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Abstract

Recently, the heterogeneity that arises from stochastic fate decisions has been reported for several types of cancer-derived
cell lines and several types of clonal cells grown under constant environmental conditions. However, the relation between
this stochasticity and the responsiveness to extracellular stimuli remains largely unknown. Here we focused on the fate
decisions of the PC12 cell line, which was derived from rat pheochromocytoma, and is a model system to study
differentiation into sympathetic neurons. Whereas epidermal growth factor (EGF) stimulates the proliferation of populations
of PC12 cells, nerve growth factor (NGF) promotes the differentiation of neurites to neuron-like cells. We found that
phenotypic heterogeneity increased with time at several surrounding serum concentrations, suggesting stochastic cell-fate
decisions in single cells. We made a simple mathematical model assuming Markovian transitions of the cell fates, and
estimated the transition rates based on Bayes’ theorem. The model suggests that depending on the serum concentration,
EGF (NGF) even directs differentiation (proliferation) at the single-cell level. The maximum effects of the growth factors were
ensured when the transition rates were appropriately controlled by the serum concentration to produce a nonextremal,
moderate amount of cell-fate heterogeneity. Our model was validated by the experimental finding that the means and
variances of the local cell densities obey a power-law relationship. These results suggest that even when efficient responses
to growth factors are observed at the population level, the growth factors stochastically direct the cell-fate decisions in
different directions at the single-cell level.
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Introduction

Phenotypic heterogeneity, which has been thoroughly discussed

for tumor cells, is not a unique property of cancerous cells but has

also been observed in normal clonal cells in culture [1].

Differences in tumor cells have been attributed to differences in

cell lineages that arise from genetic or epigenetic processes.

However, even clonal cells show phenotypes that are certainly not

identical because they are subject to various sources of stochasticity

other than genetic heterogeneity [2]. Recent insights have

suggested that molecular ‘noise’ caused by fluctuations in gene

expression, signal transduction, and other processes affects

phenotypic heterogeneity in organisms ranging from microbes to

mammals [3]. In the presence of such noise, even cells with the

same overall phenotypic profile fluctuate randomly, causing them

to have subtly different phenotypes at any particular time. This is a

key mechanism that generates the cellular diversity that is

sometimes used as bet-hedging of bacterial persistence in

Escherichia coli or competence in Bacillus subtilis [4,5]. In mammals,

several types of cells use stochastic decision-making to regulate

development [6–10].

Although heterogeneity was observed in several types of cells,

the effects of extracellular stimuli on those heterogeneous

populations have not been fully clarified. Here, we used PC12

cells to attempt to address this issue. The rat pheochromocytoma

clone PC12, which was developed from an adrenal medullary

tumor derived from the adrenergic neural crest [11], has been

used as a model of neural differentiation. Healthy PC12 cells can

be grown under appropriate content percentage of serum in a

medium for culture, and they have several properties that

resemble those of adrenal medullary chromaffin cells [12]. In

the presence of nerve growth factor (NGF), PC12 cells stop

dividing, display electrical excitability, produce neurite-like out-

growths, and differentiate into cells with a sympathetic neuron-like

phenotype. Although the removal of NGF for sympathetic neurons

leads to cell death, the differentiation of PC12 cells appears to be

reversible insofar as removal of NGF causes them to lose the

properties acquired after differentiation. It has been reported that

the effects of NGF on differentiation are efficient under serum-

starved conditions [13]. The epidermal growth factor (EGF)

receptor is also expressed in PC12 cells [12]. As in other cell types

[14], EGF acts as a mitogen in PC12 cells [15]. However, the

effect of EGF can be masked by culture conditions, especially the

content percentage of serum [15].

The response of PC12 cells to growth factors is heterogeneous

on the level of individual cells and is affected by the surrounding

serum concentration, but the relationship between cell heteroge-

neity and cell responsiveness to growth factors has not been
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measured quantitatively. Here, we report the effects of the growth

factors EGF and NGF under three different serum conditions, in

which PC12 cells show different degrees of heterogeneity in their

fate decisions. We measured the time courses of the numbers of

cells in three states (proliferating, differentiated, and dead) and

constructed a mathematical model. By definition, we regard

concentrations of surrounding serum as an environmental

condition, and regard cell responses as meaning changes in cell

fate triggered by stimuli, such as EGF and NGF, at that particular

serum concentration.

In this study, we first used entropy values to define the

heterogeneity of a population of cells containing a large fraction of

proliferative cells, and found that the entropy values increased as a

function of time, suggesting that stochastic cell-fate decisions in

single PC12 cells increased the heterogeneity of the population,

regardless of the surrounding serum. This heterogeneity decreased

as the concentration of the surrounding serum increased. We

made a simple mathematical model assuming that cells determine

their fates with constant probabilities, and estimated the proba-

bilities for which the model can explain the experimental results,

based on Bayes’ theorem. This method enabled us to use

experimental data collected using populations of cells to estimate

the rates with which single cells made cell-fate decisions. Based on

the model and the parameter values, we redefined the effects of the

growth factors: EGF increased the proliferation rate at the single-

cell level, although the effect could be covered and was affected by

the surrounding serum at the population level, as shown in

previous experiments. At some serum concentrations, EGF (NGF)

even directed differentiation (proliferation) at the single-cell level.

Even when efficient responses to the growth factors were observed

at the population level, the growth factors only stochastically

directed single cells to different cell fates. We evaluated the

strength of the responses to the growth factors at the population

level on a phase portrait using the Malthus coefficient and the

fluxes of the three phenotypes, and examined the relationship

between cell heterogeneity and cell responsiveness. The strength of

the responses to EGF and NGF as a function of entropy (cell-fate

heterogeneity) peaked at a moderate entropy value. Finally, we

showed that the relationship between the means and variances of

the local cell densities obeyed a power-law relationship, which

could be explained by a stochastic simulation that supported the

idea that the cells have a single set of transition rates with constant

values under each condition.

Results/Discussion

Cell-fate decisions rate in single PC12 cells
In this section, we first report experimental results that describe

dynamic changes in the number of cells at the population level.

Next, we propose the use of a mathematical model to calculate

transition rates at the single cell level from experimental results.

Heterogeneity of cellular states in cell

populations. Three typical states of PC12 cells are defined by

their morphologies (Figure 1 and Materials and methods); These

are (1) proliferating cells, which have a rounded shape and can

potentially reproduce, differentiate, or die; (2) differentiated cells,

which have neurite-like protrusions and can potentially de-

differentiate or die; and (3) dead cells, which are recognized by

the presence of cellular debris. The proliferating PC12 cells were

passaged into culture dishes at initial densities of

20{50cells=mm2. The cells did not reach confluence (over

500cells=mm2) in the five days of our experimental period. We

measured the mean densities of each of the three phenotypically

distinct populations in culture daily in 30 randomly selected fields

in a single dish (Figure 1).

We compared the cell-fate processes under control conditions,

in which the cells were cultured without additional growth factors

but in the presence of three different concentrations of serum

(Figures 2A, D, and G). In the presence of high serum

concentrations (10% horse serum (HS) and 5% fatal bovine serum

(FBS); which is the normal serum concentration used to culture

PC12 cells) proliferated efficiently (approximately 90% of cells

were proliferating) and grew exponentially. However, even in the

presence of a high serum concentration, the number of cells that

differentiated or died also increased, maintaining constant

fractions (*10%). In the presence of a low serum concentration

(0:1% HS, 0:05% FBS), the number of proliferating cells was

almost constant, and the number and fraction of differentiated or

dead cells increased. Under the serum-free condition (culture

medium containing 1% bovine serum albumin (BSA)), the number

of proliferating cells decreased, whereas the numbers of dead and

differentiated cells increased. Specifically, the fraction of differen-

tiated cells increased 4:9-fold or 7:7-fold following growth under

low-serum conditions or serum-free conditions, respectively,

compared with the fraction under high-serum conditions. There-

fore, even under the control conditions, a population of cells

became heterogeneous with time under low-serum and serum-free

conditions. To explicitly evaluate the extent to which cell fates

within a population become heterogeneous, we introduced

Shannon entropy (S), and calculated the time-dependent entropy

S(t) in Figure 3A.

