed those in a developmental sequence to facil-
itate age-related comparisons with the recovery subclusters.
Finally, we did a bootstrap analysis to determine which fea-
tures of the plasticity phenotypes were different from 5 wk
normals and used Bonferroni correction to adjust the signif-
icance for the multiple comparisons. This analysis was dis-
played in 2 ways: first, each of the 9 feature bands for the
dendrogram-ordered subclusters was color-coded with white
if it was not different, red if it was greater, and blue if it was

less than 5 wk normals; second, boxplots were made to show
the value for each of the 9 features and to identify the sub-
clusters that were different from 5 wk normals.

A detailed description of the network analysis, PCA,
tSNE, clustering, and phenotype construction, along with
the example code for each of these steps, can be found in [43].

2.9. Modeling Population Receptor Decay Kinetics for NMDARs
and GABAARs. The subunit composition of NMDARs and
GABAARs determines the decay kinetics of the receptor
[44, 45], and so we used that information to build a model
for the decay kinetics of a population of receptors for each
of the rearing conditions. The decay kinetics of the most
common NMDAR composition, triheteromeric receptors
containing GluN2A and 2B, is 50ms ± 3ms, while dihetero-
mers NMDARs containing only GluN2B are slower (2B =
333ms ± 17ms) and those containing only GluN2A are fas-
ter (2A = 36ms ± 1ms) [44]. The decay kinetics of GABAARs
with both α1 and α3 subunits is 49ms ± 23ms while receptors
with only the α3 subunit are slower (129 0ms ± 54 0ms) and
only α1 are faster (42 2ms ± 20 5ms) [45].

We used the relative amounts of GluN2A and 2B, or
GABAAα1 and α3, as inputs to the model. Receptors contain-
ing GluN2A and 2B or GABAAα1 and α3 are the most com-
mon in the cortex, so the model maximized the number of
these pairs which was limited by the subunit with less expres-
sion. The remaining proportion of the highly expressed sub-
unit was divided by 2 and used to model the number of pairs
for those receptors (2A:2A or 2B:2B; α1:α1 or α3:α3) in the
population. The population decay kinetics were then mod-
eled by inserting the relative amounts of the subunits into
these formulas:

Table 3: Formulas and Pearson’s R correlation between the features and principal components. The formulas for PCA-identified features,
including protein sums (Figure 5) and receptor indices (Figure 6), along with corresponding correlation (R2) values for each of the first 3
principal components. The GluN1:GluA2 and GABAAR sum:GlutR sum were not significantly correlated with any of these 3 components.

PCA-identified features Formula R2 Dim1 R2 Dim2 R2 Dim3

All protein sum GluA2 + GluN1 + GluN2A + GluN2B + GABAAα1 + GABAAα3 + synapsin ÷ 7 0.983 0.134 0.039

GlutR sum GluA2 + GluN1 + GluN2A + GluN2B ÷ 4 0.746 -0.160 0.573

GABAAR sum GABAAα1 + GABAAα3 ÷ 2 0.478 0.819 -0.047

GABAAR sum:GlutR
sum (EI index)

GlutR sum −GABAAR sum ÷ GlutR sum +GABAAR sum 0.036 -0.064 0.012

GABAAα1:GluN2A GluN2A −GABAAα1 ÷ GluN2A + GABAAα1 0.437 -0.743 -0.070

GluN2B:GluN2A GluN2A −GluN2B ÷ GluN2A + GluN2B 0.044 -0.421 0.338

GABAAα1:GABAAα3 GABAAα1 −GABAAα3 ÷ GABAAα1 + GABAAα3 -0.176 0.504 0.194

GluN2B:GluA2 GluN2B −GluA2 ÷ GluN2B + GluA2 0.058 0.209 -0.798

GluN2A:GluA2 GluN2A −GluA2 ÷ GluN2A + GluA2 0.113 -0.172 -0.643

NMDAR kinetics 2A 2B × 50ms + 2A × 36ms + 2B × 333ms
2A 2B + 2A + 2B ;

GABAAR kinetics α1 α3 × 49ms + α1 × 42 2ms + α3 × 129ms
α1 α3 + α1 + α3

1
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For example, a sample where GluN2A was 35% and 2B
was 65% of the total NMDAR subunit population and would
have population kinetics of 135 ms.

First, we plotted scattergrams of the average NMDAR
and GABAAR decay kinetics for normal animals and each
treatment condition. The development of decay kinetics for
normal animals was described using an exponential decay
function, while changes in kinetics with increasing lengths of
BV were fit by either exponential decay or sigmoidal curves.
Then, we compared the relationship between NMDAR and
GABAAR kinetics by plotting both on one graph.

