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Taxonomic classification, that is, the assignment to biological clades with shared
ancestry, is a common task in genetics, mainly based on a genome similarity search
of large genome databases. The classification quality depends heavily on the database,
since representative relatives must be present. Many genomic sequences cannot be
classified at all or only with a high misclassification rate. Here we present BERTax, a
deep neural network program based on natural language processing to precisely classify
the superkingdom and phylum of DNA sequences taxonomically without the need for
a known representative relative from a database. We show BERTax to be at least on par
with the state-of-the-art approaches when taxonomically similar species are part of the
training data. For novel organisms, however, BERTax clearly outperforms any existing
approach. Finally, we show that BERTax can also be combined with database approaches
to further increase the prediction quality in almost all cases. Since BERTax is not based
on similar entries in databases, it allows precise taxonomic classification of a broader
range of genomic sequences, thus increasing the overall information gain.
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How do we know what kind of organisms we have sequenced?
This question seems, at first, rather strange, as, traditionally, DNA sequencing was

mostly performed on cultivated cells or viral strains/isolates. However, in recent years, this
has become a common problem, especially due to metagenomics, where genetic material
is directly recovered from environmental samples and includes unknown compositions
of organisms. To answer this question, we need to classify the taxonomic origin of the
sequences.

For this task of taxonomic classification, it became common to use a homology-based
approach of DNA/RNA sequences queried against databases. Such approaches achieve
a high level of precision and can even determine the exact species when the genome is
already known and present in the database.

However, many query sequences cannot be classified at all, and,, therefore only a low
recall is achieved. One of the reasons is that only a fraction of all species (at most, 14% of
all eukaryotic terrestrial and 9% of all ocean species) have been described (1). Furthermore,
this estimate ignores bacteria and viruses for which the situation is likely way worse (2).
The number of reference genomes in current comprehensive databases, such as RefSeq
(117,030 as of March 11, 2022), likely represents less than 5.319% of all species (3),
which is a rather optimistic estimation (4, 5). As a result, taxonomically related organisms
and, therefore, likely genomically similar sequences are missing, and the classification with
homology-based methods fails. The extent of this problem highly depends on the origin of
the sample, the taxonomic level to classify, and the database. For example, the number of
unclassifiable sequences for the phylum rank varies between 25% and 90%, using biogas
reactor samples (6).

On the technical level, most taxonomic classification tools use either local alignments,
k -mers, Burrow–Wheeler transformations, minimizers, or hybrid methods (7–17).

Using local alignments is a very precise but relatively slow method. These methods
typically need a seed region with high similarity, typically resulting in a limited recall,
meaning that only a portion of the samples can be predicted. The usage of k -mers or
minimizer requires even wider regions with high similarity, which can result in an even
lower recall and precision. However, k -mers and minimizer are significantly faster (18).
Overall, the taxonomic classification quality depends mainly on the quality of the database
and less on the methodology of the database usage (18).

Recently, multiple deep neural network (DNN) approaches were developed to over-
come some of the described limitations. Instead of having to rely on similar sequences
being present in a database, deep learning methods allow modeling complex dependencies
between the data and the target variable, in our case, the DNA sequences and corre-
sponding taxonomic class. Typically, for deep learning methods, however, interpretability
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is often not an easy task. One example of a deep learning approach
is DeepMicrobes (19), which is specifically designed for taxo-
nomic classification of microbial data from human gut; however, it
can be used as a generic classifier for any DNA classification task.
It is important to mention that DeepMicrobes relies on k -mer
embeddings (k = 12), similar to nonmachine learning methods
which handle sequence data.

Here, we present the tool BERTax for classification of DNA
sequences on three different taxonomic levels, superkingdom
(archaea, bacteria, eukaryota, and viruses), phylum, and genus.
The fundamental novelty is to assume DNA is a “language”
and to classify the taxonomic origin based on this language
understanding rather than by local similarity to known genomes
in a database.

As a result, we obtain a classifier not subjected to the typical
restrictions of comparable tools: BERTax is not limited to coding
regions, or specific superkingdoms like bacteria or viruses, but
can potentially classify any genome region, from any of the four
superkingdoms, and does not require similar sequences in the
database.

At the core, BERTax is based on the state-of-the-art natural lan-
guage processing (NLP) architecture BERT (bidirectional encoder
representations from transformers) (20), which is adapted for the
task of taxonomic classification via additional layers (21). Being
standard for BERT, we 1) pretrained the DNN and 2) fine-tuned
the DNN. In this approach, to classify a query sequence, less exact
representatives are needed in the training data, since the training
sequences are not memorized per se (20).

We developed three different DNN architectures: the 1) flat, 2)
nested, and 3) all-in-one architectures, which we compared with
each other. The latter and best-performing architecture has been
compared with common database approaches and the deep learn-
ing approach DeepMicrobes. The performance of BERTax can
further be increased by combining a precise database approach,
like MMseqs2, with BERTax.

In raw numbers (macro average precision [AveP]), the per-
formance improvement gained with BERTax is most visible for
sequences from unknown genera, where an increase from 76.91

to 87.57% on the level of superkingdoms and from 50.51 to
60.34% on the phylum level can be achieved, compared with
DeepMicrobes, both in combination with MMseqs2. When com-
paring standalone approaches, BERTax increases the macro AveP
from 67.47 to 90.06% on the superkingdom level and from
43.44 to 54.10% on the phylum level, compared with MMseqs2
taxonomy*. But also, when closely related species are used for
training, BERTax classifies genomic sequences, on average, with
a slightly higher precision than previous tools.

Results

BERTax is based on the DNN encoder architecture BERT, that
relies on a transformer employing the mechanism of self-attention
(20). Self-attention is a method determining, autonomously,
which parts of the inputs are relevant to each other. This enables
the transformer architecture to process the sequential data not in
a predefined order, enabling a faster training process and therefore
the recognition of even more complex interrelationships in the
same time (22).

The training process of BERTax is split into two parts: First, a
BERT model is pretrained in an unsupervised manner (Fig. 1A),
meaning that the target variables—which sequence belongs to
which taxonomic classes—are not known to the model, with
the goal of learning the general structure of the genomic DNA
“language.” The pretrained BERT model is then combined with
taxonomy layers and fine-tuned on the specific task of predicting
taxonomic classes (Fig. 1B).

