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ABSTRACT

RNA folding is hierarchical; therefore, predicting RNA secondary structure from sequence is an intermediate step in pre-
dicting tertiary structure. Secondary structure prediction is based on a nearest neighbor model using free energy minimi-
zation. To improve secondary structure prediction, all types of naturally occurring secondary structure motifs need to be
thermodynamically characterized. However, not all secondary structuremotifs arewell characterized. Pentaloops, the sec-
ond most abundant hairpin size, is one such uncharacterized motif. In fact, the current thermodynamic model used to pre-
dict the stability of pentaloopswas derived froma small data set of pentaloops and fromdata for other hairpins of different
sizes. Here, the most commonly occurring pentaloops were identified and optically melted. New experimental data for 22
pentaloop sequences were combined with previously published data for nine pentaloop sequences. Using linear regres-
sion, a pentaloop-specific model was derived. This new model is simpler and more accurate than the current model.
The new experimental data and improved model can be incorporated into software that is used to predict RNA secondary
structure from sequence.
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INTRODUCTION

In addition to transcribing genetic information from DNA
and translating it toprotein, RNAcan regulategeneexpres-
sion (Tucker and Breaker 2005; Sun et al. 2018), catalyze re-
actions in the cell (Doudna and Cech 2002; Wilson and
Lilley 2015), and act as a therapeutic target (Krützfeldt
et al. 2005; Elmén et al. 2008; Esau 2008; Faghihi et al.
2008; Gupta et al. 2010; Gupta and Nandan 2017), to
name a few. Due to a strong relationship between structure
and function (Dyson et al. 1993; Lee et al. 1997; McCarthy
2005; Campagnola et al. 2015; Travers and Muskhelishvili
2015), determining RNA tertiary structure is the prime
step in order to better understand RNA’s diverse function-
alities. An intermediate step in predicting tertiary structure
from sequence is to predict secondary structure from se-
quence. Themost commonway to predict secondary struc-
ture from sequence is by free energy minimization using
nearest neighbor parameters (Xia et al. 1998; Chen et al.
2012) derived for each secondary structure motif from op-
tical melting experiments. However, there is still room for
improving secondary structure prediction because not all
secondary structure motifs have been sufficiently charac-
terized thermodynamically.

One of the most common secondary structure motifs in
RNA is a hairpin, formed when a strand of RNA folds back
on itself to form a stem–loop structure. In Escherichia coli,
∼70% of rRNA nucleotides are involved in forming hairpins
(Giese et al. 1998). Hairpins can act as nucleation sites for
higher order folding (Uhlenbeck 1990) and recognition
sites for other biomolecules (Legault et al. 1998; Wu et al.
2001; Koldobskaya et al. 2011; Koirala et al. 2018). One
of themost common sizes of hairpins is a pentaloop, a hair-
pin containing 5 nt in the loop. In 16S rRNA of E. coli, pen-
taloops account for 13% of the total hairpins (Woese et al.
1990), and in large subunit rRNA, 24% of the hairpins are
pentaloops (Gutell and Fox 1988). In addition to being
prevalent, pentaloops can serve important biological func-
tions. For example, pentaloops can play an important role
in alternative splicing. In the transcript of the survival motor
neuron, a temporary pentaloop is located at the junction of
exon 7 and intron 7 and acts as a regulatory element for
exon 7 inclusion (Singh et al. 2007, 2015). A pentaloop is
present in the D3 and D5 domains of group II introns and
facilitates tertiary interactions between domains (Jestin
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et al. 1997; Fedorova and Pyle 2005; Pechlaner et al. 2013).
Pentaloops in spliceosomal U6 RNA can mediate tertiary
folding (Cate et al. 1996) or act as a recognition site for pro-
teins (Legault et al. 1998). In RNA crystallization experi-
ments, pentaloops can serve as a recognition site for
crystallization chaperones (Koldobskaya et al. 2011; Koirala
et al. 2018). N protein of phages λ and P22 recognize boxB
RNAbyapentaloop,which acts as a transcription antitermi-
nator (Salstrom and Szybalski 1978; de Crombrugghe et al.
1979; Olson et al. 1982; Franklin 1985; Lazinski et al. 1989;
Weisberg and Gottesman 1999). A pentaloop found in
aptamer NEO1A can act as a recognition site for a wide
range of aminoglycoside antibiotics (Ilgu et al. 2014) and
can cause toxicity. In E. coli, the aminoacyl (A) site of 23S
rRNA has a conserved pentaloop hairpin which is essential
for the function of the peptidyltransferase center of rRNA
(Samaha et al. 1995; Kim and Green 1999). Lastly, a penta-
loop can mediate pre-mRNA modification; a highly con-
served pentaloop at the R/G site of pre-mRNA in
mammals and birds acts as a recognition site for adenosine
deaminases that act on RNA (ADARs) (Aruscavage andBass
2000; Stefl et al. 2006).
Despite the high frequency and functional importance