2.10. Statistical Analyses. We used the bootstrap resampling
method to compare the features because it is a conservative
approach to analyzing small sample sizes when standard
parametric or nonparametric statistical tests are not appro-
priate. Here, bootstrapping was used to estimate the confi-
dence intervals (CI) for each feature in the subcluster, and a
Monte Carlo simulation was run to determine if the 5 wk
normal subcluster fell outside those CIs. The statistical soft-
ware package R was used to simulate normal distributions
with 1,000,000 points using the mean and standard deviation
from the subcluster. Next, a Monte Carlo simulation was
randomly sampled with replacement from the simulated
distribution n times, where n was the number of observa-
tions made from the normal subcluster. The resampling
procedure was repeated 100,000 times to determine the
95%, 99%, and 99.9% CIs. The subcluster feature was con-
sidered significantly different from normal (e.g., p < 0 05,
p < 0 01, or p < 0 001) if the feature mean fell outside these
CIs. When a subcluster was significantly greater than normal
(p < 0 05), the boxplot was colored red; when it was less
than normal (p < 0 05), the boxplot was colored blue; and
if it was not different from normal (p > 0 05), the boxplot
was colored grey.

All of the bootstrap statistical comparisons for the plas-
ticity features (Table 5-1 and 6-1) are presented in the
Supplemental material.

The p values for Pearson’s correlations were calculated
using the rcorr package [36], and the significance levels
were adjusted using the Bonferroni correction for multiple
comparisons. Pearson’s Rs and p values for the protein net-
works (Table 3-1), plasticity features with PCA dimensions
(Table 4-1), and association between clusters (Tables 8-1,
8-2) are included in the Supplemental material.

We tested if recovery during BV followed either an expo-
nential decay or a sigmoidal pattern by fitting curves to the
data using Kaleidagraph (Synergy Software, Reading, PA).
Significant curve fits were plotted on the graphs to describe
the trajectory of recovery.

3. Results

3.1. Analyzing the Pairwise Similarity between Protein
Expression Profiles. First, we wanted to identify pairs of
proteins with similar or opposing expression profiles and
compare them among the rearing conditions. For each con-
dition, we collapsed the data from the 3 regions of the V1,
calculated the matrix of pairwise correlations between the 7
proteins, ordered the protein correlations using a hierarchical
dendrogram, and used 2D heatmaps to visualize the correla-
tions (Figure 3). The order of proteins in the dendrogram
indicated which ones had similar (e.g., on the same branch
of the dendrogram) or different patterns of expression, and
the color of the cell illustrated the strength of the correlation.
For 5 wk normal animals (Figure 3(a)), there were strong
positive correlations (red cells) among all proteins except
GluN2A, which was weakly correlated and not clustered with
the other proteins. A different pattern of correlations was
found after MD (Figure 3(b)); here, glutamatergic proteins
were weakly or even negatively correlated (blue cells) with
GABAAα1, GABAAα3, and synapsin. These results suggest
that MD drives a decoupling of these excitatory and inhibi-
tory mechanisms. RO also separated glutamatergic and
GABAergic proteins into different clusters at the first branch
(Figure 3(c)); however, the correlations were weaker, suggest-
ing that RO reduced the MD-driven decoupling of these
mechanisms. After BD, the correlation matrix had mostly
positive correlations (Figure 3(d)) except for synapsin which
was negatively correlated and not clustered with the other
proteins. BV treatment highlighted the dynamic nature of
this recovery (Figures 3(e)–3(i)). Just 1 hr of BV was enough
to change the correlation matrix from the MD pattern, but
even after 4 d of BV, the correlation matrix still appeared dif-
ferent from the normal 5 wk pattern of correlations.

These matrices suggest different patterns of correlations
depending on the condition, but this analysis treats each
comparison with the same weighting and it is likely that some
proteins contribute more than others to the variance in the
data. To assess this, we used the PCA to identify individual
proteins and combinations of proteins that capture the vari-
ance in the data and may represent plasticity features reflect-
ing differences among the treatment conditions.

3.2. Using Principal Component Analysis to Reduce
Dimensionality and Identify Plasticity Features. We used the
PCA to reduce the dimensionality, transform the data, and
find features that define the covariance among the proteins.

0 65 − 0 35 /2 × 50ms + 0 /2 × 36ms + 0 35/2 × 333ms
0 65 − 0 35 + 0 /2 + 0 35 = 135ms 2
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An mxn matrix was made using protein expression, where
them columns were the 7 proteins and the n rows (109) were
the tissue samples from all the animals and regions of the V1
used in this study. This matrix was analyzed using singular
value decomposition (SVD), and the first 3 dimensions
explained most of the variance (82%) in the data (Dim1:
54%, Dim2: 18%, and Dim3: 10%) (Figure 4(a)).

To understand which proteins contributed to each
dimension, we addressed the quality of the representation
for each protein using the cos2 metric and found that the
glutamatergic proteins were well represented by Dim1,
GABAAα1 by Dim2, and GluA2 and GluN2B by Dim3, but
synapsin and GABAAα3 were weakly represented in the first
3 dimensions (Figures 4(b) and 4(c)). Next, we compared
the vectors for each protein (Figures 4(d) and 4(f)) and the
PCA space occupied by the rearing conditions (Figures 4(e)
and 4(g)). The protein vectors show that GluN1, GluN2A,
GluN2B, and GluA2 extended along Dim1, GABAAα1
along Dim2, and GluA2 and GluN2B were in different
directions along Dim3. The PCA space occupied by the
conditions suggest some differences: BD was separated on
Dim2 in the same direction as GABAAα1, but the center
of gravity for the other conditions overlapped the space
occupied by normal samples.