S~{P(x)ln P(x){P(y)ln P(y){P(z)ln P(z),

where P(x), P(y), and P(z) are the fractions of cells of each cell

fate, and P(x)zP(y)zP(z)~1. The maximum value of entropy

is Smax&1:10 for P(x)~P(y)~P(z)~0:33, the middle value is

Shalf&0:69 for P(x)~P(y)~0:50 and P(z)~0, for example, and

the minimum value is Smin~0 for P(x)~1 and P(y)~P(z)~0,

for example. When the value of entropy is SvShalf , the

heterogeneity of a population is small and the cell population

largely follows a single fate. In contrast, if the fate decision of

Author Summary

Elucidation of the mechanisms that regulate cell fate has
become one of the primary goals of research in cell
biology and regenerative medicine. Growth factors are
often used to regulate cell fate. However, stochastic
cellular responses to growth regulators have prevented
precise control of cell fate. We report our investigation of
the relationship between heterogeneity and responsive-
ness in cell fate decisions by both single cells and
populations of cells. Our study involved PC12, a cultured
cell line for which cell-fates are affected by exposure to
growth factors and culture conditions. Computational
methods using a mathematical model enabled us to
determine the cell-fate decisions rate in single PC12 cells
and analyze the population responses to growth factors
from experimental data. Our findings reveal that growth
factors control cell-fate decisions rate in single PC12 cells,
and suggest distinct differences in the mechanisms of
actions of growth factors under different culture condi-
tions. In addition, we observed maximum effects of growth
factors when a nonextremal, moderate amount of cell-fate
heterogeneity exists. Our results give several insights into
stochastic cell responses, including the effects of antican-
cer agents on cancer cells and the optimization of
methods to induce the differentiation of stem cells.

Optimal Conditions for Growth Factor Effects
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individual cells is random, the cells become heterogeneous and the

value of entropy increases to Smax. In Figure 3A, we show the

entropy values as a function of time for the three control-serum

conditions. At the high serum concentration, entropy was

sustained at a low value of approximately 0:4 because a large

fraction of cells were proliferating. Under serum-free conditions, a

rapid increase in entropy was observed, and the entropy

approached the maximum value (Smax), exceeding its middle

value (Shalf ), indicating the high heterogeneity of the cell

population. In the presence of a low serum concentration, a

moderate increase in entropy was observed, and the value was

close to Shalf . Therefore, cell heterogeneity depended on the

concentration of the surrounding serum and increased as the

serum concentration decreased. Cell-fate decisions displayed the

greatest uncertainty under serum-free conditions, in which cells

not only died but also differentiated to generate a heterogeneous

population. Even at high serum concentrations, a small number of

cells differentiated or died.

The growth factor EGF was added to these control conditions to

evaluate how cell-fate decisions change in response to this stimulus

(Figure 2B, E, and H). A saturated concentration of EGF

(100ng=ml) was used. Although EGF is known to induce cell

proliferation, the number of proliferating cells did not explicitly

increase in the high-serum concentration in the presence of EGF

when compared with the control condition. In the presence of low-

serum concentrations, slight increases in the number of prolifer-

ating cells were detected in the presence of EGF, but differenti-

ation was also clearly accelerated. Under serum-free conditions,

proliferating cells decreased even in the presence of EGF.

Therefore, the responses of cells to the EGF stimulus depended

on the concentration of surrounding serum. This suggests that

EGF not only affects the proliferation of cells, but also affects their

differentiation, although the effects of EGF on cell death were

obscure for all of the serum conditions tested.

When we added the growth factor NGF, differentiation was

accelerated under all of the serum conditions tested (Figure 2C, F,

and I). A saturated concentration of NGF (50ng=ml) was used.

Under high-serum conditions, the number of proliferating cells

was sustained for a week in the presence of NGF, whereas it

increased under control conditions. Thus, both the number and

proportion of differentiated cells increased. NGF did not

completely suppress cell death, as shown by the increased number

of dead cells. However, under the low-serum condition, the

number of proliferating cells decreased as the number of

differentiated cells increased. In contrast, the number of prolifer-

ating cells remained constant with a slight increase of the number

of differentiated cells under control conditions. The sustained

composition of the surviving cells resulted from NGF-mediated

stimulation of the transition of the proliferating cells into

differentiated cells. Under serum-free conditions, changes in the

numbers of proliferating cells over time were similar in the

presence or absence of NGF, but the number of differentiated cells

was larger in the presence of NGF than in its absence. This result

indicates that the number of surviving cells gradually decreases

upon exposure to NGF, which increases the proportion of

differentiated cells.

Therefore, in our experiments, cell death and differentiation

were not completely suppressed under conditions that support

logarithmic growth, and cells differentiate without any growth

factors even under serum-free conditions. Thus, the clonal PC12

cells became a heterogeneous population under each of the serum

conditions tested. In addition, the effects of EGF and NGF

depended on the environmental serum conditions, with both of

these growth factors affecting multiple transition pathways. To

further validate this issue, we generated a mathematical model to

capture these stochastic state transitions of PC12 cells. This model

is discussed in the section that follows.

Single-cell-level state transition rates derived from a

mathematical model. It is difficult to evaluate and compare

the processes that determine the fates of single cells quantitatively

among different conditions directly from monitoring changes in

the number of cells over time. For quantification, we constructed a

mathematical model that uses ordinary differential equations to

capture the state transitions of cells (Figure 1A and Models

Figure 1. Fates of PC12 cells and experimental procedures. (A)
The three typical states of PC12 cells. Whereas proliferating cells are
usually rounded, differentiated cells have extended neurites, and dead
cells are recognized as shrunken or fragmented cell bodies. EGF,
epidermal growth factor; NGF, nerve growth factor. The values of
proliferating (x), differentiated (y), and dead (z) cells denote densities of
each cell. Five parameters describe the transition rates of proliferation
(m), differentiation (k1), de-differentiation (k2), cell death from x (d1), and
cell death from y (d2). We made a mathematical model of differential
equations and estimated those five parameters using Bayesian
inference. Details are shown in the Models section. (B) The experimental
procedures used involved photographing randomly sampled places
(0:14 or 0:57mm2) on a dish, and then counting the numbers of cells
with features of each of the three states defined above. Means

(m~
PM

i~1 ni=M) and variances (s2~
PM

i~1 (ni{m)2=(M{1)) of the
number of cells in each state were calculated by analysis of the entire
surface of each dish.
doi:10.1371/journal.pcbi.1003320.g001

Optimal Conditions for Growth Factor Effects
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section). We assumed that the observed heterogeneity of a

population is caused by the stochastic fate decisions of single cells.

In this model, transition rates describe the probabilities that the

phenotypes of cells may change. We estimated the values of the

transition rates in the experimental data based on Bayes’ theorem

and evaluated the effects of serum and growth factors. Estimated

results based on the experiments in Figure 2 are shown in Table

S1, and time courses of this model using these parameters

successfully fitted most of the experimental results (Figure 2).

Therefore, our state transition model can explain our experimen-

tal results by modifying parameter values of the model, suggesting

that the structure of the model is valid where we did not consider

cell–cell interactions.

We carried out four independent sets of experiments and

predicted parameter values for each experiment. The mean

parameter values enabled us to estimate typical characteristics of

cell-fate decisions in single PC12 cells. State transition rates at the

single-cell level were compared among control conditions (Figure 4

and Figure S1). In the high-serum concentration, we can easily

estimate the doubling time td&40h from the proliferation rate

m&0:4day{1. Even if cells differentiate, they immediately de-

differentiate or die, with slow inductions of differentiation and

death, resulting in a low entropy value (Figure 3). At the low serum

concentration, the proliferation occurs with slow induction of

differentiation and comparatively fast induction of death, which

results in an intermediate entropy level (Figure 3). Under serum-

free conditions, cells slowly proliferate with inducing differentia-

tion and death, which results in a high entropy value (Figure 3).

Each parameter had a nonzero value, regardless of the environ-

mental serum conditions, and the values for entropy gradually

increased under low-serum and serum-free conditions.