of pentaloops, the thermodynamics of pentaloops are
not well characterized. The current model (Vecenie and
Serra 2004; Vecenie et al. 2006) used to predict the ther-
modynamic stability of pentaloops is based on a data set
of experimental thermodynamic parameters from only
nine pentaloop sequences (Serra et al. 1997; Giese
et al. 1998) as well as data from different size hairpins.
In the current model, two different equations are used
based on the closing base pair of the hairpin (Vecenie
and Serra 2004; Vecenie et al. 2006). The general hairpin
equation for hairpins with a Watson–Crick closing base
pair is:

DGo
37,L(n) = DGo

37i(n) + DGo
37MM

− 0.8 kcal/mol (if the first mismatch is G · A or

U · U)− 0.8 kcal/mol (if the first mismatch is

G ·G and the loop is closed on the 5′ side by a purine)

(1)

For pentaloops, ΔG°37i(n) 5.7 kcal/mol. ΔG°37MM is the
free energy of interaction between the first mismatch of
the loop and the closing base pair (Freier et al. 1986;
SantaLucia et al. 1991; Serra et al. 1994; Serra and
Turner 1995; Giese et al. 1998; Vecenie and Serra
2004; Vecenie et al. 2006; Sheehy et al. 2010). For hair-
pins with a G-U or U-G closing base pair, the equation is:

DGo
37,L(n) = DGo

37i(n) − 0.8 kcal/mol (if the first mismatch is

G · A)− 0.8 kcal/mol (if the first mismatch is

G ·G and the loop is closed on the 5′ side by a purine)

(2)

Here, for pentaloops, ΔG°37i(n) = 5.0 kcal/mol. The bonus
for G·A, U·U, and G·G first mismatches in Equations 1 and

2 was included based on the thermodynamics of hexa-
loops (Vecenie and Serra 2004; Vecenie et al. 2006). The
model was also validated by predicting the stability of hex-
aloops (Vecenie and Serra 2004; Vecenie et al. 2006).
Therefore, we hypothesized that a thermodynamic model
derived from only pentaloop data will be more accurate at
predicting pentaloop stability. Here, we report the thermo-
dynamics of 22 pentaloops. We combine this data with the
data for nine pentaloops from the literature (Serra et al.
1997; Giese et al. 1998) to derive a pentaloop-specific
model. This new model can be incorporated into second-
ary structure prediction software to improve RNA second-
ary structure prediction from sequence.