The overlap among conditions raised the possibility that
higher dimensions may separate the conditions. To begin to
assess higher dimensional contributions, we examined the
basis vectors (Figure 4(h)) and the correlations between
individual proteins and PCA dimensions (Figure 4(i)) to
identify combinations of proteins that might reflect higher
dimension features. For example, all proteins had positive
amplitudes for the Dim1 basis vector (Figure 4(h)), and
positive correlations with Dim1 (Figure 4(i)) suggested that

protein sums may be higher dimensional features. In addi-
tion, weights for GluN2A and GABAAα1 on Dim2 were
opposite, suggesting that when one protein increased the
other decreased, and this could be a novel feature of these
data. Continuing with this approach, we identified 9 puta-
tive plasticity features: protein sums (all protein sum, GlutR
sum, and GABAAR sum) or indices (GlutR:GABAAR, Glu-
N2A:GluN2B, GABAAα1:GABAAα3, GluN2A:GABAAα1,
GluA2:GluN2B, and GluN2A:GluA2). All of the protein
sums and 4 of the indices were features not analyzed with
the univariate statistics; however, each had a strong biological
basis in previous research. For example, the new indices
paired the mature GluN2A with the mature GABAAα1 or
GluA2 subunit and GluN2B with GluA2 which is known to
regulate the development of AMPARs [46]. Finally, we calcu-
lated the 9 features and determined if at least one of the first 3
dimensions was correlated with the features (Figure 4(j)).
Only the GlutR:GABAAR balance was not correlated with
any of the first 3 dimensions, but because those mechanisms
are related to the E:I balance [47], we included that measure
in the next analysis.

3.3. Comparing Plasticity Features. We plotted the plasticity
features and saw that the GlutR and GABAAR sums and
indices identified various differences among the treatment
conditions (Figures 5 and 6). There were, however, consistent
changes after BV in the binocular regions with a loss of the
total amount of GABAAR expression (44% ± 12) and a shift
of the GlutR:GABAAR balance to favor GlutR (Figure 5(d)).
The remaining indices in the feature list also identified differ-
ences (Figure 6) including the GABAAα1:GluN2A balance
shifting to more GluN2A after BV (in binocular regions)
but more GABAAα1 after BD. RO flipped the 2A:2B balance
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Figure 3: Visualizing pairwise correlations between proteins. Correlationmatrices are plotted showing the strength (saturation) and direction
(blue: negative; red: positive) of the pairwise Pearson’s R correlations between proteins for each condition: (a) 5 wk normal, (b) 5 wk MD, (c)
RO, (d) BD, and (e-i) BV. The order of proteins was determined using hierarchical clustering so proteins with stronger correlations were
nearby in the matrix. Significant correlations are denoted by an asterisk (∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001). For the table of
Pearson’s R values and Bonferroni-corrected p values, see Supplemental Table 3-1.
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Figure 4: Continued.

9Neural Plasticity



to favor more GluN2A as did BD in the central region. In
contrast, BV shifted the 2A:2B balance towards normal CP
levels in all of the V1. The GABAAα1:GABAAα3 balance
shifted towards the normal level after BV but strongly in
favor of GABAAα3 after BD. The GluN2B:GluA2 balance
shifted to substantially more GluA2 after RO while the Glu-
N2A:GluA2 index shifted to more GluA2 outside the central
region after RO and BD. Together, these features provide evi-
dence of glutamatergic versus GABAergic differences among
the treatment conditions.

3.4. Using tSNE to Transform and Visualize Clustering in the
Pattern of Plasticity Features.We used tSNE to transform the
plasticity features and visualize them in 2D (Figure 7(a)),
then k-means and the “elbow method” (Supplemental
Figure 7-1) to identify the number of clusters. For these
analyses, the BV samples were grouped into ST-BV (1-6 hrs)
and LT-BV (1-4 d) groups, and the plasticity features were
calculated for all samples from the 3 V1 regions.