The unsupervised pretraining was performed on a dataset based
on 1 million genomic fragments of 1,500 nt for each of the four
superkingdoms—archaea, bacteria, eukaryotes, and viruses—
obtained from National Center for Biotechnology Information
(NCBI) refseq genomes (23). These fragments were filtered by
sequence identity of 80%, resulting in ∼2.5 million (2,492,474)
samples in total (see Data).

For fine-tuning, three distinct evaluation scenarios are con-
sidered, represented by a different composition of the training
and testing datasets: For the distantly related dataset, samples in

distantly related closely related

A B

Fig. 1. (A) The pretraining step uses random genome fragments of all four superkingdoms to pretrain a BERT model on DNA analogous to training on a natural
language. (B) The fine-tuning step uses, as input, either a training set with genome fragments of different genera compared to the test set (distantly related) or a
dataset without this condition (closely related). These inputs are processed by BERTax. BERTax uses the pretrained BERT model and three taxonomy layers. The
taxonomy layers use our all-in-one architecture which uses the output of the pretrained BERT model and all higher taxonomic ranks to predict superkingdom,
phylum, and—only in the final model—also the genus of an input sequence.
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the test and training sets are not allowed to be from the same
taxonomic genus; this restriction is lifted for the closely related
dataset. The final dataset corresponds to an extension of the closely
related dataset, simply containing a higher number of samples to
be used in the final BERTax model.

We tested three different architectures based on the pre-
trained BERT model, which differ in the adaptations of
the output layers (SI Appendix, Fig. S1). The flat architecture
(SI Appendix, Fig. S1A) directly predicts the lowest taxonomic
rank. The nested architecture (SI Appendix, Fig. S1B) consists of
multiple independent BERT models arranged in a tree-like man-
ner: The root model predicts the highest taxonomic rank, and then
the sample is passed to the model of the subclass with the highest
probability. The all-in-one architecture (SI Appendix, Fig. S1C ) is
a single BERT model that simultaneously predicts all taxonomic
ranks by providing the prediction of higher taxonomic ranks to
predict lower taxonomic ranks.

Best Architecture Based on Simultaneous Classifications of
Taxonomic Ranks. We used two different evaluation datasets
(closely and distantly related dataset) for which we determine the
accuracy of each architecture for predicting superkingdom and
phylum (SI Appendix, Table S1). To prevent biasing the metric
due to unbalanced data, we calculate the accuracy for each superk-
ingdom class and use the mean over all superkingdom classes.

Interestingly, the all-in-one architecture has the highest accu-
racy independent of the dataset: for the closely related dataset,
94.78% for superkingdom and 85.55% for phylum; 88.95% and
60.10%, respectively, for the distantly related dataset. This is, on
average, 2.04% more than the flat architecture and 7.22% more
than the nested architecture (SI Appendix, Table S1).

The all-in-one architecture provides the predicted likelihood
of all classes of higher taxonomic ranks to lower prediction lay-
ers. This is advantageous compared to the flat architecture, as
higher taxonomic classes indicate which subset of lower taxonomic
classes is likely to contain the correct prediction. However, unlike
the nested architecture, the higher taxonomic class classification
does not categorically exclude some lower taxonomic classes.
This has several advantages. Misclassification of higher taxonomic
ranks (e.g., superkingdom) does not inevitably prevent the correct
prediction of lower ranks. Further, the training of lower taxo-
nomic ranks can also adjust the weights and biases of the neural
network.

In this way, it is possible to identify not only features that
generalize well to an entire class, such as bacteria or eukaryotes, but
also features of subgroups (SI Appendix, Fig. S2). These subgroups
are expected to be clades of lower taxonomic rank. As a result of
better subgroup prediction, the prediction of higher taxonomic
ranks advances as well. For further analysis, we only use the all-in-
one architecture.

Comparison to Other Classification Approaches. The database
taxonomic classification approaches compared against either
directly predict the taxonomic origin of a query (Kraken2,
sourmash) or find the most similar sequence in a reference
database (MMseqs2 and minimap2), which can also be considered
a prediction of taxonomic origin. A version of MMseqs2
which additionally provides classification confidence, MMseqs2
taxonomy*, is also compared against. It has to be noted that
all methods compared against have exactly the same reference
or training data available as BERTax, to allow for a meaningful
comparison. For approaches that normally include whole genomes
in their reference data, this presents a necessary deviation from
the designed use case for these methods. In particular, database

approaches can be seen as reliant on homologous sequences in
the reference data, in order to search for matches most similar to
the query sequence. Moreover, exact matches between query and
reference data (i.e., samples occurring in both training and testing
data) are generally possible. While homologous segments between
sequences in training and testing data independent of species
taxonomy are considered valid for the evaluation of BERTax (see
SI Appendix, Table S5 for an evaluation of how the presence of
sequences with shared homology influences performance), dupli-
cate samples in training and testing data are not permitted in this
evaluation. Samples of the testing data with an (almost) identical
counterpart in the training data would allow BERTax to avoid
the problem of identifying taxonomy-specific features and simply
remembering the duplicate samples, which could be considered
a case of data leakage. Thus, having whole reference genomes
present in the training data is not possible. The AveP for each tool
is visualized in Fig. 2, and exact values are listed in Table 1.

closely related dataset

distantly related dataset

A

B

C

Fig. 2. Visualization of the macro AveP values on all three datasets. (A) In the
closely related dataset, samples in the test set and the reference database
(training set) can be from the same genus. (B) In the distantly related dataset,
samples in the test set do not have closely related (identical genus) samples in
the reference database. (C) The final dataset can contain samples in the test
set and reference database of the same genus, like the closely related dataset,
but comprises more samples. We queried by either superkingdom, phylum, or
genus (only final dataset). MMseqs2 taxonomy*: We used MMseqs2 with the
parameters of MMseqs2 taxonomy (–e-profile 0.001, -e 1).
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Table 1. Comparison of the macro AveP on all three datasets