In Figure 4A–E, we show the parameter values for three

environmental serum conditions in the presence or absence of

either EGF or NGF. Both growth factors affected several transition

pathways. For example, they drove both proliferation and

differentiation, whereas for other transitions their effects depended

on the environmental serum conditions. Whereas EGF increased

the proliferation rate m for all serum conditions, NGF increased

the differentiation rate k1 for all serum conditions. However, we

found that NGF increased the proliferation rate m in the presence

of serum, and the differentiation rate k1 was increased affected by

EGF for all serum conditions at the single-cell level. It has been

suggested that although EGF is a mitogen for PC12 cells, and is

capable of moderate stimulation of the proliferation of PC12 cells,

these effects might be masked by serum conditions used for cell

culture [15]. At the population level (Figure 2), it was unclear

whether EGF affected cellular proliferation of cells. However, a

mathematical model enabled us to derive transition rates at the

single-cell level and to show that EGF stimulated the proliferation

rate for all serum conditions, with the magnitude of the increase in

Figure 2. Time courses showing changes in the numbers of cells in the presence or absence of epidermal growth factor (EGF) or
nerve growth factor (NGF). Time courses of three cell states were observed in experiments (circular dots), and fitted simulation results (lines) for
the high serum (A–C), low serum (D–F), and serum free (G–I) conditions in the presence or absence of EGF or NGF. For each experiment, we counted
100{1000cells to calculate the average number of cells for each day. Typical results of four independent experiments in each condition are shown.
The parameters in Table S1 were applied to simulate a mathematical model. For each figure, lines denote the average number of proliferating (red),
differentiated (blue), and dead (green) cells. Error bars denote 99% confidential region fitted by exponential distribution. HS, horse serum; FBS, fetal
bovine serum.
doi:10.1371/journal.pcbi.1003320.g002

Optimal Conditions for Growth Factor Effects
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proliferation with respect to the rates of proliferation under control

conditions increasing as the concentration of serum decreased, as

reported previously [15].

It has usually been suggested that NGF has an antimitogenic

effect on PC12 cells [15,16], although NGF has a mitogenic effect

on cells purified from late-passage cultures of lines derived from

PC12 cells [16]. Analysis of cell numbers failed to reveal any

mitogenic activity of NGF (Figure 2), although the proliferation

rate m was higher in the presence of NGF compared with control

conditions in high and low serum levels. A model enabled us to

calculate the proliferation rate in order to distinguish proliferating

cells from differentiated cells that cannot proliferate. This indicates

efficient proliferation of PC12 cells in certain conditions with

NGF, compared with control conditions, although large rates of

differentiation mask the stimulation of proliferation in cell

populations.

We also found that EGF stimulated the differentiation rate k1 in

addition to its mitogenic activity. Previous work [17] revealed that

EGF triggered neuronal differentiation of PC12 cells when EGF

receptors were overexpressed. In our work, we did not perform

genetic manipulations. It seems that stimulation of differentiation

is an intrinsic property of PC12 in response to EGF, and that its

strength depends on the level of expression of the EGF receptor.

The responses of the de-differentiation rate k2 to growth factors

are not yet well established. In our research, k2 increased in the

presence of EGF at the high serum concentration tested. This

suggests that the number of proliferating cells increased efficiently

even when differentiation occurs. In the presence of NGF, k2

decreased compared to the control condition, and the differenti-

ated cells efficiently increased. At the low serum concentration

tested, both EGF and NGF decreased the de-differentiation rate

k2, but the k2 values for both EGF and NGF (including the control

condition) were very small and had minimal effect on decisions

related to cell fate. For the serum free condition, the de-

differentiation rate k2 increased in a presence of NGF, suggesting

inefficient differentiation. These results indicate that the effects of

EGF and NGF on rates of de-differentiation depend on the serum

concentration.

Suppression of cell death by NGF in serum-free medium at the

cell-population level was reported previously [18]. Our approach

enabled us to estimate single-cell-level responses, and we could

calculate the two distinct cell death rates of proliferating and

differentiated cells which could not be separated without using a

mathematical model. Under high-serum and serum-free condi-

Figure 3. Changes in entropy with time. (A) Serum conditions used
were 10% horse serum (HS) and 5% fetal bovine serum (FBS) (black),
0:1% HS and 0:05% FBS (red), and 1% BSA (blue). The definition of
entropy is S~{P(x)ln P(x){P(y)ln P(y){P(z)ln P(z). The dots show
the experimental results and the lines are the results of simulation. The
maximum entropy value (Smax&1:10) was determined for when
P(x)~P(y)~P(z)~0:33, and the middle entropy value (Shalf&0:69)
was determined for when P(x)~P(y)~0:50 and P(z)~0. The
parameter values in Table S1 were used for the simulations. (B) Under
serum-free conditions, the entropy was high, and the numbers of the
three cell types on the dish were similar. Under low-serum conditions,
levels of entropy were intermediate, and most of the cells were either
proliferating or dead. Under high-serum conditions, most of the cells
were proliferating.
doi:10.1371/journal.pcbi.1003320.g003

Figure 4. Mean estimated parameters for several serum or
growth factor conditions. (A–E) Individual experiments were
repeated four times (means and standard errors are shown). We
applied a simple one-sided t–test with reference to a serum condition
of 10% HS and 5% FBS, and calculated p–values. Asterisks denote
pv0:05. In addition, we marked ‘zz’ or ‘{{’ on the bars for the
effect size dw0:8, and ‘z’ or ‘{’ for dw0:5 (the definition of d is
shown in the Materials and Methods section). The plus (zz, z) or
minus ({{, {) marks denote increase or decrease of mean parameter
values compared with the control conditions, respectively. Details are
shown in the Materials and methods section. (F) Diagrams of the
responses to epidermal growth factor (EGF) and nerve growth factor
(NGF) for each parameter are shown. The three sequential marks
(zzz, and so on) are for the high serum (10% horse serum (HS) and
5% fetal bovine serum (FBS)) the low serum (0:1% HS and 0:05% FBS),
and the serum free (1% bovine serum albumin) conditions, respectively.
The mark ‘z’ (‘{’) indicates increase (decrease) compared with the
control conditions, and ‘.’ denotes the absence of statistically
significant differences between the parameter values.
doi:10.1371/journal.pcbi.1003320.g004

Optimal Conditions for Growth Factor Effects
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tions, the death rate of proliferating cells d1 from the proliferating

cells decreased when EGF or NGF were added. Nonetheless, in

general, the reagents had minimal effects on the death rate of

differentiated cells d2. In contrast, when the serum concentration

was high, NGF increased the death rate d1, and both NGF and (to

a lesser extent) EGF decreased the death rate d2. Therefore, we

found that the suppression of cell death depended on serum

conditions. Under serum-starved conditions, the growth factors

EGF and NGF suppressed the death of proliferating cells, and

under high-serum conditions, they suppressed the death of

differentiated cells. The suppression of cell death was the

combined effect of these two pathways, and these findings could

not be achieved in the previous population level experiments that

did not use mathematical models [18].

Furthermore, using a mathematical model of differential

equations, _uu~Au in equation (4), we can intuitively capture the

time courses of the numbers of cells u(t)~(x(t),y(t))tr in a phase

portrait (Figure S2). The number of dead cells z(t) does not

explicitly affect the number of cells u(t), but it is implicitly included

in the rate constants d1 and d2. According to the simple

assumptions of our model, cells under any initial set of conditions

(x0,y0) converge to the origin or diverge to infinity along one of

the eigenvectors. We calculated phase portraits from individual

parameter sets to understand the global features of the population

dynamics. To validate the characteristics of the model, we

performed an experiment to confirm that the cell-fate dynamics

depend on the initial conditions (Figure S3). As predicted by the

model, a number of cells moved along the vector fields in the

phase plane, and finally converged to one of the eigenvectors. This

result supports our assumptions that cell–cell interactions do not

dramatically influence the cell-fate dynamics.

Relationships between heterogeneity and responses to
growth factors at the population level

The parameter values estimated in the previous section denote

single-cell-level transition rates. However, at the population level,

the effects of these parameters are very complex (see Models

section), and it is difficult to evaluate the effects of the growth

factors on the population dynamics from the estimated parameter

values. In this section, we introduce a method to use a phase

portrait to capture dynamic changes in the number of cells at the

population level, and to compare the responses to growth factors

under three serum conditions. We use this portrait to quantita-

tively characterize the responses to growth factors. Finally, we

evaluate the relationships between the heterogeneity of a

population and the response indexes.