Six clusters were visualized with tSNE (Figure 7), and the
composition of the clusters was analyzed to determine the V1
regions and rearing conditions in each cluster. Cluster 1
was the largest with 39 samples (C = 26%; P = 54%; and
M = 21%) and had the greatest number of samples from
the central region (Figures 7(b) and 7(d)). Cluster 3 also
had samples from the central, peripheral, and monocular
regions while clusters 4, 5, and 6 were dominated by
peripheral samples with few or no central region samples.
Thus, there was some clustering by the V1 region, but
more apparent clustering emerged when the samples were
color-coded by rearing condition (Figures 7(c) and 7(d)).
All but one of the normal samples were in cluster 1, all
of the RO samples were in cluster 2, most of the BD sam-
ples were in cluster 3 with a few in cluster 6, and most of
the MD samples were in clusters 1 or 3. The BV samples,
however, were found in 5 of the clusters with the greatest
number of BV central samples (83%) grouped with nor-
mals in cluster 1.
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Figure 4: Identifying plasticity features using the principal component analysis. (a) .The percentage of variance captured by each principal
component by singular value decomposition (SVD) applied using all of the protein expression data. The first 3 principal components
capture 54%, 18%, and 10% of the variance, respectively, totalling >80% and thus representing the significant dimensions. (b). The quality
of the representation, cos2, for the proteins is plotted for each dimension (small/white: low cos2; large/blue: high cos2). (c). The sum of
cos2 values for the first 3 dimensions for each protein. (d, e). Biplots of PCA dimensions 1 and & 2 and (f, g). 1 and & 3. These plots
show the vector for each protein (d, f) and the data (small dots) plus the average (large dots) for each condition with the best-fitting
ellipse (e, g). (h). The basis vectors for dimensions 1-3 showing the amplitude of each protein in the vector. (i). The strength (circle size)
and direction (blue-positive, red-negative) of the correlation (R2) between each protein and the PCA dimensions. (j). Correlation between
the plasticity features (columns) identified using the basis vectors (see Results) and then PCA dimensions 1-3. Filled cells are significant,
Bonferroni- corrected correlations (green = positive, red = negative). For the table of Pearson’s R values and significant p- values for these
associations, see Supplemental Table 4-1.
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Further analysis of cluster 1 showed that the majority of
LT-BV and ST-BV samples from the central region clustered
with the normals (Figure 7(d)). Interestingly, some of the
MD samples were also in cluster 1; however, those samples
were from the peripheral and monocular regions which are
known to be less affected by MD than the central region
[48]. Together, these results show that the data are clustered
and that the clustering was driven by both the rearing condi-
tion and the region of the V1.

3.5. Correlating Plasticity Features among Subclusters. We
annotated the samples in each cluster using the rearing con-
dition and V1 region and used that information to identify 13
subclusters where at least one region per condition had n ≥ 2
and >20% of the samples in that cluster (Figure 7(d), black
font). A correlation matrix was calculated (Figure 8) to assess
the similarity between subclusters (see Supplemental Table 8-
1 for R values and 8-2 for Bonferroni-adjusted p values),
and the order of the subclusters in the correlation matrix
was optimized by hierarchical clustering so subclusters with
similar patterns of features were nearby in the dendrogram.

Bonferroni-adjusted p value was used to determine the
significant correlations (0 05/78 = 0 0006) (Figure 8). This
analysis showed that 3 of the 4 LT-BV subclusters (LT-BV
1: R = 0 98; LT-BV 5: R = 0 98; and LT-BV 4: R = 0 96) and
the MD 1PM subcluster (R = 0 98) were strongly correlated
with normals. The other MD subcluster with central samples
(MD 3CP) was on a separate branch of the dendrogram and
was strongly correlated with the 3 ST-BV subclusters (ST-
BV 1: R = 0 98; ST-BV 3: R = 0 99; and ST-BV 5: R = 0 98).
The ST-BV subclusters were also correlated with normals
(ST-BV 1: R = 0 96; ST-BV 3: R = 0 94; and ST-BV 5: R =
0 97), LT-BV 1 (ST-BV 1: R = 0 98; ST-BV 3: R = 0 94; and
ST-BV 5: R = 0 98), and MD1 (ST-BV 1: R = 0 98; ST-BV 3:
R = 0 94; and ST-BV 5: R = 0 99) but weaker correlations
with LT-BV 4 (ST-BV 1: R = 0 94; ST-BV 5: R = 0 95)
and no significant correlations with LT-BV 5. RO was
correlated with normal (R = 0 96) but only one of the LT-
BV subclusters (LT-BV 5: R = 0 96) and none of the ST-BV
subclusters. The two BD subclusters were correlated (R =
0 94) but none of the other correlations were significant.
The pattern of strong correlations in this matrix and the
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Figure 5: Expression of plasticity features for protein sums identified using the principal component analysis. Histograms and scatterplots
showing the protein sums and a new protein sum index (GABAR sum:GlutR sum, rows) that were identified using the PCA basis vectors
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resulting dendrogram suggested that the subclusters might
form 4 groups that have similar plasticity features (1:
normal, LT-BV, MDP or M; 2: RO; 3: ST-BV, MDC; and 4: BD).

3.6. Constructing Plasticity Phenotypes and Comparing
among the Subclusters. To compare the pattern of plasticity
features among the subclusters, we visualized the average
for each feature as a color-coded horizontal band, stacked
the bands to illustrate the pattern that we called the plas-
ticity phenotype (Figure 9(a)), and ordered the pheno-
types using the same dendrogram as the correlation matrix
(Figure 9(b)). In addition, we visualized the plasticity pheno-
types for normal development and MD (using the data from
[23]) to compare the treatment subclusters with a broad
range of ages that had developed with either normal or
abnormal visual experience (Figures 9(c) and 9(d)).