Dataset

Closely related Distantly related Final

Tool Supk. Phyl. Supk. Phyl. Supk. Phyl. Genus
MMseqs2 92.19 85.66 62.76 41.36 96.94 92.90 74.76
MMseqs2 tax.∗ 94.33 86.56 67.47 43.44 98.11 93.47 75.09
minimap2 86.12 76.06 44.12 20.03 93.46 86.71 66.68
Kraken2 86.26 75.99 44.36 19.50 93.65 87.13 70.56
sourmash 30.69 9.04 25.14 3.48 31.04 8.00 3.07
DeepMicrobes 97.18 86.62 67.25 36.61 98.13 92.11 66.43
BERTax 95.65 83.88 90.06 54.10 98.62 95.10 66.92
MMseqs2+

DeepMicrobes 99.33 93.67 76.91 50.51 97.23 93.20 77.85
BERTax 99.33 94.84 87.57 60.34 99.76 97.83 79.33

random 25.00 3.33 25.00 3.33 25.00 2.27 0.64

For a description of the datasets, see, for example, Fig. 2 above. Taxonomic classification ranks considered are superkingdom (Supk.), phylum (Phyl.), or genus (only final selection dataset).
The best-performing tool is shown in dark gray, and the second best is shown in light gray. All corresponding confusion matrices are available at https://github.com/f-kretschmer/bertax.

For the closely related dataset, the AveP ranges for pre-
diction of superkingdoms and phylum are from 30.69% and
9.04% (sourmash) to 97.18% and 86.62% (DeepMicrobes),
respectively.

Additionally, we devised a combination of classic database
approaches with machine learning methods, which increases the
overall recall while preserving the precision, resulting in more
useful taxonomic information. We first predict the taxonomy by
querying the reference database using MMseqs2, as it is a method
with a high proportion of predicted samples and high accuracy
(SI Appendix, Table S2). We then predict the taxonomy of all
unsuccessfully queried samples using BERTax or DeepMicrobes.
This strategy limits the number of incorrectly predicted samples.
Using this strategy, MMseqs2 + BERTax (99.33% and 94.84%)
performs better than MMseqs2 + DeepMicrobes (99.33% and
93.67%). This is to be expected, as both MMseqs2 and Deep-
Microbes depend on k -mers for their prediction. Therefore, sam-
ples that are difficult to classify for MMseqs2 tend to also be
challenging to classify for DeepMicrobes, resulting in a limited
higher precision. The combination of BERTax and MMseqs2
outperforms all competing tools.

Real-world use cases always comprise a mix of sequences with
and without similar representatives in the reference database.
Therefore, it is reasonable to use a combined approach of a
database approach and BERTax, as the classification performance
is likely better, both recall- and precision-wise.

When we compare the classification performances of different
tools, we typically observe a trade-off between accuracy and the
proportion of samples classified (SI Appendix, Table S2). If the
classification tool uses a restrictive threshold, we observe a very
precise classification. However, a lower number of sequences
could be classified, whereas, when a high number of sequences is
classified, usually, it comes with the drawback of a less precise clas-
sification. The proportion of classified sequences varies between
6.90% for sourmash and 92.69% for MMseqs2 taxonomy*. Neu-
ral network approaches like BERTax and DeepMicrobes always
reach 100% due to their mode of operation without confidence
thresholds.

For further analysis, see SI Appendix, Figs. S3 and S4, which
show micro and macro averaged Precision–Recall (PR) curves
to visualize the trade-off between accuracy and proportion
of classified sequences (see also SI Appendix, Table S2). PR

curves reflect the quality of prediction independently of the
sensitivity of the tested tool. Additionally, for micro and macro
average receiver operating characteristics (ROC) curves, see
SI Appendix, Figs. S7 and S8.

BERTax Superior on De Novo Sequences. Unknown sequences
are simulated by removing all sequences of one or several complete
genera from the training set, and corresponding sequences are only
used in the test dataset resulting in the distantly related dataset.
For this dataset, BERTax outperforms, at ∼90% any other tool,
ranging from 24.60 to 67.47% for superkingdom classification;
see Table 1. Interestingly, MMseqs2 + BERTax performs not
as well as BERTax alone, hinting at a not stringent enough
classification of MMseqs2. Instead of not classifying a sequence
and passing it to the DNN, a misclassification leads to worse
results, which could be changed by using more-stringent standard
parameters for MMseqs2. On the phylum level, BERTax (with
or without MMseqs2) outperforms all other tools, albeit with a
smaller margin than for superkingdoms. For both taxonomic
ranks, DeepMicrobes performs worse than the best database
approach, MMseqs2 taxonomy*.

We observe a drastic decrease in the proportion of predicted
sequences for all classic homology-based approaches compared to
the closely related dataset, with 52.78% for MMseqs2, 71.37%
for MMseqs2 taxonomy*, 19.88% for minimap2, 21.56% for
Kraken2, and 0.16% for sourmash (SI Appendix, Table S2). This
was expected, since there are no sequences of the same genus
in the target database, and thus fewer similar sequences are
found.

Furthermore, when investigating sequence similarity in
addition to taxonomic origin, removing all sequences from
the test partition of the distantly related dataset which could
be mapped to sequences in the training partition via BLAST
(7), this observation is reinforced. While this filtering has
only a minor effect on the rank superkingdom classification
accuracy of BERTax (−0.65%), the accuracy of DeepMicrobes
and MMseqs2 taxonomy*, drops by 5.15% and 5.99%,
respectively (SI Appendix, Table S5). In creating the evaluation
datasets, sequence similarity between the training and test
partitions was not considered, in order to focus on the taxonomic
aspects. However, when investigating the special case of predicting
sequences with high sequence similarity in both partitions,
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BERTax showed less dependence on sequence similarity than
all other evaluated methods.

The results for this dataset are especially remarkable, since only
a tiny fraction of organisms is so far described in databases, and
the power of BERTax outperforming any other classification tool
for de novo sequences appears to be of utmost importance to the
metagenome community.