Population-level validity of a state-transition model. We

now introduce some indexes to quantify the direction of cell fate

decision processes derived from a mathematical model. In the

following section, we evaluate the extent of responses to growth

factors compared with the control conditions that use these

indexes. We propose three indices. The first is the Malthusian

coefficient l, which denotes an asymptotic convergence (lv0) or

divergence (lw0) speed of change in the number of cells (details

are shown in Models section). In Figure 5A, we show the

calculated values of the Malthus coefficients. As indicated by the

result of the previous section, a positive effect of a growth factor

EGF was evident in the low serum condition. In the presence of

NGF, the Malthus coefficients l decreased compared with the

control conditions for all serum concentrations. Only when the

differentiation rate k1 and the proliferation rate m are balanced in

addition to lNGF
v0 will efficient differentiation occur (Figure

S2C, F, and I). Thus, consideration of the asymptotic growth rates

and the results in the previous section suggests that the growth

factors EGF and NGF efficiently affect decision processes that

affect cell fate at a low serum concentration.

As the second and the third indices, we used the initial flux Jn(0)
(n~x,y,z) (see equation (9) in the Models section) and the mean

flux Jn~
Ð T

0
Jn(t)dt (where T denotes an upper limit of calculating

the mean flux) of cell fate processes (Figures 5B–G). The unit of

those fluxes is cells/mm2/day. These two indices expressed similar

results in response to growth factors. For the proliferating cells,

EGF had a positive effect on both fluxes of cell fate decision

processes Jx(0) and Jx compared with the control condition only

at the low serum concentration. In the high serum and the serum-

free conditions, the apparent effects of EGF were not detected. In

contrast, NGF had a negative effect on both fluxes for all serum

concentrations. Whereas the effect of EGF depended on the

environmental conditions, that of NGF was independent of the

Figure 5. Malthusian coefficient (l) and fluxes (Jn(0) and Jn(0))
calculated from phase portraits. Malthusian coefficient (A) and
fluxes (B–G) were calculated using estimated parameters in Table S1.
Calculations were made in the presence or absence of growth factors
for three environmental serum conditions (10% horse serum (HS) and
5% fetal bovine serum (FBS), 0:1% HS and 0:05% FBS, and 1% BSA).
Fluxes were expressed as cells=mm2=day. The symbols ‘?’, ‘z’, ‘{’,
‘zz’, and ‘{{’ denote the same meanings as those defined in
Figure 4. (H) Diagrams of the responses to epidermal growth factor
(EGF) and nerve growth factor (NGF) for Malthusian coefficient and
fluxes are shown. Three sequential marks (zzz, and so on) denote
the same meanings of Figure 4F. The means of four independent
experiments are shown with their standard errors.
doi:10.1371/journal.pcbi.1003320.g005
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environmental conditions. For the differentiated cells, the fluxes

Jy(0) and Jy increased in the presence of both growth factors

compared with control conditions. Therefore, EGF can become a

differentiation factor at a population level, which is consistent with

the increase in the parameter k1 in the presence of EGF, although

the positive effects of NGF on the fluxes Jy(0) and Jy were larger

than those of EGF for all serum conditions (Figure 4B). For the

dead cells, the flux Jz(0) decreased under the serum-free and the

low-serum conditions in the presence of EGF or NGF, and the

mean flux Jz decreased in the presence of NGF.

The effects of growth factors are summarized in Figure 5H.

Whereas NGF reduced the flux of proliferating cells, it increased

the flux of differentiated cells and suppressed cell death relative to

that under control conditions especially under the serum-free and

low-serum conditions. Not only did EGF increase the flux of

proliferating cells when the serum concentration was low, but it

also increased the flux of differentiated cells for all serum

conditions. EGF suppressed the initial flux of cell death (Jz(0))
compared with control conditions as it is also suggested in the

presence of NGF, but EGF did not affect the mean flux of cell

death (Jz). We compare the results between single and a

population of PC12 cells (Figure 4F and Figure 5H). As has been

suggested in ref [15], the mitogenic activity in response to EGF for

a population of cells depended on concentrations of surrounding

serum, and it was masked in the high-serum condition. We showed

the mitogenic effects of EGF for all the serum concentrations only

after we estimated parameter values of proliferating cells in single

PC12 cells. In addition, we could reveal antimitogenic effects of

NGF in the fluxes of a population of cells, which is consistent with

the results in refs [15,19]. We found mitogenic effects of NGF in

single PC12 cells, which means that NGF promotes both

proliferation and differentiation compared with the control

conditions.

Efficient growth factor responses in a moderately

heterogeneous cell population. We next compare the

strength of responses to growth factors among three serum

conditions (Figure 6). In order to characterize the cell fate decision

processes in the environmental serum conditions, we used the

entropy of cells under control conditions. We also used indices

introduced in the previous section to calculate the extent of

responses lEGF=CTL, lNGF=CTL, JEGF=CTL
n , JNGF=CTL

n , Jn
EGF=CTL

,

and Jn
NGF=CTL

as shown in Eqs. (8), (10), and (12) in the Models

section. These indices measure the extent of responses of the

Malthus coefficient and fluxes to the growth factors EGF and NGF

compared with the control conditions. The strength of responses to

growth factors depended on the concentration of surrounding

serum that affect the heterogeneity of a population. The value of

the entropy with the highest response strength was approximately

0:7 for the low serum concentration (Figure 6A–G). An

explanation for this observation is that when the entropy is low,

most cell fates are controlled by contained materials in serum, and

additional growth factors have only limited effects. When the

entropy is high, most cell fates are not controlled by serum.

Instead, they are spontaneously determined, and the high level of

spontaneity prevents the cells from effectively responding to

external stimuli. For example, in the presence of EGF, the strength

of responses indicated the maximal (Figure 6A–D, and G) or

minimal (Figure 6E and F) peaks in a non-extremal, moderate

entropy value for all the indices. Thus, especially for a moderate

entropy value, EGF efficiently induces the proliferation of

surviving cells, and not only promotes the proliferation of

proliferating cells, but also induces cellular differentiation.

However, cell death are most suppressed in this entropy value.

In the presence of NGF, the strength of responses was maximal

(Figure 6C and D) or minimal (Figure 6A, B, and E–G) for all

indices; i.e., especially for a moderate entropy value, NGF

efficiently induces the differentiation of cells that suppress the

proliferation and death.

As shown here, we found the optimal condition for the maximal

responses to the growth factors to be a nonextremal, moderate

amount of cell-fate heterogeneity. An explanation of this

observation is that when entropy is low, most cell fates are

controlled by the materials contained in the serum, and additional

growth factors have only limited effects. When entropy is high,

most cell fates are not controlled by the serum. Instead, they are

determined spontaneously, and the high level of spontaneity

prevents the cells from effectively responding to external stimuli.

The flux responses (Jn(0), Jn) depend on the initial conditions

(x0,y0). However, peaks at moderate entropy values were

expected for a wide range of initial conditions (Figure S4). These

types of efficient responses in the low serum concentration were

also observed previously [19], with the authors of that study

Figure 6. Responses to epidermal growth factor (EGF) and
nerve growth factor (NGF) as functions of entropy. (A–G)
Responses of the Malthusian coefficient (lEGF=CTL and lNGF=CTL), initial

fluxes (Jn(0)EGF=CTL and Jn(0)NGF=CTL), and mean fluxes (Jn
EGF=CTL

and

Jn
NGF=CTL

) as functions of entropy. For all indexes, responses are the
highest or lowest for the middle value of entropy, with many of these
differences being statistically significant (asterisks denote pv0:05,
double daggers denote g2

w0:14, and single daggers denote g2
w0:059

in the analysis of variances. Details are provided in the Materials and
methods section. Red and blue lines denote responses to EGF and NGF,
respectively.
doi:10.1371/journal.pcbi.1003320.g006
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suggesting that PC12 cells benefited by maintaining a balance

between proliferation and differentiation because the continued

proliferation generated a large number of differentiated cells. The

same study also showed that many genes control the balance

between proliferation and differentiation. Our results indicate that

the concentration of surrounding serum is also important in

maintaining a balance between these two processes. Other

published experimental results suggest that the concentration of

serum affects control of cultured cells by the cell cycle [20]. The

same study suggested that fibroblast cells grown in medium

containing little serum move out of the cycle and into G0 within a

few hours. The G0 phase includes several check points when cells

need some growth factors. Specifically, EGF acts during the G0

phase and supports re-entry into the G1 phase. Another study

suggested that NGF also acts during the G0 or G1 phase and

induces the differentiation of PC12 cells [13]. Consideration of

these results in the context of the cell cycle suggests that at a high

serum concentration, many cells do not enter into G0 phase and

proliferate efficiently, although extracellular factors have limited

effects on these cells. Under serum-free conditions, many cells

enter into G0 phase and extracellular factors might be anticipated

to affect these cells. Nonetheless, instead the cells spontaneously

differentiate, proliferate, or die without the addition of these

factors. The absence of certain growth factors in serum that are

needed to maintain cell cycle may diminish the effects of EGF and

NGF. When the concentration of surrounding serum is low, many

cells enter the G0 phase. This suppresses accidental cell death and

spontaneous differentiation, and enables the cells to respond to

extracellular factors, such as EGF and NGF. Therefore, these

differences related to the cell cycle differences that depend on

environmental serum conditions affect responsiveness to EGF and

NGF. Responses to these growth factors are maximal when their

levels are subject to moderate cell-cycle control.