RESULTS

Database searching

A total of 1589 pentaloops were found in the secondary
structure database described in Materials and Methods,
averaging about one pentaloop in every secondary struc-
ture. Almost all of the pentaloops were found within
rRNA (∼75%were found in 23S RNA and∼18%were found
in 16S RNA). Group I introns (∼4%) and tRNA (∼1%) also
contributed pentaloops, with all other types of RNA con-
tributing <1% of the total pentaloops found. A summary
of these pentaloops is shown in Table 1. Data set 1 shows
frequency and percent occurrence of pentaloops when
specifying the loop sequence and the closing base pair.
Because previous studies have shown that the stability of
hairpin loops depends on both the identity of the nucleo-
tides in the loop and the closing base pair (Vecenie and
Serra 2004; Vecenie et al. 2006; Sheehy et al. 2010;
Thulasi et al. 2010), this categorization is most important.
A total of 545 combinations of this type were found in
the database. The top 18 most frequent pentaloops each
account for 1%–4% of the total number of pentaloops,
and together, they account for 36.8% of the total number
of pentaloops. The remaining 527 pentaloops account for
63.2% of the total number of pentaloops, but each ac-
counts for <1% of the total number of pentaloops. Data
set 2 consists of pentaloops when specifying the loop nu-
cleotides only (closing base pair is not included). A total of
358 pentaloops were found in the database. The top 19
most frequent pentaloops each account for 1.1%–6.4%
of the total number of pentaloops, and together, they ac-
count for 46.5% of the total number of pentaloops. The re-
maining 339 pentaloops account for 53.1% of the total
number of pentaloops, but each accounts for <1% of the
total number of pentaloops. Data set 3 tallies the number
of pentaloops with each of the six possible canonical clos-
ing base pairs. Lastly, data set 4 lists the pentaloop se-
quences when purine nucleotides are represented as “R”
and pyrimidine nucleotides are represented as “Y.”
While all 32 possible types of pentaloops were found in
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the database, the top 27 most frequent pentaloops each
account for 1.0%–11.6% of the total number of penta-
loops, and together, they account for 97.6% of the total
number of pentaloops. The remaining five pentaloops ac-
count for 2.4% of the total number of pentaloops,
with each accounting for <1% of the total number of
pentaloops.

Thermodynamic parameters

Seventeen of the most frequent pentaloops in the data-
base were optically melted, and thermodynamic parame-
ters were derived (Table 2). Due to possible competition
from bimolecular association of strands, some frequent

pentaloops were not studied here. In order to incorporate
more sequence variability and to develop the most inclu-
sive thermodynamic model, five additional pentaloop se-
quences that were not found in the database were also
studied. These sequences were selected to fill in gaps
(i.e., additional pentaloops with G-U and U-G closing pairs)
in the data set and to see if frequency in the secondary
structure database was related to stability.

Contribution of pentaloops to stem–loop free
energy

Table 3 shows the thermodynamic contribution of penta-
loops to stem–loop stability. In addition to the 22

TABLE 2. Experimental thermodynamic parameters

Sequencea Frequencyb ΔH° (kcal/mol) ΔS° (cal/Kmol) ΔG°37 (kcal/mol) Tm (°C)