Inspection of the plasticity phenotypes identified some
obvious and other subtler differences among the subclus-
ters (Figure 9(b)). Indeed, the pattern of red and green
bands in the BD phenotypes was different from 5 wk nor-

mals (Figure 9) and showed the shift to more GABAAα1
and less GluN2A. For the RO subcluster, the light grey
bands and number of green bands identified loss of protein
expression and a shift to more GluN2A than 2B and more
GluA2 than 5 wk normals. The RO pattern, however,
appeared similar to an older (e.g., 12 wk) normally reared
animal suggesting that RO may accelerate maturation of
these proteins. Thus, these BD and RO treatments led to
distinct plasticity phenotypes.

The pattern of red and green bands in the plasticity
phenotype for LT-BV and some of the ST-BV subclusters
(ST-BV1, ST-BV5) appeared similar to the 5 wk normals
(Figure 9(b)), but many of the features were still significantly
different from the age-matched normals (Figure 10(a),
Supplemental Table 10-1). Nonetheless, these subclusters
had some consistent differences with less GABAARs and
more GluN2B than 5 wk normals. Interestingly, one of the
novel features found by the PCA, the GluN2A:GluA2
balance, was the only measure where all of the LT-BV
subclusters were not different from 5 wk normals, but both
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Figure 6: Expression of plasticity feature for indices identified using the principal component analysis. Histograms and scatterplots showing
the plasticity features (rows) that were identified using the PCA basis vectors (Figure 4(j)) and plotted for each region of the V1 (columns).
The conventions are the same as in Figure 5. For exact p values, Pearson’s R, and equations for the curve-fits, see Supplemental Table 6-1.
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RO and BD were different. Thus, this visualization of the
plasticity phenotypes illustrated that the pattern promoted
by BV, and LT-BV in particular, was most similar to the
normal CP phenotype.

3.7. Modeling NMDAR and GABAAR Population Kinetics.
The subunit composition of NMDARs and GABAARs helps
to regulate the threshold for experience-dependent plasticity,
in part by controlling receptor kinetics [44, 45]. We used the
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Figure 7: Clustering of samples with similar plasticity features identified using t-distributed stochastic neighbor embedding (tSNE) and
k-means clustering. (a) Using tSNE to visualize clustering of samples (109 tissue samples from animals reared to 5 wk normal, 5 wk MD, RO,
BD, and BV) calculated from k-means analysis of the 8 plasticity features identified by PCA. The optimal number of clusters (k = 6) was
identified by measuring the within groups sum of squares at intervals between 2 and 9 clusters (Figure 7-1). (b) The content of each
cluster was visualized for the region (central, peripheral, and monocular) (c) or treatment condition. (d) The table summarizes the
percentage of samples for each region and condition in clusters 1-6. For example, 100% of the samples from the central region of the V1
in normal animals were in cluster 1 while 100% of the samples from all regions of RO were in cluster 2. This information was used to
annotate subclusters based on the cluster membership (1-6), rearing condition, and region of the V1.
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information about receptor kinetics with different subunit
compositions to make a model that predicts the average pop-
ulation kinetics and applied it to normal development and
the rearing conditions studied here. First, we transformed
the 2A:2B and α1:α3 balances into predicted population
kinetics (see Methods) and plotted the normal postnatal
development (Figures 11(a) and 11(b)). Both the NMDA
and GABAA kinetics rapidly speed up between 2 and 6 weeks
of age. Next, we compared the predicted kinetics among the
rearing conditions (Figures 11(c) and 11(d)). The pattern of
results is necessarily similar to the balances presented for
the indices (Figure 6); however, the predicted kinetics sug-
gests a compression of differences between conditions when
the balances favor the mature subunits (2A or α1) versus an
accentuation of differences with much slower kinetics when
the immature subunits (2B or α3) dominated.

To address how treatment-induced changes to NMDAR
and GABAAR composition might affect the relationship
between glutamatergic and GABAergic transmission timing,
we made XY scatterplots using the predicted kinetics
(Figure 11(e)). During normal development (black line),

both balances progressed from slow kinetics at 2 wks to faster
kinetics through the peak of the CP (Figure 11(e), yellow
zone; 4-6 wks) to reach adult levels. The NMDAR:GABAAR
kinetics for MD, RO, and BD fell outside the window pre-
dicted for the normal CP but in different directions. MD
had slower NMDAR (C: 135ms ± 16ms; P: 121ms ± 12ms;
and M: 146ms ± 27ms) but faster GABAAR kinetics (C:
47ms ± 0 3ms; P: 48ms ± 1ms; and M: 51ms ± 4ms),
RO had faster NMDAR (C: 46ms ± 0 8ms; P: 46ms ±
0 4ms; and M: 46ms ± 0 2ms) but normal CP range for
GABAAR (C:54ms ± 6ms; P:51ms ± 2ms; and M: 48ms ±
0 2ms), and BD had faster GABAAR (C: 46ms ± 0 9ms;
P: 44ms ± 0 2ms; and M 45ms ± 0 2ms) but normal
CP range NMDAR kinetics in the central region only (C:
61ms ± 12ms; P: 130ms ± 12ms; and M: 155ms ± 27ms).