Performance of Final BERTax Model. We evaluated the final
BERTax model in comparison to other methods on the final
model dataset. This dataset differs from the closely related dataset
in that the number of eukaryotic and bacterial fragments is almost
tripled. This results in an increased number of closely related
sequences in the reference database. An important difference from
the models evaluated on the closely and distantly related dataset is
that, additionally to superkingdom and phylum, an extra output
layer is added to also predict the taxonomic genus of sequences.
Expectedly, we observed higher AveP values for the final selection
dataset compared to the closely related dataset (Table 1 and
SI Appendix, Figs. S5, S6, S9, and S10). Comparing BERTax to
the database approaches, it performs better for superkingdom
(98.62%) and phylum (95.20%) prediction. For the prediction
of the lowest taxonomic rank (genus), BERTax achieves a 66.92%
comparable performance to DeepMicrobes and minimap2. Both
deep learning approaches achieve significantly better results (+7%
points) when comparing the class weight–normalized micro PR
curve (SI Appendix, Fig. S5). This increase is caused by changes
in the sample order in the micro averaged plot, indicating that
both methods are impressively good at estimating their prediction
performance. Interestingly, BERTax reached a higher AveP than
DeepMicrobes for all taxonomic ranks. This is in contrast to
the comparable, yet smaller, closely related dataset, indicating an
architectural advantage when predicting more taxonomic ranks,
while providing more training data.

The decrease in predictive ability for lower taxonomic ranks,
also seen for the closely related dataset and distantly related
dataset, might be due to the lower number of available training
examples per class and the chosen architecture. Further, it is
plausible that lower taxonomic ranks provide more advantages for
the correct prediction of higher taxonomic ranks than vice versa
(SI Appendix, Fig. S2).

The combined approach of MMseqs2 + BERTax is again the
best performing one (Table 1 and SI Appendix, Figs. S5, S6, S9
and S10). On the final dataset, MMseqs2 + BERTax reached an
increase in AveP of 0.43 percentage points for the rank superk-
ingdom and almost three percentage points for the rank phylum
(Table 1) compared to the closely related dataset.

Although only the numbers of eukaryotic and bacterial se-
quences were increased in the training data, for all four superk-
ingdoms, the AveP of BERTax improved significantly, between
2.58 and 3.24 percentage points; see SI Appendix, Table S3. This
broad increase in performance may be due to a greater amount of
generally usable information. This information consists of more
examples of each 3-mer from which its “general meaning” can be
inferred, but also a larger number of examples of the context of
each 3-mer. As a result, the 3-mer embeddings benefit, and the
prediction performance increases.

It has to be emphasized that, although the final dataset is an
extension of the closely related dataset—not excluding genera
also present in the test set—we expect the generalization ability
of BERTax to be comparable to that shown for the distantly
related dataset with these restrictions, as the only substantial
difference is the larger set of training data. However, even though
BERTax clearly outperforms all other methods on the distantly

related dataset, BERTax also naturally benefits greatly from more
training data, especially taxonomically related sequences, as is
evident from the performance comparison between datasets. This
can be illustrated further when comparing the performance for
specific taxonomic classes from the test set (see confusion matri-
ces in SI Appendix, Fig. S13). Regarding the rank phylum, there
are some classes for the distantly related set like Crenarchaeota
or Euryarchaeota with near-perfect classification, but also classes
like Bacillariophyta or Deinococcus-Thermus with a very low rate
of correct classifications. These results are in contrast to those
obtained from the final dataset, where performance differences
between taxonomic classes are much lower. This shows that, for
real-world use cases, it is most desirable for the training set to
be taxonomically as complete as possible. However, this means
that performance differences for specific taxonomic phyla or
genera, as shown in SI Appendix, Fig. S13, are expected to be
different for real-world applications; therefore, these differences
have to be interpreted with extreme care. In conclusion, while
we expect the final BERTax model to be as generalizable as
shown with the distantly related dataset, the benefit of potentially
having trained on sequences from similar taxonomic origin is
high.

Contribution of Attention Heads to Performance. In order to
quantify the importance of the attention mechanism for obtaining
good predictions, we ran ablation studies varying both the number
of attention heads per transformer block and the number of
transformer blocks in the BERT part of BERTax (Fig. 3). These
ablation studies were performed on the largest, final dataset but
also on the distantly related dataset, to investigate generalizability.
Results (SI Appendix, Table S7) show that reducing the number of
attention heads per layer substantially decreases performance. On
the other hand, reducing the number of transformer blocks shows
ambivalent effects. Accuracy for the ranks phylum and genus
(the latter is only predicted in the final dataset) increase, while
superkingdom accuracy decreases for the distantly related dataset
and shows little difference for the final dataset. All differences for
this variation are, however, only minor. A possible explanation for
this behavior could be that having more transformer layers leads
to slightly better generalizability for the highest taxonomic rank,
as, here, more abstraction capability is required. This, however,
comes at the cost of slightly decreased accuracy for the prediction
of lower taxonomic ranks.

Peeking into the Black Box. Although (deep) neural networks
are a powerful tool, their behavior is often hard or impossible
to interpret, resembling a “black box.” However, as BERT, at its
core, uses a (self-)attention mechanism, it is possible for us to
gain insights into the feature relations and classification for given
examples; see SI Appendix, Fig. S11, drawn with bertviz (https://
github.com/jessevig/bertviz) (24). Analyzing all inferred syntactic
and semantic relations of DNA tokens presupposed by the model
would be beyond the scope of this paper. However, some general
remarks can be made both for the relationship of different
attention heads and for individual attention heads. In general,
weight patterns show a high degree of heterogeneity between
attention heads, suggesting that, similar to natural languages, each
attention head represents a different kind of syntactic relationship
between the tokens (25). Generic attention head patterns, as
described in refs. 25 and 26, can be observed in BERTax, too:
Head 4 in layer 1, for example, always attends to the previous
token (SI Appendix, Fig. S11A), and head 4 in layer 2—albeit less
clearly—attends to the next token (SI Appendix, Fig. S11B). In
contrast, since (general genomic) DNA sequences do not have
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Fig. 3. The training process of the BERTax model. (A) During pretraining, two separate sentences are used as input. Twelve stacked transformer blocks process
this input, each consisting of five attention heads that determine which parts of the inputs are relevant to each other, and a feed-forward layer that combines
the results. The input, consisting of 502 tokens with 250 embedding dimensions each, is passed through all transformer blocks. Last, the NSP layer uses the
classifier token [CLS] to predict whether the second sentence is an original successor sentence or a replaced sentence. The MLM layer predicts all masked
tokens from the remaining tokens. The evaluation of MLM and NSP evaluates the pretraining of the transformer blocks, and thus the quality of the learned
language. After pretraining, the pretrained transformer blocks are used for the fine-tuning step. (B) A single sentence is used as input during fine-tuning with
one of the three datasets (closely related dataset—training and test data are phylogenetically closely related sequences; distantly related dataset—unknown
genera are used as test dataset; and final model dataset—an expanded closely related dataset). The pretrained transformation blocks process this input, and
only the [CLS] token is delivered to the taxonomy layers as output (SI Appendix, Fig. S1).