Power-law relation and validity of our model
Here, we focused on the variances of the cell densities in a

culture dish. First, we show the relationships between means and

variances in the experimental results, which exhibits power-law

relation. Second, we extend our model in order to characterize the

stochastic properties of the number of cells, and validate the

assumption made in the previous sections that parameter values

are constant. We also exclude the possibility that a variety of cells

with distinct rate constants explain the observed variances in cell

densities.

Experimental results exhibit power-law relation. To

determine the distribution of cell densities, we calculated the

means and the variances at time t; m̂mn(t)~
PM

i~1 ni(t)=M,

ŝs2
n(t)~

PM
i~1 (ni(t){m̂mn(t))2=(M{1), where ni denotes the

number of cells for n~fx,y,zg, and M denotes the number of

data at time t (M~30 for our experiments). We found a power-

law relation ŝs2~am̂mb where a and b are constants (Figure 7A).

Here, the experimental data shown in Figure 2 were used. We can

estimate the probability distribution that n(t) obeys by calculating

the slope b for log10 (ŝs2)~b log10 (m̂m)z log10 (a). For example,

when the distribution of n(t) has a Poisson distribution, we have

the slope b~1, and when the distribution of n(t) has an

exponential distribution, we have the slope b~2. For our

experiments, the slope b&1:50 and n(t) obeyed neither Poisson

nor exponential distributions. This kind of simple power-law

relation with several slopes 0:70vbv3:08 is usually observed

from microorganisms to animals [21,22], and it is suggested that b
is an ‘index of aggregation’ describing an intrinsic property of the

organisms from near-regular (b?0), through random (b~1) to

highly aggregated (b??). Also, the slope b usually converges

within the range 1 to 2, reflecting the balance between birth,

death, immigration, and emigration rates [23]. In PC12 cells,

immigration and emigration are small on culture dishes because of

the slow migration speed compared with the observation time.

Thus the slope b&1:50 can reflect the balance between birth,

death, and differentiation in our experiment.

Although these results were deduced simply from sample means

and unbiased variances, our data include many zero values,

ni~0, especially at time t~0 because the density of the cells was

very small. We omitted zeros from our data, and we

hypothesized that the data obeys a lognormal distribution (the

validity of this assumption is assessed in the next section). Then

the logarithm of the number of cells obey the normal

distribution N ( ~mmn(t),~ss2
n(t)), where ~mmn(t)~

PM
i~1 ln(ni(t))

� �
=M,

~ss2
n(t)~

PM
i~1fln(ni(t)){~mmn(t)g2

� �
=(M{1). The variable M

(ƒ30) denotes the number of data with non-zero values.

Therefore the means and variances of the original data (ni(t))
are

Figure 7. Power-law relationships between means and vari-
ances of cell density. Experimentally observed relationships between
the means and variances had a slope of b&1:50 (A). When the means
and variances were calculated on the basis of lognormal distribution,
the slope was b&2:34 (B). Simulation results of the relationships
between the means and variances with several assumptions of models
were compared with experimentally determined results (C–F). (C) Model
parameters were constant, and initial conditions had a lognormal
distribution (model-1, b&2:34). (D) Model parameters obey truncated
normal distribution, and initial conditions were constant (model-2,
b&2:80). (E) Model parameters displayed truncated normal distribu-
tions, and the initial conditions displayed lognormal distributions
(model-3, b&2:82). (F) Both model parameters and the initial conditions
were constant (model-4, b&1:37). The time courses of changes in the
densities of cells (cells=mm2) are used for experimental data. Details are
shown in the main text.
doi:10.1371/journal.pcbi.1003320.g007
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mn(t)~exp ~mmnz~ss2
n=2

� �
,

s2
n(t)~exp 2 ~mmnz~ss2

n

� �
e~ss2

n{1
� �

:
ð1Þ

The plot of log10 mn(t) vs log10s2
n(t) (Figure 7B) indicates a

power-law relation with a slope of b&2:31 for an equation

log10 s2
n(t)

� �
~b log10 mn(t)ð Þz log10 a. In equation (1), we can

predict that the slope b converges to 2 for a constant variance of

~ss2
n ( ~mmn??). Thus the variance is not constant, but follows an

equation ~ssn~ ~mmnð Þc where c&1=3, which means that the

variance of the number of cells increases as the mean number

of cells increases.

A stochastic model with constant parameters exhibits the

observed power-law relation. Here, we predict the origins of

the relationships between means and variances for our experi-

ments by constructing a stochastic version of a model for the

equation (3) (Models section). Even when the parameters

h~fm,k1,k2,d1,d2g are constant, the cell-fate decision of each

cell is stochastic. When we calculate the state transition process for

each cell, the number of cells shows a stochastically changing

trajectory. We evaluated whether constant parameters are

sufficient to explain the observed variances after repeated

calculation of these trajectories.

We assumed that the parameters (i-1) were constant, as defined

in Table S1, or that (i-2) obeyed a truncated normal distribution,

as defined in the Models section. We also assumed that the initial

conditions (ii-1) were constant, as defined in Table S1, or (ii-2)

obeyed a lognormal distribution. Using these simple assumptions,

we made four models: model-1 with assumptions (i-1) and (ii-2),

model-2 with assumptions (i-2) and (ii-1), model-3 with assump-

tions (i-2) and (ii-2), and model-4 with assumptions (i-1) and (ii-1).

Using model-1, we could successfully achieve a power-law

relationship between means mn(t) and variances s2
n(t) with a

slope of b&2:34, which was approximately the same as our

experimental result (Figure 7C). Other models did not fit our

experimental results (Figure 7D–F). Furthermore, although the

power-law relation with a slope of bw2 could not be explained

with a simple birth–death process model with a slope b&2
(Models section), it could be explained by our birth–death–

differentiation model could, and these results did not depend on

the environmental serum conditions. Thus, a stochastic model-1

corresponds to the experimental results, and the transition rates of

it are constant, with the low level of noise that was assumed in the

previous sections. We calculated the distribution of the number of

cells using model-1 (details are shown in the Models section), and

showed that the number of cells in the results of simulations usually

followed a lognormal distribution (Figure S5), which supports the

assumption that the distribution is lognormal under the initial

conditions. The power-law relationship with b&2:31 and log

normal distribution were reproduced robustly in simulations using

various parameter values and initial distributions (Fig. S6).

As shown here, a stochastic model with constant parameter

values is sufficient to explain the observed power-law relation.

Therefore, it is highly probable that a cell fate is decided by

stochastic fluctuations in intracellular reactions. However, what

decides the rates of fate transitions is still unknown. Interpretations

of power-law relations using mathematical models have been

performed in several contexts [23,24]. Earlier work [23] suggested

that a power-law relation was caused by fluctuating environmental

conditions, and that population rate parameters became random

variables. They focused on the density effects of populations and

assumed that only a parameter of density-dependent coefficient

was random. However, in the present work, our model did not

include density effects or other cell–cell interactions, and it was

sufficient to consider constant parameter values. Analytical

predictions of the power-law relation using some birth–death

processes were also suggested previously [24]. The same studies

also proposed multi-species models, but did not consider complex

state transition model as our model did. Our model suggests that

the balance between birth, death, and differentiation affects slopes

of power-law relations.