The introduction of BV caused a progressive change in
the predicted NMDAR:GABAAR kinetics suggesting an ini-
tial speeding up of the NMDAR kinetics over the first 1 d
to 2 d followed by a slowing of the GABAAR kinetics, espe-
cially in the central region. Taken together, the predicted
NMDAR:GABAAR kinetics provided additional evidence
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Figure 8: Visualizing pairwise correlations between treatment subclusters. The matrix is showing the strength (0.6 = blue; 1 = red) of
correlation between the subclusters identified in Figure 7(d) and annotated here using the rearing condition, cluster (1-6), and region of
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that BV shifts protein expression towards a normal CP bal-
ance, but none of the treatments reinstated normal kinetics.

4. Discussion

Here, we studied a set of glutamatergic and GABAergic
receptor subunits in the V1 that regulate plasticity and

explored classifying treatments that cause either persistent
bilateral amblyopia (RO or BD) or good acuity in both eyes
(BV). Not surprisingly, there was a complex pattern of
changes that varied by treatment and region within the V1.
Applying a new analysis approach, however, using the PCA
and cluster analysis, identified higher dimensional features
and subclusters with different plasticity phenotypes for
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Figure 10: Continued.
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treatments that promote good versus poor recovery of acuity.
The LT-BV plasticity phenotypes were closest to the normal
CP pattern while the RO phenotype appeared more similar to
an older pattern dominated by GluA2. In contrast, the BD
phenotypes were dominated by GABAAα1 making it distinct
from RO and illustrating that multiple plasticity phenotypes
can underlie persistent bilateral amblyopia. The PCA identi-
fied an understudied feature, the balance between mature
glutamate receptor subunits (GluN2A:GluA2 balance), as a
marker that might differentiate treatments supporting good
acuity (BV), from those that lead to persistent bilateral
amblyopia (RO, BD). Finally, modeling kinetics for NMDAR
and GABAAR provided additional evidence that BV can
return CP-like balances, especially in the central region of
the V1.

4.1. Study Limitations and Design. The exploratory nature of
the design used here was limited because the small number of
animals used leaves unanswered how much variation there is
in response to the treatments. The visual manipulations
(MD, RO, BD, and BV), however, are known to cause consis-
tent changes in visual perception [7, 8, 49–52], physiology [7,
29, 31, 53], and molecular mechanisms [23, 27, 54–59] that
have been reliably measured in a number of laboratories
using the cat to study visual system plasticity. Thus, these
treatment-induced changes provide an understanding about
the pattern of recovery that will be useful for formulating
new hypotheses about the links between these proteins and
persistent amblyopia.

The study design had some strengths including that (i)
the animal model has excellent spatial vision, with a central
visual field, so we could compare changes in the regions of
the V1 that represent different parts of the visual field [27],
(ii) the treatments were initiated and completed within the
CP [34], (iii) there is detailed information about the recovery
of physiology for RO and BV [7, 29, 32, 53] and acuity for all
3 treatments [7, 8, 27, 29, 30], (iv) both RO and BD cause

persistent bilateral amblyopia [8, 30], and (v) the treatments
engage different forms of experience-dependent plasticity
(RO: competitive; BD: cooperative with degraded visual
input; and BV: cooperative with normal visual input).

We observed that only one feature (GluN2A:GluA2
balance) returned to normal after LT-BV treatment rais-
ing the hypothesis that it is necessary for good recovery.
We were not able to test that question because the
molecular tools are not available for manipulating pro-
teins in the cat cortex so it will be important to replicate
that finding in the mouse and then test the question by
directly manipulating those proteins. In addition, a large
number of other treatments have been tested to improve
recovery after MD, including a brief period of dark-
rearing [30, 60], fluoxetine administration [61], perceptual
learning [27, 62], or targeting specific molecular mecha-
nisms (e.g., perineuronal nets [63]). Undoubtedly, the tim-
ing, length, and type of treatment influence recovery, but
the conditions used here were necessarily limited because of
the labor-intensive nature of this study. Notwithstanding
these limitations, the plasticity phenotypes identified RO
and BD as different from each other and from normals, but
the LT-BV subclusters were remarkably similar to the 5 wk
normal pattern.

Finally, the design took advantage of the reliability
and multiplexing capabilities of Western blotting to obtain
a large dataset of plasticity proteins from multiple V1 regions
and rearing conditions. Western blotting, however, does not
provide information about the cell types, layers, cortical col-
umns, or subcellular localization of these proteins that would
reveal which circuits are involved in recovery or persistent
amblyopia. Even without that information, the application
of high dimensional analyses led to the characterization of
features and treatment-based clusters with unique plasticity
phenotypes. The phenotyping approach developed here is
scalable for studying more proteins or genes, cortical areas,
and treatment conditions. Taken together, we think that
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Figure 10: Significant plasticity features. (a) We used bootstrap analysis to identify plasticity features that were significantly different from 5
wk normal animals and color-coded the horizontal bars red if the feature was >normal and blue if it was <normal (p < 0 05). (b-j) The
boxplots show the average protein sum (b-d) and an average index value (e-j) for each of the subclusters. Boxes were colored red if
significantly greater than 5 wk normals, blue if significantly less than 5 wk normals, and grey if not significantly different from 5 wk
normals. For exact Bonferroni-corrected p values, see Supplemental Table 10-1.
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this approach can be used in other animal models where
molecular tools can be combined with visual testing to
identify the features and phenotypes necessary for optimal
visual recovery.