specific “separation” tokens comparable to periods in natural text,
this kind of relationship is not displayed as an attention head
pattern in BERTax. It can be noticed, however, that a very small
number of tokens always aggregates the attention of all other
tokens in specific attention heads (SI Appendix, Fig. S11 D–F ).
While these tokens are not the same between sequences, it
can be argued that these tokens alongside the corresponding
attention heads serve to define segments in the sequences,
similar to how punctuation tokens are used in natural language
models.

The biological interpretation of the working principle is very
challenging, and clear conclusions remain difficult. Firstly, rela-
tionships similar in expressiveness to subject–object or subject–
predicate in natural languages are hard to define. More impor-
tantly, however, in contrast to BERT models for natural lan-
guages, where tokens correspond to words (or word parts), no
such counterpart exists in DNA sequences. The 3-mers, as used
here, or any kind of k -mers, are always arbitrary units, especially
when general genomic DNA sequences are considered. Further-
more, with only 64 different 3-mers, context becomes far more
important as compared to natural languages with thousands of
tokens. However, using the attention weights measure introduced
in ref. 27 does lead to some interesting biological insights. For
instance, examining BERTax attention weight patterns suggests
that the model can distinguish between regions of strong and less
strong selection pressure; see SI Appendix, Fig. S15. In particular,
ribosomal RNA, if included in the query sequence, appears to
be an important region for classification (SI Appendix, Fig. S14).
The importance of the different 3-mer types is very different.
This suggests that there are some 3-mers whose distribution is
more likely to allow inferences about taxonomy than others. For
further details on attention weights, see SI Appendix, Attention
weight statistics. We also found that the importance of homol-
ogous sequences varies considerably across superkingdoms. Ho-
mologous sequences are likely to be particularly advantageous
at a low taxonomic level. Thus, the advantage of a homolo-
gous sequence could be related to the number of phyla and
genera in the superkingdom being determined; see SI Appendix,
Table S6.

To really understand the decision-making process in BERTax, a
more thorough analysis beyond the scope of this paper is necessary.

Discussion

Even today’s most comprehensive sequence databases miss sig-
nificant portions of the total biodiversity. This incompleteness
can result in large proportions of taxonomically unclassifiable
DNA sequences. This is a common problem when using classical
approaches, based on similarity to known sequences, on envi-
ronmental samples. Here we present BERTax to tackle this task.
BERTax is a tool for taxonomic classification of DNA sequences
(reads, contigs, or scaffolds) using DNNs. The ranks considered
are superkingdom, phylum, and genus. The focus and strength,
however, of BERTax lies in a more general taxonomic classifica-
tion, which is reflected by the difference in performance gain for
different taxonomic ranks; the most substantial improvement is
made for the rank superkingdom.

To the best of our knowledge, BERTax is the only taxonomic
classification method not based on local similarities between the
query and the target or limited to the use of k -mer frequencies,
as even other deep learning methods such as DeepMicrobes are.
This provides a likely explanation for the superior generalization
ability of BERTax as compared to other tools.

In general, when developing machine learning methods, avoid-
ing the problem of data leakage is crucial. Data leakage happens
when a model learns shared information between training and
testing data not available during actual use—in other words,
the model “cheats.” We have put particular emphasis on making
sure this is not the case with BERTax. Most importantly, dataset
splits into training and testing data were not allowed to include
duplicate samples; sequences were filtered using a sequence sim-
ilarity threshold to avoid highly similar sequences shared be-
tween the splits. Incidentally, this also means that whole reference
genomes cannot be present in the training data, which presents a
necessary deviation from the designed use case of database meth-
ods compared against. Common pitfalls, such as providing meta-
data for each sample, were omitted by exclusively using the
DNA sequence as input. Furthermore, allowing the model to
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learn classification based on sequencing quality was avoided by
imposing corresponding thresholds when creating the datasets.
On the other hand, shared homologous segments between se-
quences of the training and testing splits do not constitute data
leakage, but present valid taxonomic features, used as the foun-
dation of all database classification tools compared against in
the evaluation. Nevertheless, even the influence of (potential)
shared homology on the performance of BERTax is minor, as was
shown.

While our method has a higher AveP than comparable meth-
ods, a combination of a sensitive classic approach, like MM-
seqs2, and BERTax further improves the prediction performances,
reaching unmatched sensitivity and specificity. The great power of
BERTax can be observed especially for sequences with no closely
related species in the reference database or training dataset.

Due to its high sensitivity and specificity, relatively indepen-
dent of closely related species in the training data, BERTax is
very suitable for use with metagenomic samples, especially on
sequences that could not be classified with database methods.
Thus, BERTax reduces the “microbial dark matter” and promises a
significant benefit for metagenomics. In general, the applications
of BERTax are manifold, as it can be applied in diagnostics to
bypass otherwise lengthy cultivation processes, for example, in
the diagnostics of fungi. Here, sequencing can be used together
with BERTax to classify very rapidly directly at read level to
identify potential infections. For the detection of endogenous viral
elements (EVEs), the windowed mode of BERTax can be used to
analyze target genomes. All windows classified as viruses can be
considered as potential EVEs.

Alongside other publications (28–31), our results yet again em-
phasize the power of natural language processing methods in the
field of biological sequences. Furthermore, a self-attention-based
method like BERT grants a different perspective on the structure
of DNA sequences, allowing—in theory—investigation of how
the network comes to its classification “decision.” However, this
process is very labor intensive in practice and rarely results in major
discoveries.