GCAC(GGCGA)GUGC 63 −47.5±2.1 −138.6±6.5 −4.51±0.10 69.6

GCAC(UGUUC)GUGC 58 −44.2±2.9 −130.7±9.4 −3.67±0.05 65.1
CAGG(UAAGU)UCUG 56 −28.6±9.5 −91.5±30.7 −0.25±0.09 39.8

CGAG(GUAAG)CUCG 44 −35.7±2.2 −107.2±7.0 −2.48±0.13 60.2

GACG(CUCAA)CGUC 41 −32.7±4.4 −99.2±14.2 −1.92±0.08 56.3
GCGA(GAGAA)UCGC 35 −40.7±5.3 −120.8±16.8 −3.28±0.19 64.1

GCGU(AAUUA)ACGC 34 −35.5±2.3 −106.9±7.5 −2.38±0.08 59.3

CGUG(UUCGU)CACG 32 −44.0±4.2 −131.4±13.8 −3.23±0.11 61.6
CGCU(ACCAA)AGCG 30 −32.3±3.6 −95.6±11.6 −2.67±0.15 64.9

CGCU(GAAAG)GGCG 29 −38.7±3.1 −113.9±10.0 −3.34±0.15 66.3

GCGA(GAAAU)UCGC 19 −42.0±1.8 −124.9±5.6 −3.31±0.08 63.5
CGCU(GAAUA)GGCG 19 −37.6±1.9 −111.5±5.8 −3.00±0.18 63.9

CGCU(GAACA)GGCG 17 −41.4±2.3 −122.4±7.4 −3.42±0.10 65.0

GACG(UAAUU)CGUC 17 −39.8±3.3 −120.1±10.3 −2.56±0.17 58.3
GCAC(CUUGU)GUGC 16 −48.5±2.7 −139.6±8.2 −5.19±0.19 74.1

GGCU(GAAAU)GGCC 16 −42.5±2.0 −123.7±5.9 −4.11±0.19 70.2

GCGU(AUCAA)ACGC 11 −36.1±2.5 −107.8±8.0 −2.67±0.07 61.8
GUC(AUCCC)GACc 4 −24.1±2.0 −73.9±4.7 −1.2±0.2 53.1

GCGU(AUCAA)GCGC 0 −37.6±1.5 −111.6±4.8 −3.01±0.07 64.0

GCGU(AAUUA)GCGC 0 −34.1±4.5 −102.2±14.6 −2.41±0.09 60.6
CGUG(UAAAU)UACG 0 −33.7±17.4 −107.9±56.1 −0.23±0.08 39.1

CGCG(UAAAU)CGCG 0 −39.4±1.5 −114.9±4.8 −3.76±0.07 69.7

CGAG(AAUGC)CUCG 0 −31.5±2.8 −95.7±9.2 −1.78±0.06 55.5
GGC(AUUUA)GCCc 0 −31.6±2.6 −93.3±8.0 −2.55±0.18 64.7

GGG(AUUUA)CCCc 0 −29.3±2.4 −89.0±7.7 −1.67±0.08 55.4

GGA(AUUUA)UCCc 0 −23.9±2.3 −78.4±8.5 −0.21±0.15 39.4
GGU(AUUUA)ACCc 0 −23.2±3.4 −74.0±10.5 −0.30±0.29 40.7

GGU(AUUUA)GCCd 0 −26.5±0.5 −83.6±2.2 −0.6±0.3 43.5

GGC(AUAUA)GCCc 0 −27.6±2.0 −81.3±6.5 −2.73±0.18 66.3
GGC(GUAAA)GCCc 0 −39.8±2.5 −117.4±7.3 −3.3±0.3 65.6

GCG(GAAGA)UGCd 0 −21.4±4.4 −68.1±14.0 −0.3±0.3 41.0

aSequences are written 5′–3′. Parentheses were added to designate the loop sequence. Sequences are listed here based on order of frequency in the sec-
ondary structure database.
bFrequency of occurrence in the secondary structure database.
cSerra et al. 1997.
dGiese et al. 1998.

Thermodynamics of RNA pentaloops

www.rnajournal.org 835



pentaloops measured here, previously published data for
nine additional pentaloops are included (Serra et al.
1997; Giese et al. 1998). The free energy contribution of
pentaloops (ΔG°37,pentaloop) ranges from 2.58 to 5.74
kcal/mol.

Updated model for predicting the free energy
of previously unmeasured pentaloops

To improve prediction of pentaloop stability and reduce
the complexity of the current model, a new pentaloop-

TABLE 3. Pentaloop contribution to stem–loop thermodynamics

Sequencea

Exp
ΔG°37,pentaloop

b

(kcal/mol)

Current predicted
ΔG°37,pentaloop

c

(kcal/mol)

Current
ΔΔG°37,pentaloop

d

(kcal/mol)

New predicted
ΔG°37,pentaloop

e

(kcal/mol)

New
ΔΔG°37,pentaloop

f

(kcal/mol)