Concluding remarks
We analyzed the time courses of the cell fate decision processes

of PC12 cells after the addition of either of the growth factors EGF

or NGF under three different environmental serum conditions.

The results are summarized in Figure 8A–C. The population of

cells became heterogeneous under all of the conditions tested, and

high concentrations of serum suppressed the level of heterogeneity.

The effects of growth factors depended on the environmental

serum conditions, with each of the two growth factors affecting

several transition pathways. Using a mathematical model, we

could derive the effects of growth factors at the single-cell level.

Stochastic single-cell responses to growth factors induced differ-

entiation following exposure to EGF and proliferation following

exposure to NGF. The use of phase portraits to capture dynamic

changes in cell-fate decisions at the population level enabled us to

evaluate the effects of serum concentrations and growth factors,

and to discover conditions that promote efficient responses to

growth factors. Moreover, we found that responses to growth

factors were efficient when an appropriate concentration of serum

induced a population with a moderate degree of heterogeneity.

Finally, we have demonstrated a power-law relation between the

means and variances of the local cell density. Stochastic simulation

of our model could explain these results and support the validity of

our model.

Materials and Methods

Cell culture
Rat PC12 pheochromocytoma cells from the Riken Cell Bank

(Tsukuba, Japan) were cultured and maintained at 370C, 5% CO2

in Dulbecco’s Modified Eagle Medium (DMEM, containing

4:5g=L glucose) supplemented with 10% horse serum (HS) and

5% fetal bovine serum (FBS). Cells were transferred to a 60-mm

culture dish with a density of 50{100cells=mm2. One day after

the transfer, the medium was exchanged for DMEM without

phenol red and supplemented with three different concentrations

of serum: (i) 10% HS and 5% FBS (high-serum condition), (ii) 0:1%
HS and 0:05% FBS (low-serum condition), and (iii) no serum but

supplemented with 1% bovine serum albumin (BSA) (serum-free

condition). Two days after subculture, cells were treated with 8ml
of 2:5mg=ml mouse 2.5S nerve growth factor (NGF) (50ng=ml
final concentration; Alomone Labs., Jerusalem, Israel), 1:5ml of

100mg=ml recombinant murine epidermal growth factor (EGF)

(100ng=ml final concentration; Peprotech, London, UK), or 10ml
of Hank’s balanced salt solution for controls. The medium and the

reagents were exchanged every second day.

Cell count
To count the densities of proliferating, differentiated, and dead

cells, thirty images of living PC12 cells within thirty areas of 0:14

or 0:57mm2 in size were taken for each dish every day after

subculture using a phase-contrast microscope. The states of cells

were determined from the morphologies in the captured images,

with proliferating cells identified by their rounded shapes and their
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failure to extend neurites. The differentiated cells were defined by

extension of at least one neurite with a fiber length longer than the

diameter of the cell body. Dead cells were identified as shrunken

or fragmented cell bodies. Examples of the micrograph of the

three states of cells are shown in Figure 1A. Four independent

experiments were done and the results of a typical experiment

from the four are shown in Figures 2 and 7. We used the

parameter set estimated from the typical experiment (Table S1) to

prepare the data shown in Figure 3, and Figure S5. The average

values of estimated parameters or fluxes calculated from the four

independent experiments were used to prepare Figures 4, and 5.

Statistical verification methods
In addition to using the p-values determined using a t-test, we

used effect size d to compare two groups of data:

d~
mt{mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(st
2zsc

2)=2
p , ð2Þ

where mt denotes a mean for treatment group and mc denotes a

mean for control group, and st and sc denote standard deviations

for them. This value compares distance of mean values of two

groups with mean values of standard deviations of them. When the

value of d is large, the difference between two groups is large

compared with the standard deviations. Significant values of effect

size d are arbitrarily defined depending on research fields,

although the values of d~0:8 for the large effect size, d~0:5
for the middle effect size, and d~0:2 for small effect size are

usually used [25].

Analysis of variance was used when more than three population

averages were available for comparison. We assumed that there

were a levels or conditions of experiments Ai (i~1,2, � � � ,a) and

that experiments were repeated ri times in each level Ai. We

defined the value xij as jth data in a level Ai. For example, a level

Ai denoted each serum condition, and we repeated ri~4 times in

each level. The effect size g2 was defined as follows

g2~
SBG

Stot
,

where SBG denoted the between-groups sum of squares, and Stot

denoted the total sum of squares:

SBG~
Xa

i~1

ri

P
j xij

ri

{

P
i

P
j xij

n

� �2

,

Stot~
Xa

i~1

Xri

j~1

xij{

P
i

P
j xij

n

� �2

,

where n denoted the total number of experiments. The significant

effect size g2 was also arbitrarily defined, but the values of

g2~0:14 for the large effect size, g2~0:059 for the middle effect

size, and g2~0:01 for small effect size were the typically used

criteria, as in the effect size d [25].

Models
State transition model. To estimate the mean transition

rates between the cell states, we generated a mathematical model

that describes processes that decide cell fates. In this model, we

assumed that (i) each cell independently determines cell fates with

no cell–cell interaction, (ii) cells do not proliferate when they are

differentiated, and (iii) de-differentiation occurs. The second

assumption is based on reports indicating that upon treatment

with NGF, cells appeared to stop dividing and the number of

surviving cells was saturated [11–13,15,18].

dx
dt

~ (m{k1{d1)xzk2y,

dy
dt

~ k1x{(k2zd2)y,

dz
dt

~ d1xzd2y,

8><
>: ð3Þ

where x, y, and z denote the mean densities (cells/mm2) of

proliferating, differentiated, and dead cells, respectively. The

parameters m§0, k1§0 and k2§0 denote the proliferation,

differentiation, and de-differentiation rates (1=day), respectively.

The parameters d1§0 and d2§0 denote the death rates of the

proliferating and differentiated cells (1=day), respectively. Using

the limited number of experimental data D~fXt,Yt,Ztg where t
denotes the days after stimulation (t~0,1, � � � ,N), we estimated

the parameter values in equation (3) applying Bayesian inference

to our model (Materials and methods). A typical example of the

parameter values from the four independent experimental datasets

are shown in Table S1. Time courses of experimental and

simulation results are shown in Figure 2. The model successfully

estimated the parameters that describe the experimental results.

Figure 8. Responses to growth factors. Responses to growth
factors depended on the use of no (A), low (B), and high (C) serum
conditions. Under control conditions, the black thick lines denote the
increase of parameter values affected by serum-containing conditions
compared with the serum-free condition, and the black dotted lines
denote the decrease of the same parameter values. Under each serum
condition, the red thick lines denote the increase of parameter values
affected by growth factors, and the blue dotted lines denote the
decrease of the same parameter values. Arrows and hammer-head
arrows of epidermal growth factor (EGF) and nerve growth factor (NGF)
denote increase or decrease of parameter values compared with the
control conditions, respectively. Gray circles and arrows indicate the
population-level cell fate in each conditions.
doi:10.1371/journal.pcbi.1003320.g008
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Analytical solution of a state transition model in a phase

space. The velocities _xx and _yy do not depend on z, and we can

simplify equations (3) to linear differential equations:

_xx

_yy

� �
~

m{k1{d1 k2

k1 {k2{d2

� �
x

y

� �
u _uu~Au: ð4Þ

The eigenvalues l1 and l2, and corresponding eigenvectors u1 and

u2 of a vector A provide an analytical solution of equation (4):

u(t)~c1u1 exp(l1t)zc2u2 exp(l2t), ð5Þ

where c1 and c2 are constants depending on initial conditions x(0)
and y(0). A solution z(t) can be calculated using the equations (3)

and (5). In particular, we can write down the solutions as follows:

x(t)~
1

2k1
c1(c3{c4)exp

c3{c4

2
t

� �
zc2(c3zc4)exp

c3zc4

2
t

� �n o
,

y(t)~c1 exp
c3{c4

2
t

� �
zc2 exp

c3zc4

2
t

� �
,

z(t)~

c1
d1

k1

z
2d2

c3{c4

� �
exp

c3{c4

2
t

� �
zc2

d1

k1

z
2d2

c3zc4

� �
exp

c3zc4

2
t

� �
zc5,

ð6Þ

where c1, c2, c3, c4, and c5 denote

c1~{k1c4
{1x(0)z

c3c4
{1z1

2
y(0),

c2~k1c4
{1x(0){

c3c4
{1{1

2
y(0),

c3~m{k1zk2{d1zd2,

c4~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{k1{k2{d1{d2)2{4(d1(d2zk2)zd2(k1{m){k2m)

q
,

c5~z(0){c1
d1

k1
z

2d2

c3{c4

� �
{c2

d1

k1
z

2d2

c3zc4

� �
:

The solutions of equation (5) are categorized into several

types depending on the geometrical features of trajectories

around the critical point (x,y)~(0,0) [26]. The dynamics of

the number of cells are plotted on a phase space. For linear

differential equations, we can simply classify the patterns of

solutions depending on the parameter values of equations.