Materials and Methods

BERTax is based on the architecture BERT, used in many natural language pro-
cessing tasks (21). BERT appears to outperform previous NLP methods, due to
the division of the training process into unsupervised pretraining and supervised
fine-tuning, and due to its deeply bidirectional nature of language processing
(20). Deeply bidirectional means that both reading directions are considered
simultaneously, as opposed to the “shallowly” bidirectional approach where the
model is trained on both directions independently, as used in the competing
method ELMO (embeddings from language models) (29, 32).

Pretraining: Learning the “DNA Language”. During pretraining, the model
is trained on two tasks that are not specific to the actual classification objective,
but are rather designed to enable the model to learn general structural features
of the language (or DNA, in our case). These tasks are masked language modeling
(MLM) and next sentence prediction (NSP). MLM masks individual tokens (in
NLP, a token is a word or a part of a word) which are then to be predicted. NSP
predicts whether the second of two sentences is related to the first or whether it
was replaced by a random independent sentence. When training the BERT model,
MLM and NSP are trained together, with the goal of minimizing the combined
loss function of the two strategies (20).

To model DNA as natural language, BERTax was pretrained on DNA sequences
of a fixed length of 1,500 nucleotides. Each sequence was split into 500 3-mers
(i.e., tokens in a natural language), with the first 250 3-mers being the first
sentence and the second 250 3-mers being the second sentence (SI Appendix,
Fig. S12). For each input, 15% of the 3-mers were masked for MLM to learn
what token fits which context, and, for 50% of the inputs, the second sentence

was randomly replaced by a sentence from another DNA fragment as a negative
training set for NSP only.

Internally, a 3-mer is a token (i.e., a string with an assigned meaning), with
64 possible tokens assuming the occurrence of the four canonical nucleotides.
BERT uses, additionally, five specific tokens necessary for training: the unknown
token [UNK], representing all 3-mers containing at least one ambiguously se-
quenced character, such as “N”; the empty token [PAD] which is required for
padding shorter input sequences to the required input length of 500 tokens; the
classification token [CLS], which is designed to represent the “meaning” of the
entire sentence; the mask token [MASK], which masks the words to be predicted
in MLM; and the separator token [SEP], which separates the two sentences for the
NSP task.

On the highest hierarchical level, the BERT architecture consists of a specified
number of layers called transformer blocks (Fig. 3A). Each transformer block
contains a certain number of attention heads—where weights are learned us-
ing the mechanism of self-attention—and one feed-forward layer, which serves
as the connection between the transformer blocks. Hyperparameters, that is,
parameters whose values are used to control the learning process, include the
number of transformer blocks (set to 12), the number of attention heads per block
(5), and the size of the feed-forward layers (1,024). The embedding dimension,
that is, the dimension of the internal representation of the sequences, is set to
250 (SI Appendix, Fig. S12). The dropout rate (fraction of nodes not trained per
epoch) of the feed-forward layers, used for better generalization, is set to 5%.
All hyperparameters are set to lower values than those used in the original BERT
models (20). The main reason for this is that the vocabulary size for the 3-mer DNA
sequences is much lower—65 as opposed to ∼30,000 for the English language
tokens used in the original BERT models (33).

The length of the input is 502 tokens, composed of 500 tokens from the
DNA sequence and two architecture-specific tokens to keep the sentences apart
(SI Appendix, Fig. S12). This input is passed through all transformer blocks
(Fig. 3). As typical for an encoder architecture like BERT, the dimensionality of the
sequence passed between the blocks and layers stays the same. The output of the
pretraining architecture comprises the NSP layer (i.e., the prediction whether or
not the second sentence is a random replacement) and the MLM layer with one
output per input position (502) and distinct token (69) for predicting the 3-mer
of a masked position.

Data. Archaean and eukaryotic genomes were retrieved from NCBI us-
ing ncbi-genome-download (https://github.com/kblin/ncbi-genome-download/,
version 0.2.12); viral and bacterial genomes were downloaded from NCBI
manually. The list of genomes, including the respective assembly versions, is
provided as Dataset S1.

Pretraining Dataset. For each superkingdom, we extracted 1 million frag-
ments of length 1,500 nt from the downloaded genomes at uniformly distributed
starting positions. To obtain a taxonomically balanced dataset, we grouped the
genomes by the taxonomic rank “order” and extracted fragments evenly dis-
tributed from these groups.

More specifically, fragments were extracted in an iterative process. Examin-
ing each superkingdom individually, in a first step, species belonging to the
respective superkingdom were grouped by their taxonomic order. Orders were
then iterated upon, selecting one random species of the respective order in each
iteration. For the selected species, the genomic position for extracting a fragment
was also chosen randomly. Fragments with a high number of ambiguously
sequenced characters (e.g., “N”) were discarded and replaced. This threshold was
set to more than one ambiguous base. The whole iterative process was repeated
until 1 million fragments were reached.

To reduce redundancy, we clustered fragments by sequence identity
using MMseqs2-linclust version 11.e1a1c (34) with a threshold of 80%,
resulting in 939,357 eukaryotic, 764,161 bacterial, 535,153 archaean, and
253,803 viral fragments (Table 2, pretraining dataset). The varying degree of
reduction across superkingdoms can be explained by 1) the different number
of taxa in each superkingdom, 2) the number of genomes in databases, and
3) the genome sizes. We refer to this dataset as the pretraining dataset, used for
pretraining of BERTax. As pretraining is unsupervised, the target classes of the
taxonomic classification objective are not used, and model weights are trained
solely on the generic tasks MLM and NSP.
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Table 2. The development and the number of fragments/samples of the datasets

Superkingdom

Eukaryotes Bacteria Archaea Viruses
No. extracted fragments 1,000,000 1,000,000 1,000,000 1,000,000
After clustering 939,357 764,161 535,153 253,803
Resulting dataset: Pretraining
After phylum selection 873,873 690,984 535,153 228,574
After partitioning*

Closely related selection 873,873 690,984 535,153 228,574
Distantly related selection 854,524 684,813 532,214 227,265