C(CUUGU)G 2.58 4.90 2.32 3.37 0.79
C(GGCGA)G 3.26 3.50 0.24 3.37 0.11

C(GUAAA)Gg 3.38 3.50 0.12 3.37 −0.01
C(AUCCC)Gg 3.39 4.20 0.81 3.37 −0.02
G(UUCGU)C 3.48 3.90 0.42 4.37 0.89

C(AUAUA)Gg 3.95 4.20 0.25 3.97 0.02

C(UGUUC)G 4.10 4.30 0.20 3.37 −0.73
U(GAACA)G 4.13 4.20 0.07 4.37 0.24

C(AUUUA)Gg 4.13 4.20 0.07 3.97 −0.16
U(GAAAG)G 4.21 5.00 0.79 4.37 0.16
G(GUAAG)C 4.31 3.50 −0.81 4.37 0.06

U(GAAAU)G 4.34 5.00 0.66 4.37 0.03

A(GAAAU)U 4.37 5.20 0.83 4.37 0.00
G(GAAGA)Uh 4.37 4.20 −0.17 4.96 0.59

G(UAAAU)C 4.38 3.90 −0.48 4.37 −0.01
G(UAAUU)C 4.39 3.90 −0.49 4.37 −0.02
A(GAGAA)U 4.40 4.10 −0.30 4.37 −0.03
U(GAAUA)G 4.55 4.20 −0.35 4.37 −0.18
U(ACCAA)A 4.74 4.70 −0.04 4.97 0.23
U(AUUUA)Ag 4.75 4.70 −0.05 4.97 0.22

G(UAAAU)U 4.76 5.00 0.24 4.96 0.20

U(AUUUA)Gh 4.81 5.00 0.19 4.97 0.16
G(AUUUA)Cg 4.85 4.60 −0.25 4.97 0.12

U(AUCAA)A 4.90 4.70 −0.20 4.97 0.07

U(AUCAA)G 4.92 5.00 0.08 4.97 0.05
A(AUUUA)Ug 4.95 4.90 −0.05 4.97 0.02

G(AAUGC)C 5.01 4.50 −0.51 4.37 −0.64
G(CUCAA)C 5.03 4.60 −0.43 4.37 −0.66
U(AAUUA)A 5.19 4.70 −0.49 4.97 −0.22
U(AAUUA)G 5.52 5.00 −0.52 4.97 −0.55
G(UAAGU)U 5.74 5.00 −0.74 4.96 −0.78
|Average| 0.42 0.26

aSequences are written 5′–3′, and parentheses were added to designate the loop sequence. Pentaloop sequences are listed from least destabilizing to most
destabilizing.
bFree energy contribution of loop to stem–loop thermodynamics calculated by subtracting the contribution of the stem base pairs from the experimental
free energy of the stem–loop. Values for the previously published pentaloops were recalculated here.
cPredicted free energy contribution of loop using the current model (Equations 1 and 2).
dDifference between experimental and predicted free energy contribution of loop using the current model. Positive values indicate predictions that are
more destabilizing than the experimental value; negative values indicate predictions that are less destabilizing than the experimental value.
ePredicted free energy contribution of loop using the new model derived here (Equation 3).
fDifference between experimental and predicted free energy contribution of loop using the new model. Positive values indicate predictions that are more
destabilizing than the experimental value; negative values indicate predictions that are less destabilizing than the experimental value.
gSerra et al. 1997.
hGiese et al. 1998.
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specific model was derived. Many different parameters
were tested, but the following equation represents the
best combination of parameters for a simple model with
high accuracy:

DGo
37,pentaloop = 4.37 kcal/mol

− 1.00 kcal/mol (for a C−G closing pair)

+ 0.58 kcal/mol (for a G−U closing pair)

+ 0.60 kcal/mol (for an A · A first mismatch)

(3)