4.2. BV Promoted Recovery of CP-Like Plasticity Phenotype and
Identified GluA2:GluN2A as a Balance That Differentiated
BV Treatment. We explored BV treatment because it pro-

motes long-lasting recovery of good acuity in both eyes
[27], and those findings are similar to promising results of
binocular therapies for treating amblyopia in children [64].
Furthermore, there is good physiological recovery with BV
[29, 32]. Thus, it was not surprising to find that LT-BV sub-
clusters had the strongest correlations with normals or that
those subclusters had CP-like phenotypes. However, only
one of the features, the GluA2:GluN2A balance, returned
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Figure 11: Indices for pairs of receptor subunits and modeling of predicted decay kinetics for a population of NMDARs and GABAARs.
Scatterplots showing the average expression of the predicted population kinetics ((a) NMDAR, (b) GABAAR) for the regions of the V1
(columns) across normal development. Histograms and scatterplots showing the average expression of the predicted population kinetics
((c) NMDAR, (d) GABAAR) for the regions of the V1 (columns) across treatment conditions. (e) The predicted population kinetics are
plotted for both GABAARs (x-values) and NMDARs (y-values) for normally reared animals age range 2 wks adult with the curve
representing the trajectory of the relationship between these features (black dots and line, see (a) and (b)). Also, the data are plotted for 5
wk MD (grey dot), RO (blue dot), and BD (green dot). The relationship between NMDAR and GABAAR kinetics during BV treatment for
1 hr (orange) to 4 d (red) is plotted, and the line uses the functions fit to the data in (c) and (d). For exact p values, Pearson’s R, and
equations for the curve-fits, see Supplemental Table 11-1.
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to normal levels. Those findings suggest that it may not be
necessary to recapitulate every detail of the normal pheno-
type to support good visual recovery and that the GluA2:-
GluN2A balance may be a characteristic feature for
tracking functional recovery. Although that balance is not
commonly quantified, both proteins are critical compo-
nents of mechanisms regulating experience-dependent
plasticity, and that balance might signify the adaptive
engagement of multiple plasticity mechanisms. For exam-
ple, the delayed increase in visual responses during ocular
dominance plasticity is part of a homeostatic plasticity
mechanism regulated by trafficking GluA2-containing
AMPARs into the synapse [65, 66]. Meanwhile, the initia-
tion of ocular dominance plasticity requires GluN2A
expression [22], and when GluN2A is deleted or reduced,
MD does not depress deprived eye responses but instead
causes enhancement of activity driven by the open eye [21].
Our finding that LT-BV returned a CP-like GluA2:GluN2A
balance suggests that BV may prime GluN2A-dependent
Hebbian plasticity to consolidate deprived-eye connections
while GluA2-dependent homeostatic plasticity enhances
deprived-eye responsiveness without triggering runaway
excitation [67–71]. Thus, the GluA2:GluN2A balance may
reflect the idea that during BV treatment the nondeprived
eye acts as a teacher guiding both cooperative and competi-
tive plasticity mechanisms [29].

4.3. RO versus BD Plasticity Phenotypes. Because RO and BD
treatments cause persistent bilateral amblyopia [7, 8, 30], we
expected these conditions to have abnormal phenotypes. We
were surprised, however, to find very different phenotypes
for these conditions, showing that more than one plasticity
phenotype can account for persistent acuity deficits.

RO samples were in a single cluster dominated by
an overabundance of GluA2 and more GluN2A than 2B.
Together, those changes made the RO phenotype appear
more similar to an adult than the CP pattern. The increase
in GluA2 was in sharp contrast to the loss after BV treatment
and suggests that RO may scale up AMPAR-dependent
homeostatic mechanisms to drive recovery [25] without
engaging NMDAR-dependent mechanisms to consolidate
those changes [72]. Since AMPAR-mediated homeostasis
promotes rapid but transient gains in responsiveness
[25, 65, 73–76], this might explain the labile acuity recov-
ered with RO [7, 8]. Interestingly, the overrepresentation of
GluA2 promoted by RO implicates the dense expression of
GluA2-containing synapses at feedback connections onto
parvalbumin-positive (PV+) neurons [77]. The feedforward
connections onto PV+ neurons may also be involved in RO
circuit abnormalities because the labile acuity and early shift
to GluN2A after RO are similar to changes found in MeCP2
KOs where an abnormally early shift to GluN2A at synapses
onto PV+ neurons that halts acuity development [78, 79].
Taken together, these findings provide preliminary evidence
that RO may leave behind feedforward (GluN2A subunits)
and feedback abnormalities (GluA2) in PV+ neuron circuits
in the V1.