Resulting dataset: Closely and distantly related
No. extracted fragments 2,995,950 3,000,009 1,000,000 1,000,000
After clustering 2,707,781 1,903,183 535,153 253,803
After clade selection 2,707,781 1,903,183 535,153 253,803
After partitioning* 2,707,781 1,903,183 535,153 253,803
Resulting dataset: final model

We extracted 1 million taxonomically balanced fragments of length 1,500 nt from the downloaded genomes for each superkingdom. The resulting fragments were clustered by 80%
sequence identity, forming the pretraining dataset used as input for pretraining. Next, we selected, from the pretraining dataset, all phyla with at least 10,000 fragments. We partitioned
these fragments into a test set (2,000 sequences per phylum), training set (95% of nontest set), and validation set (5% of nontest set). For this, we used two different approaches, closely
related selection and distantly related selection (see Figs. 3 and 4), resulting in two different datasets, the closely related dataset and the distantly related dataset. Since the genomic
diversity of eukaryotes (939,357) and bacteria (764,161) seems to be less covered compared to archaea (535,153) and viruses (253,803) (see pretraining dataset), we extracted another
2 million fragments and clustered again by sequence similarity. Next, we selected all superkingdoms, phyla, and genera with at least 10,000 fragments. However, all clades with less than
10,000 fragments were combined into a new class, “unknown,” for each taxonomic rank. Therefore, the number of fragments did not decrease. All fragments were subsequently divided
via closely related selection into test set, training set, and validation set (see proportions above). This process results in the final-model dataset.
*Into training, validation, and test sets.

Preparing Data for Fine-Tuning. For fine-tuning, we sorted the fragments
from the pretraining dataset into classes according to the phylum the frag-
ment originated from. We selected only classes with at least 10,000 fragments.
All fragments of the selected classes form the input data, which we refer to as
“samples,” as is common in machine learning. This results in 30 phylum classes
with 2,328,584 samples in total. We partition these data into training, validation,
and test sets. The training set is used to train the neural network. The validation set
is used to prevent overfitting, by evaluating the neural network’s loss (the distance
to the optimal solution) after each training epoch, which allows “early stopping,”
that is, terminating training when the loss of the validation set does not further
decrease. The test set is used to evaluate the performance of the neural network
after finishing the training.

Three Evaluation Datasets. We used three different evaluation datasets.
The first and second datasets are compared to show the power of BERTax
when unknown sequences are part of the test set. This is achieved by using
different strategies to partition our data into training, validation, and test sets
(Fig. 4).

When creating the evaluation datasets, we did not exclude homologous
sequences between the training and the test datasets. This is necessary for a
realistic comparison with methods based on sequence similarity. When removing
homologous sequences, methods like local alignments have fewer hits and
would be at a disadvantage. The presence of homologous sequences allows
the trained BERTax model to remember sequence segments. These can then be
used to classify similar sequences with the same taxonomy. We do not consider
this behavior to be critical, since methods based on sequence similarity already
established this functionality. The extent of influence of homologous on the
prediction quality can be found in more detail in SI Appendix, Table S5.

The first evaluation dataset is called the closely related dataset. As a test set,
we randomly select 2,000 samples per phylum. From the remaining samples,
we select 95% of the samples of each phylum as the training set and use the
remaining 5% as the validation set (Fig. 4A).

The second evaluation dataset is called the distantly related dataset. The goal
of distantly related selection is to simulate sequences without (taxonomically)
closely related sequences in the reference database, simulating “unknown” se-
quences. For this purpose, a genus separation between training and test sets is
employed; that is, for no sample in the test set does there exist a sample of the
same genus in the training set (Fig. 4B). To achieve this, we split each phylum
into its genera. As a test set, we select a subset of these genera with about 2,000
samples—more precisely, the subset with the number of samples closest to 2,000.
The test set is balanced by undersampling randomly: We keep 1,780 samples per
phylum (according to the smallest subset). From the remaining samples in each

phylum, we again select 95% for the training set and use the remaining 5% as
the validation set.

The third evaluation dataset is referred to as the final model dataset. The
initial redundancy of the extracted eukaryotic and bacterial fragments is very
low, indicated by the low reduction of fragments after clustering the pretraining
dataset (Table 2). Therefore, the genomic diversity of the two superkingdoms is
probably underrepresented. Thus, for fine-tuning our final model which is used
in the downloadable version of BERTax, we extracted an additional 2 million
fragments for those two superkingdoms, clustered again by sequence similarity.
With this dataset, a more complete snapshot of the genomes is provided, with a
wider textual and taxonomic diversity.

For this dataset, we sorted the fragments into classes according to the superk-
ingdom, phylum, and genus the fragment originated from. Again, we selected
only classes with at least 10,000 fragments. Remaining classes are moved to an
additional class “unknown,” which is introduced for each taxonomic rank (i.e.,
“unknown superkingdom,” “unknown phylum,” “unknown genus”). With this, the
number of classes per taxonomic rank is five for the rank superkingdom, 44 for
phylum, and 156 for genera. We partition this dataset into training, validation,
and test sets using closely related selection as described above (Fig. 4A).

Fine-Tuning: Taxonomic Classification. Fine-tuning is used for the training
of the pretrained model on the problem of interest. In our case, this is the
prediction of phylogenetic taxa, by classification of sequences into different
classes, representing different taxa. While fine-tuning, each sample is converted
from its full length of 1,500 nucleotides into the corresponding 500 tokens and
the classification token [CLS] (representing the whole sequence). Because the
required sequence length is 502, one additional padding token ([PAD]) has to be
added to the end. The pretrained transformer blocks process these 502 tokens,
and, from the resulting output, the [CLS] token is used by the taxonomy layer/s
to predict the taxonomy (Fig. 3B and SI Appendix, Fig. S1). Next, the weights and
biases of all layers, including the pretrained transformer blocks, are adapted for
a more precise prediction given this specific input.

We fine-tuned all models for a maximum of 16 epochs, employing early
stopping (see SI Appendix, Table S4 for the exact number of epochs trained).
To avoid bias toward predicting the most frequent classes, we balanced the classes
for fine-tuning by class weights, calculated for each taxonomic rank,

wi =

∑C
j=1 nj

C · ni
.