Please note that the −1.00 kcal/mol bonus only applies to
pentaloops closed by a C-G pair, with a C on the 5′ side
of the loop (the bonus does not apply to G-C closing
pairs), which is consistent with what was seen previously
for triloops (Thulasi et al. 2010). Similarly, the 0.58 kcal/
mol penalty only applies to pentaloops closed by a G-U
pair, with a G on the 5′ side of the loop (the penalty
does not apply to U-G closing pairs). Additional bonuses
and/or additional penalties may be discovered with addi-
tional experiments. The standard error from the regres-
sion analysis for the pentaloop penalty, C-G closing pair
bonus, G-U closing pair penalty, and A·A first mismatch
penalty is 0.11, 0.18, 0.26, and 0.16 kcal/mol, respective-
ly. For the new model, the average difference between
the predicted and experimental free energy is 0.26
kcal/mol, with a range of 0.00–0.89 kcal/mol (Table 3).
This can be compared to the current model (using
Equations 1 and 2 for the same set of pentaloops) where
the average difference between the predicted and exper-
imental free energy is 0.42 kcal/mol, with a range of
0.04–2.32 kcal/mol (Table 3). Similar models without
each of the individual parameters introduced in
Equation 3 resulted in a significant decrease in accuracy.
A similar model was derived in order to predict

the enthalpic contribution of pentaloops. Using the
same parameters as Equation 3, the following equation
resulted:

DHo
pentaloop = −4.57 kcal/mol

− 2.85 kcal/mol (for a C−G closing pair)

+ 0.46 kcal/mol (for a G−U closing pair)

+ 3.73 kcal/mol (for an A · A first mismatch) (4)

Experimental and predicted ΔH°pentaloop values can be
found in Supplemental Table S2.

DISCUSSION

Database searching

For triloops, G(GGG)C and GGG were the most common
triloop sequences in data sets 1 and 2, respectively
(Thulasi et al. 2010). For tetraloops, the most common

tetraloop sequences in data sets 1 and 2 were C(GAAA)G
and GAAA, respectively (Sheehy et al. 2010). Note that
all four of these hairpins consist of all purine nucleotides.
Common pentaloop sequences are a little different. For
pentaloops, C(GGCGA)G and UGUUC were the most
common pentaloop sequences in data sets 1 and 2, re-
spectively. It was not until the seventh most common se-
quence for data set 1, A(GAGAA)U, and the sixth most
common sequence for data set 2, GAAAG, did penta-
loops exhibit all purine sequences. Only 52.3% of penta-
loops were closed by C-G or G-C pairs, compared to
68.6% of triloops (Thulasi et al. 2010) and 69.3% of tetra-
loops (Sheehy et al. 2010). More specifically, pentaloops
with C-G closing pairs (28.6%) were much fewer than tri-
loops (42.0%) and tetraloops (49.2%) with C-G closing
pairs. Similar to what was observed in data sets 1 and
2, data set 4 for triloops (Thulasi et al. 2010) and tetra-
loops (Sheehy et al. 2010) were dominated by all purine
nucleotides, 25.2% and 34.6%, respectively. However,
for pentaloops, all purine hairpins were only the third
most abundant at 7.1%.

Thermodynamic contributions of pentaloops
to motif stability

As was the case for triloops and tetraloops, it is clear that
stability is not the only determinant of pentaloop fre-
quency in nature. For example, the third most frequent
pentaloop in the secondary structure database, G
(UAAGU)U, is the least stable (ΔG°37,pentaloop = 5.74 kcal/
mol) pentaloop measured in this study. On the other
hand, the most stable pentaloop (2.58 kcal/mol) was
only the 18th most frequent pentaloop in the secondary
structure database, C(CUUGU)G. Additionally, there is
very little difference in average stability between the pen-
taloops that were found frequently in the secondary
structure database (4.3± 0.8 kcal/mol) and those that
were not found in the secondary structure database (4.6
± 0.5 kcal/mol).
Several trends emerged from the thermodynamic data

which resulted in the updated model (Equation 3).
Pentaloops with a C-G closing base pair (with the C on
the 5′ side of the hairpin loop) were found to be more
stable (average ΔG°37,pentaloop of 3.5 kcal/mol) than
pentaloops with other closing base pairs (average
ΔG°37,pentaloop of 4.7 kcal/mol). Pentaloops with a G-U
closing base pair (with the G on the 5′ side of the
hairpin loop) were found to be less stable (average
ΔG°37,pentaloop of 5.0 kcal/mol) than pentaloops with oth-
er closing base pairs (average ΔG°37,pentaloop of 4.4 kcal/
mol). Pentaloops with an A-A first mismatch were found
to be less stable (average ΔG°37,pentaloop of 4.8 kcal/
mol) than pentaloops with other first mismatches (aver-
age ΔG°37,pentaloop of 4.2 kcal/mol).
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Updated model for predicting thermodynamics
of pentaloops