Although various models of neural plasticity predict that
decreasing firing rates will enhance plasticity, that idea has

not translated to using BD treatment to improve recovery
from MD [30]. BD for weeks or months during the CP
has a range of effects on the V1 including enhancing the
appearance of cytochrome oxidase blobs [80], weakening
stimulus-evoked activity of PV+ neurons [81], and delaying
the developmental increase in the GAD65 expression [82].
Here, we found that a few days of BD treatment caused an
abnormal increase in the expression of GABAAα1 through-
out the V1 and a shift to more GluN2A in the central region.
GABAAα1 receptors are found on pyramidal cell bodies
where PV+ neurons synapse, and they serve as regulators of
ocular dominance plasticity [20] and the window for coinci-
dent spike-time-dependent plasticity [24]. A recent study has
shown that the loss of PV+ activity caused by BD depends on
GABAAα1 mechanisms and that blocking this subunit
increases BD-evoked activity allowing for LTP of PV+ neu-
rons [83]. Our observation of increased GABAAα1 expres-
sion suggests that BD treatment may further reduce visually
evoked activity in the V1 that is compounded by the shift
to more GluN2A reducing the availability of the NMDA-
dependent mechanism needed to consolidate visual recovery.

4.4. Modeling Recovery of NMDAR and GABAAR Kinetics.
Our modeling of population kinetics suggests that differ-
ent physiological changes accompany the 3 treatments.
During normal development, the increases in NMDAR and
GABAAR kinetics progress in concert. Physiological studies
[84] and our modeling show that this fine balance is
decoupled by MD because the delayed shift to GluN2A has
slower NMDAR kinetics, but the premature increase of
GABAAα1 has faster GABAAR kinetics. Neither RO nor BD
treatment corrected that decoupling and the modeling sug-
gests that those treatments accelerate the shift to faster
adult-like kinetics for NMDARs after RO or GABAARs after
BD. Modeling the kinetics for BV treatment identified 2
phases of recovery especially in the binocular regions of the
V1. First, between 0 and 2 days of BV, there was a rapid
increase in the predicted NMDAR kinetics that was similar
to changes that occur between 2 and 4 weeks of age in normal
cats. Second, between 2 and 4 days of BV, there was a slowing
of the predicted GABAAR kinetics and that was opposite
to the normal developmental increase in kinetics. These
sequential phases of BV treatment do not recapitulate normal
development. These results raise the question of whether the
BV-driven increase in NMDAR kinetics needs to reach a
certain level before triggering the slowing of GABAAR
kinetics to rebalance these mechanisms. This modeling,
however, was based on population data about the expres-
sion of the receptor subunits and cannot be extrapolated
to individual receptors. Nonetheless, the rapid changes with
BV treatment suggest that some aspects of normal develop-
ment may be missed, and it will be important to determine
what those are.

4.5. How Might These Plasticity Phenotypes be Used for
Developing and Testing Treatments for Persistent Amblyopia?
The distinct plasticity phenotypes classified for RO and BD
treatments provide preliminary evidence that multiple neu-
ral changes can account for persistent amblyopia and
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highlight the need to know which mechanisms to target
when trying to engage neuroplasticity mechanisms to
improve acuity. Whether the treatment should focus on
AMPARs, NMDARs, GABAARs, or some combination of
those receptors will depend on the underlying plasticity phe-
notype. Insights into those questions can be addressed in
animal models using modern molecular tools and vision
testing, but translating those findings into treatments for
humans will depend on noninvasive ways to determine an
individual’s plasticity phenotype. For example, magnetic res-
onance spectroscopy has been used to measure changes in
glutamate or GABA concentrations in human V1 after dif-
ferent types of visual experience (e.g., MD [85]), and recep-
tor expression can be quantified by radioligands labeled for
SPECT and PET [86]. New molecular imaging techniques
hold the promise of even greater detail with the ability to
measure the concentration of receptor subunits [87–89].
That information may be comparable to protein analysis in
animal models and suitable for constructing plasticity phe-
notypes for human V1 to facilitate the translation of new
treatments. Furthermore, behavioral paradigms linked with
specific plasticity mechanisms (e.g., stimulus-selective
response plasticity [90]) may further aid in characterizing
human plasticity phenotypes. Thus, selecting a treatment
to prevent or correct persistent amblyopia may benefit from
in vivo steps to classify an individual’s plasticity phenotype.

5. Conclusions

This exploration of glutamatergic and GABAergic receptor
subunit changes in the V1 after treatment that promotes
either good (BV) or poor (RO, BD) recovery of vision pro-
vides a better understanding of the complexity of this prob-
lem. Of the treatments studied here, only BV provided
evidence for recovery of a CP-like plasticity phenotype in
the V1. However, only one feature, the GluA2:GluN2A bal-
ance, returned to normal levels after BV, and that balance is
noteworthy because the proteins are regulators of homeo-
static and Hebbian plasticity, respectively. The modeling of
NMDAR and GABAAR kinetics suggests two stages for BV
recovery: a rapid increase in NMDAR kinetics, followed by
slowing of the predicted GABAAR kinetics which together
move that balance into the CP range. We identified features
of the plasticity phenotypes that may guide future studies
on persistent amblyopia to look for high levels of GluA2
and GluN2A following RO and high levels of GABAAα1 after
BD treatment. Finally, the plasticity phenotyping is a good
approach for uncovering novel neurobiological features
that may be important for the recovery of acuity and new
treatment targets.
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