Here, wi is the class weight, and ni is the number of samples for class i =
1, . . . , C, applied to each sample. Using these weights allows preserving the
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closely related selection

distantly related selection

A

B

Fig. 4. Data preparation of the test, training, and validation set via closely
related selection and distantly related selection. (A) The closely related se-
lection uses 2,000 randomly selected samples per phylum as a test set. All
remaining samples of each phylum are divided into 95% as training set,
and the remaining 5% are used as the validation set; euk., eukaryota; bac.,
bacteria; arch., archaea; vir., viruses (B) The distantly related selection selects,
per phylum, one or more entire genera as the test set (in comparison to the
closely related selection, where no restriction in this regard is made). This
subset is the combination of genera with the number of samples closest
to 2,000. The test set is balanced by undersampling, reducing the size per
phylum to the size of the smallest subset. As for the closely related selection,
all remaining samples of each phylum are divided into 95% as the training set
and the remaining 5% as the validation set.

complete number of samples while ensuring that the influence of each class on
the fine-tuning is balanced.

Ideally, the representative proportions of each superkingdom would be
used for training, without using class weights. This would bias the model
classification toward the expected taxonomic distribution. However, to the best
of our knowledge, it is not clear what these representative proportions are. Likely,
these proportions are highly dependent on the origin of the sample and can

therefore vary considerably. Therefore, we preferred to choose a neutral training
and did not build in a bias from the beginning.

Architectures. We tested three different architectures based on the
pretrained BERT model, which differ in the adaptations of the output layers
(SI Appendix, Fig. S1). The pretrained model is used to obtain a learned high-
dimensional embedding of the input sequence. Specifically, the classification
token [CLS], which is a single vector designed to contain the information of the
whole input sequence, is the input to the new output layer. Each output layer
uses the activation function softmax, which results in a probability distribution for
each taxonomic rank, such that each prediction is associated with a confidence.

The flat architecture (SI Appendix, Fig. S1A) is trained to directly predict the
lowest taxonomic rank, which is the phylum in the comparison of the architec-
tures. The flat architecture uses a simple dense layer with a node for each phylum.
The nested architecture (SI Appendix, Fig. S1B) consists of multiple independent
BERT models arranged in a tree-like manner. Each of these models is trained
only on samples of its taxonomic group and uses a dense layer containing
the same number of nodes as its subclasses. First, the root model predicts the
superkingdom. Then, the sample is passed to the model of the subclass with the
highest probability. This is continued until the lowest taxonomic rank is reached.
The all-in-one architecture (SI Appendix, Fig. S1C) is a single BERT model which
predicts all taxonomic ranks simultaneously. It uses the idea of Rojas-Carulla et
al. (35) to provide the prediction of higher taxonomic ranks to lower prediction
layers. For this, all output layers (taxonomic ranks) of the model have access to
the BERT model itself and the output layers of all higher taxonomic ranks.

The unique characteristic of the all-in-one architecture is the additional in-
formation that output layers have access to: The superkingdom output layer
is connected to the phylum layer, potentially allowing the prediction of the
superkingdom to benefit from (high-level) features learned to be important for
phylum classification (also see SI Appendix, Fig. S2).

Comparison to Other Tools. BERTax is compared against the state-of-the-art
database taxonomic classification approaches Kraken2 (15), sourmash (16), MM-
seqs2 (14), and minimap2 (17). Hereby, Kraken2 and sourmash use k-mers and
minimizers for comparing the query to the reference database. MMseqs2 uses
k-mers and local alignments. Minimap2 uses minimizers for the identification of
seeds, which are further extended in a local alignment. For all tools, we used the
default parameters. However, we use a modified version of MMseqs2 taxonomy.
More precisely, we are using MMseqs2 with the parameters of MMseqs2 taxon-
omy (–e-profile 0.001, -e 1). Doing so, we get an E value and thus a significance
value that can be used to calculate the PR curve and AveP, rather than assigning
the same confidence to all predictions. With this approach, we receive the same
hits as for MMseqs2 taxonomy for 99.94% of all samples. We call this approach
MMseqs2 taxonomy*. As a state-of-the-art machine learning approach, we tested
DeepMicrobes (19). In our evaluation, we used the architecture and hyperparam-
eters evaluated as best by Liang et al. (19). The architecture comprises long short-
term memory layers with self-attention that use k-mer embeddings (k = 12) as
input. The DeepMicrobes models are trained on exactly the same data as BERTax.

The deep learning–based method GeNet (35), developed for classifying bac-
teria, unfortunately could not be compared against, as it relies on downloading
and subsequently binarizing training data on its own, which is highly impracti-
cal for our much bigger datasets. For Convolutional Neural Network - Relative
Abundance Index (CNN-RAI) (36), only the source code of the tool is provided.
Therefore, it is impossible to train the method on new data with reasonable effort,
which is necessary for comparability.

Seq2Species (37) and MetagenomicDC (38) restrict the input to 16S se-
quences, which severely limits the approaches’ applicability; these tools are
therefore not included in our comparisons. The same applies to CHEER (39)
which only features RNA virus taxonomy classification. However, most of these
approaches use convolutional neural networks, which use combinations of short
letter sequences (3 nt to 12 nt) for classification. This is similar to the use of k-mers
in database approaches.

Downloadable BERTax Version. The downloadable BERTax version is built on
the all-in-one architecture and trained on the final model dataset. The download-
able tool additionally predicts the taxonomic rank genus.

BERTax was implemented in Python 3.7 and uses the Python packages scipy
(1.6.1) (40), keras (2.4.3), tensorflow (2.4.1) (41), numpy (1.19.2) (42), and
keras-bert (0.86.0). The visualization feature is based on bertviz (1.0.0). The

PNAS 2022 Vol. 119 No. 35 e2122636119 https://doi.org/10.1073/pnas.2122636119 9 of 10

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122636119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122636119


source code as well as a conda package and docker container are available at
https://github.com/f-kretschmer/bertax.

Data, Materials, and Software Availability. Source code of the final BERTax
tool and data used in training the neural networks have been deposited in
https://github.com/f-kretschmer/bertax (43) and the Open Science Framework
(OSF) (10.17605/OSF.IO/QG6MV) (44).
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