Because we have collected thermodynamic data for 22
pentaloops that previously did not have experimental val-
ues, when predicting the free energy contributions of
these pentaloops in an RNA stem–loop, the experimental
values can be used. For pentaloops that still do not have
experimental values, the predictive model (Equation 3)
can be utilized.

The updated model for predicting thermodynamics of
pentaloops is simple; the inclusion of bonuses and penal-
ties (and the corresponding values) can be determined
from sequence alone. Unlike the current model in
Equations 1 and 2 (Vecenie and Serra 2004; Vecenie
et al. 2006), the updated model does not require the cal-
culated free energy change for the stacking of the first mis-
match on the closing base pair. Not only is the new model
simpler to use, but it also more accurately predicts the
stability of the entire data set of pentaloops (0.42 vs.
0.26 kcal/mol average difference from experimental val-
ue). The higher accuracy is mostly likely due to the use of
pentaloop data only, whereas the parameters of the cur-
rent model were derived from several different sizes of
hairpins and validated using a data set of hexaloops
(Vecenie and Serra 2004; Vecenie et al. 2006). The new
model is significantly better for certain subsets of the
data. For example, ΔΔG°37 values (difference between pre-
dicted and measured ΔG°37 values) for pentaloops with a
G·G first mismatch improved from 0.80 to 0.11 kcal/mol.
Additional studies with more pentaloop sequences and
adjacent base pairs may result in additional free energy
bonuses/penalties. We recommend Equation 3 for pre-
dicting the stability of previously unmeasured pentaloops
and the general Equations 1 and 2 for previously unmea-
sured hairpins of larger sizes.

MATERIALS AND METHODS

Compiling and searching a database for RNA
pentaloops

In order to determine which pentaloop sequences to characterize
thermodynamically, sequences were selected based on frequen-
cy of occurrence in a database of secondary structures. A data-
base of 1349 RNA secondary structures, consisting of 123 small
subunit rRNAs (Gutell 1994), 223 large subunit rRNAs (Gutell
et al. 1993; Schnare et al. 1996), 309 5S rRNAs (Szymanski et al.
1998), 484 tRNAs (Sprinzl et al. 1998), 91 signal recognition par-
ticles (Larsen et al. 1998), 16 RNase P RNAs (Brown 1998), 100
group I introns (Waring and Davies 1984; Damberger and
Gutell 1994), and three group II introns (Michel et al. 1989), was
searched for pentaloops. During this search, G-U base pairs
were considered canonical base pairs. Pentaloops were required
to have canonical closing pairs. The number of occurrences for
each type of pentaloop were tallied.

Design of sequences for optical melting studies

To be consistent with the Watson–Crick thermodynamic parame-
ters and parameters for most other RNA secondary structure mo-
tifs, the melting buffer used in this work contained 1 M NaCl. A
major limitation of a thermodynamic analysis of RNA hairpins us-
ing a high salt concentration is the possible bimolecular associa-
tion of RNA strands. To ensure that unimolecular pentaloop
formation out-competed bimolecular association in a 1 M
NaCl solution, the following equations, derived from the equilib-
rium equations and ΔG°=−RT ln K (see SI for derivation of
Equation 5), were utilized:

[H] = −1+
��������������������������

1+ ((8KD[A]T)/(KHKH))
√

(4KD) / (KHKH)
(5)

[D] = ([A]T − [H])/2 (6)

%H = [H]
([H]+ [D])

× 100 (7)

Here, [H] is the concentration of hairpin, and %H is the percent
hairpin in solution. [A]T is the total concentration of strand, and
[D] is the concentration of duplex. KD and KH are the equilibrium
constants for duplex and hairpin formation, respectively. KH and
KD values were calculated at 37°C using ΔG°37 values predicted
by RNAstructure (Reuter and Mathews 2010; Bellaousov et al.
2013) for hairpin and duplex formation, respectively. Calculations
were done for [A]T = 1 µM and 0.1 mM, which is the typical con-
centration range for the melting experiments. Due to potential
competition from duplex formation, some of the most frequently
occurring pentaloops were not studied here; only those that were
likely to form pentaloops were used. All of the sequences
studied here had %[H] > 92% at [A]T = 0.1 mM and %[H] > 99%
at [A]T = 1 µM.

Sequences of pentaloops and closing base pairs were de-
signed to represent those found in the database described
above. Each stem contained threeWatson–Crick pairs in addition
to the closing base pair. The terminal base pair was always a G-C
pair in order to prevent end fraying of the duplex during melting.
The duplexes were also designed to have a melting temperature
between 40°C and 75°C. Care was taken to design the stem–loop
sequences so that the pentaloop of interest would form, with little
competition from other secondary structure motifs.

RNA synthesis and purification

The oligonucleotides were ordered from Integrated DNA
Technologies, Inc. and purified by column chromatography and
thin-layer chromatography as described previously (Davis and
Znosko 2007; Wright et al. 2007; Christiansen and Znosko 2008).

Optical melting experiments and thermodynamics

Optical melting experiments were performed in a buffer contain-
ing 1 M NaCl, 20 mM sodium cacodylate, and 0.5 mM Na2EDTA
at pH 7.0 with a Beckman-Coulter DU800 spectrophotometer
from 10°C–90°C at 260 and 280 nm. All stem–loops were melted
at least nine times with a ∼50-fold concentration range. Each
stem–loop melting curve resulted in a single transition, and all
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melts of a given sequence were concentration independent, sug-
gesting stem–loop formation. Stem–loop thermodynamics were
determined by averaging the thermodynamics derived from
each individual curve fit using MeltWin 3.5 (McDowell and
Turner 1996) in order to derive enthalpy (ΔH°), entropy (ΔS°), melt-
ing temperature (Tm), and free energy (ΔG°37) values. The free en-
ergy contribution of the pentaloop (ΔG°37,pentaloop) was
calculated by subtracting the canonical pair contribution of the
stem (Xia et al. 1998; Chen et al. 2012) from the measured
ΔG°37 values for the stem–loops. Stem sequences in which the
terminal pair of the stem (or the pentaloop closing base pair) is
A-U or U-A utilize the 0.45 kcal/mol terminal A-U penalty (Xia
et al. 1998) when calculating the contribution of the canonical
pairs in the stem. The inclusion of this penalty here is likely the rea-
son why no additional terminal pair bonuses or penalties
emerged from the analysis of the pentaloop data.

Linear regression and pentaloop thermodynamic
parameters

Experimental data for the 22 hairpins measured here were com-
bined with data for nine previously published pentaloops (Serra
et al. 1997; Giese et al. 1998), which were also melted in 1 M
NaCl. A new predictive model for pentaloops was derived using
the LINEST function (linear regression) in Microsoft Excel. The cal-
culated experimental contribution of the pentaloop to stem–loop
stability was used as a constant when doing linear regression.
Many combinations of variables, including a parameter for a
U·U, G·G, G·A, pyrimidine·pyrimidine, and purine·purine first mis-
match and a parameter for pyrimidine or purine as the middle nu-
cleotide in the loop, were tested, with the best combination of
variables resulting in the simple, highly accuratemodel described
in the “Results” section. The robustness of the predictive model
was tested by removing individual pentaloops and small sets of
pentaloops that were not predicted well by the original model
and rederiving a new model. In the cases that we tested, remov-
ing data resulted in ΔΔG°37 values that improved by <0.1 kcal/mol
(data not shown). As a result, the predictive model using all of the
data is presented here.
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