When all parameters m, k1, k2, d1, and d2 are constrained to

be positive, as in the case of our model, the types of

solutions are limited. In our model parameters, the solutions

of the characteristic equations have two eigenvalues, and the

property of the critical point is a stable node or an unstable

saddle. Whereas the former means that a population of cells

extincts asymptotically, the latter means that it increases

infinitely. Here we define the parameters p~l1zl2,

q~l1l2, and D, with D denoting a discriminant of a

characteristic equation of A. Our observation that D was

always §0 suggests that the critical point is not a center or

spiral. We found that the critical point was either (i) an

asymptotically stable node (pv0 and qw0), or (ii) a saddle

point (qv0). Then the vector u is constrained to have

limited trajectories.

In our model, the parameter values are always nonnegative.

Therefore, the number of cells converges asymptotically to the

following equation, with a long time limit [27],

x(t)

y(t)

� �
~n0

vx

vy

� �
exp(lt), ð7Þ

where n0 denotes an arbitrary initial condition, the Malthus

coefficient l is calculated from the equation l~max(l1,l2), and

l1 and l2 are eigenvalues of A in equation (4). The

corresponding eigenvector is (vx,vy)tr. When lw0, the number

of total surviving cells increases, but when lv0, it decreases to

the origin.

Normalized response rates in the phase space. The rates

of responses to external signals compared with a control condition

were defined in one of three ways: (i) the Malthusian parameter, (ii)

the initial response speeds, or (iii) the time average of response

speeds. The Malthusian parameter l~max(l1,l2), where l1 and

l2 are two eigenvalues for our linear model, and the asymptotic

response rates lR which are normalized for a control condition are

defined as

lEGF=CTL~
lEGF {lCTL

DlCTLD
,

lNGF=CTL~
lNGF {lCTL

DlCTLD

ð8Þ

where lEGF (lNGF ) denotes the eigenvalues in the presence of

growth factors EGF (NGF), and lCTL denotes those in the absence

of growth factors. The initial response speeds are

Jx(0)

Jy(0)

Jz(0)

0
B@

1
CA~

dx(t)=dt

dy(t)=dt

dz(t)=dt

0
B@

1
CA
							
t~0

: ð9Þ

Then, the normalized response speeds are

JEGF=CTL
n ~

JEGF
n (0){JCTL

n (0)

DJCTL
n (0)D

,

JNGF=CTL
n ~

JNGF
n (0){JCTL

n (0)

DJCTL
n (0)D

,

ð10Þ

where n is a variable x, y, or z, and JCTL
n (0), JEGF

n (0), and JNGF
n (0)

denote the net fluxes of the number of cells at time t~0 in the

presence or absence of either EGF or NGF. The time averages of

response speeds are

Jx

Jy

Jz

0
B@

1
CA~

1
T

Ð T

0
Jx(t)dt

1
T

Ð T

0
Jy(t)dt

1
T

Ð T

0
Jz(t)dt

0
BB@

1
CCA, ð11Þ

where T is a range of averages; here we defined T as the day at

which the experiments were ended. Then, the normalized time

averages of the response speeds are
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Jn
EGF=CTL

~
Jn

EGF
{Jn

CTL

Jn
CTL

			 			 ,

Jn
NGF=CTL

~
Jn

NGF
{Jn

CTL

Jn
CTL

			 			 ,

ð12Þ

where n is a variable x, y, or z. Also, Jn
CTL

, Jn
EGF

, and Jn
NGF

denote the time averages of the net fluxes of the number of cells at

a range of time 0vtvT in the presence or absence of EGF or

NGF.

Parameter estimation for a deterministic model. To

estimate parameter values for our three-state model, we applied

Bayesian inference to our experimental data. In addition to the

differential equations (3), we assumed that the experimental data

of the numbers of three-state cells, Xt, Yt, and Zt, satisfy the

observation equations as follows:

Xt ~ axtzgx,

Yt ~ aytzgy,

Zt ~ aztzgz,

8><
>: ð13Þ

where a (mm{2) is a constant which exchanges the unit of the

average density for that of the average number of cells in a

microscope image. The variables t~0, 1, 2, � � � ,N denote the

observation time (day), and the parameters gi (i~x,y,z) denote

time-independent observation noise that satisfies an identically

independent normal probability density function, gi&N (0,si).
The likelihood of reproducing the experimental data

D~fXt,Yt,Ztg (t~0, 1, 2, � � � ,N), consisting of 3(Nz1) inde-

pendently distributed data points with a set of parameters

h~fm, k1, k2, d1, d2g is defined as:

L(D,h)~f (Djh)~

P
N

t~0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

xs2
ys2

z

q exp

0
B@ {

Xt{xt(h)ð Þ2

2s2
x

 "

z
Yt{yt(h)ð Þ2

2s2
y

z
Zt{zt(h)ð Þ2

2s2
z

!#!
,

ð14Þ

where xt(h), yt(h), and zt(h) are predicted from equations (3) with

parameters h and initial conditions x0, y0, and z0. We sought to

estimate a set of parameters h, gi, and initial conditions that

maximize the above likelihood function L. However, we only

applied Bayesian inference to parameters h. We directly estimated

the initial conditions from our experimental data, which did not

affect estimation of h. Also, we arbitrarily defined the observation

noise gi for which we could attain a sufficiently large value of

likelihood L. In our experiments, values of gi (the standard

deviations si which ranges from 5 to 30) were able to adequately

explain our experimental data.

The posterior probability density function p(hDD) obeys the

following equation based on the Bayes’ theorem

p(hDD)~
f (DDh)p(h)

p(D)
~

f (DDh)p(h)Ð
f (DDh)p(h)dh

ð15Þ

!f (DDh)p(h), ð16Þ

where p(h) denotes the prior probability density function and

p(D)~
Ð

f (DDh)p(h)dh denotes the normalization constant or the

marginal likelihood. A sample from the parameter posterior can be

obtained using Markov Chain Monte Carlo (MCMC) sampling.

Here we used the Metropolis–Hasting algorithm to produce

samples from a distribution p(hDD). We assumed the gamma

distribution as the prior distribution of p(h), because all model

parameters should have non-negative values based on biological

requirements. The parameters h independently obey the gamma

distribution as follows

hi&G(a,b)~
ha{1

i

C(a)ba exp({hi=b), ð17Þ

where C denotes the gamma function and hi is an each component

of h. In our experimental results, possible ranges of parameters

include zero and we set a~1 and b~3, where values of b at least

10 times larger did not definitely affect the values estimated with

our method. Smaller values of both a and b narrow the

distribution, and in general, estimates become biased. Therefore,

we used these values to search for parameters in a broad

distribution. The candidate parameters h� are generated using the

random walk chain of a normal random number ehi
with the

variance s2
hi

:

h�i ~h
(t)
i zehi

, ehi
&N (0,s2

hi
)

where h(t) denotes a previously selected parameter set. Here we

assume that the proposal distribution is symmetric

q(h�i Dh
(t)
i )~

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

hi

q exp {
(h(t)

i {h�i )2

2s2
hi

" #
~q(h

(t)
i Dh�i ):

Therefore, the acceptance rate of candidate parameters is

a(h�i Dh
(t)
i )~min 1,

p(h�i DD)

p(h(t)
i DD)

" #
~min 1,

f (DDh�i )p(h�i )

f (DDh(t)
i )p(h(t)

i )

" #
:

To estimate an optimal parameter set, we applied simulated annealing

to our data set. Thus the acceptance rate can be modified to

a(h�i Dh
(t)
i )~min 1,

f (DDh�i )p(h�i )

f (DDh(t)
i )p(h

(t)
i )

 !1=T(s)
2
4

3
5,

where we assumed that the function T(s) (s~0,1,2, . . . ,smax) which is

called the temperature gradually decreases (setting T~1 recovers

Metropolis sampling) with the following four steps

T(s)~

max½(Ti,1{Tf ,1)
Tn

h
Tn

h
zsn zTf ,1,Tm� (0ƒsvs1) : step (1)

Tm (s1ƒsvs2) : step (2)

max½(Ti,2{Tf ,2)
Tn

h
Tn

h
z(s{s2)n

zTf ,2,Tf � (s2ƒsvs3) : step (3)

Tf (s3ƒsvsmax) : step (4)

8>>>>>><
>>>>>>:
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For a constant time step s~sc and a temperature T(sc), the MCMC

chain was repeatedly applied for a fixed sampling number t~tmax. In

the initial step (1), we intended to sample a wide range of parameter

space, and cool down the initial high temperature Ti,1~10 to the final

one Tm~1 to recover Metropolis sampling. A value of Ti,1 at least 10

times larger did not affect the estimation of the parameter values. For a

while, the metropolis sampling was performed in a second step (2) to

converge the posterior parameters with distribution p(hDD). In the

next step (3), we further decreased the temperature T(s) from Ti,2~1
to Tf ~0:01 in order to estimate a mode of p(hDD). Finally, we

repeated sampling with a constant temperature Tf ~0:01 in the last

step (4). In selecting the last temperature Tf , we checked the likelihood

values L(D,h) in step (4) gradually decreasing the value of Tf . When

the likelihood value was saturated, we stopped decreasing the

temperature and obtained a value of Tf ~0:01. In our estimation

procedures, we used the following values tmax~10000, s1~100,

s2~200, s3~300, and smax~500. To determine a suitable

parameter set for our experimental results, we used the likelihood

value at a temperature T(s); f (DDh,T(s)). When the likelihood

becomes maximum in a constant temperature T(sc), we selected a

parameter set h(sc) as the best for that temperature. Then we

averaged over parameter sets h(s) in step (4), and defined them as the

estimated parameters

hi~
Xsmax

s~smin

hi(s)

0
@

1
A= smax{sminð Þ, ð18Þ

where smin satisfies s3vsminvsmax and we set smin~400 for our

experiments. We monitored the selected parameter values for each

step s, and confirmed that these numbers of steps (s1{smax) were

sufficient to cause the distributions of the parameter values to

converge. We evaluated the dependency of the estimation of h(s) on

the initial parameter values h(0), the initial temperatures Ti,1, and the

value of b in a gamma distribution (Figure S7). In our estimation

methods, at least 10 times large values of b and Ti,1, and four orders of

different initial parameter values did not affect estimation of parameter

values.

A stochastic version of a state transition model. Here, we

seek to make a stochastic model. A scheme of cell fate decision

processes is as follows

sx?2sx Proliferation rate : m

sx?sy Differentiation rate : k1

sx?sz Cell death rate : d1

sy?sx De-differentiation rate : k2

sy?sz Cell death rate : d2

where sx, sy, and sz denote states of each cell. All events are first

order processes, and rate constants for differential equations can

be applied directly to these reaction schemes. We calculated this

scheme using the Gillespie algorithm with absorbing boundary

conditions at x~y~0 [28], and derived means mn(t) and

variances s2
n(t) introduced in equation (1). Here, we can assume

several possibilities for (i) the distributions that the parameter

values obey, and (ii) the initial conditions x0, y0, and z0 of the

densities of cells. For the parameter values, we assume that (i-1) the

parameters are constant as defined in Table S1, or (i-2) the

parameters obey a truncated normal distribution with the

probability density function of

f (x; mparam,sparam,0,?)~

w((x{mparam)=sparam)=sparam
W(?){W({mparam=sparam)

(x§0),

0 (xv0),

(
ð19Þ

where mparam (or sparam) is one of parameter values m, k1, k2, d1,

d2, w(:) denotes the probability density function of a standard

normal distribution N (0,1), and W(:) denotes the distribution

function of it. For the initial conditions, we assume that (ii-1) the

initial conditions are constant as defined in Table S1, or (ii-2) the

initial conditions x0, y0, and z0 obey a lognormal distribution log

N (minit,s
2
init) with

minit~ln
m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2zs2
p
� �

,

s2
init~ln

s2

m2
z1

� �
,

ð20Þ

where m~s~x0, y0, or z0.

Lognormal distributions (Figure S5) were calculated from

simulation results of model-1 at day 5, and involved 10000
samples using parameter values in the high serum condition +
EGF and NGF. In addition, we used 100-times larger values for

the initial conditions in this figure than in Figure 7, and converted

the values from the number of cells to the cell density. For each

figure, distributions from simulations were fitted to a normal

distribution N (mdata,s2
data); mdata~(

PM
i~1 ln(ni))=M and

s2
data~(

PM
i~1fln(ni){mdatag2

)=(M{1), where ni denotes the

simulated non-zero density values of cells at day 5 and Mƒ10000.

Analytical solution of birth–death process. When we

define the number of cells at time t as N(t), and the probability as

Pn(t)~PfN(t)~ng, the birth–death processes are described by

dP0(t)=dt~lDP1(t), ð21Þ

dPn(t)=dt~{(lBzlD)nPn(t)zlB(n{1)Pn{1(t)

zlD(nz1)Pnz1(t),
ð22Þ

where the birth rate from the sate N(t)~n is lB,n~nlB, and the

death rate from the sate N(t)~n is lD,n~nlD. The steady state

probability is obtained by

lim
t??

dP0(t)=dt~0,

lim
t??

dPn(t)=dt~0:

If the birth and death rates are lBvlD, the number of

cells converges to limt?? N(t)~0 and the probability

becomes limt?? P0(t)~1, which suggests extinction of a

population. If the birth and death rates are lDvlB, the

number of cells converges to limt?? N(t)~? and the

probabilities are limt?? P0(t)~P0v1 and limt?? Pi(t)~0
(i~1,2,3, � � �); this suggests an infinite increase of a

population with probability 1{P0. The means and the

variances of the number of cells M(t)~
P?

n~1 nPn(t) and

V (t)~
P?

n~1 n2Pn(t){(
P?

n~1 nPn(t))2 can be calculated as

follows
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M(t)~n0 exp((lB{lD)t),

V (t)~n0
lB{lD

lBzlD

� �
exp(2(lB{lD)t)f1{exp((lD{lB)t)g,

where n0 denotes the initial condition Pn0
(0)~1 [29]. Here

we define the logarithm of the mean and variance

m(t)~ln M(t)~ln n0z(lB{lD)t,

v(t)~ln V (t)~ln n0
lB{lD

lBzlD

� �
zln(1{exp((lD{lB)t))

z2(lB{lD)t:

Therefore when the birth and death rates satisfy lBwlD,

the slope becomes

dv

dm
~

dv

dt

dt

dm

~
2(lB{lD)z(ln(1{exp((lD{lB)t)))0

(lB{lD)

?2 (t??):

Supporting Information

Figure S1 Averages of the estimated parameter values
for the control serum conditions from four sets of
independent experiments. We applied a simple one-sided t–
test with reference to a serum condition of 10% HS and 5% FBS,

and calculated p–values. Asterisks denote pv0:05. In addition, we

marked ‘zz’ or ‘{{’ on the bars for the effect size dw0:8, and

‘z’ or ‘{’ for dw0:5. The plus (zz, z) or minus ({{, {)

marks denote increase or decrease of mean parameter values

compared with the control conditions, respectively. Details are

shown in the Materials and Methods section.

(TIF)

Figure S2 Phase portraits of cell fate transitions under
different serum conditions or growth factor conditions.
Phase portraits for the high serum (A–C), the low serum (D–F),

and the serum free (G–I) conditions are shown. Parameters of

Experiment 1 in Table S1 were used to calculate the dynamics.

Two red lines in each panel denote eigenvectors. Blue dots denote

experimental results and blue lines denote simulation results with

parameters estimated using experimental results. Arrows are fluxes

at each point in a phase. BSA, bovine serum albumin; EGF,

epidermal growth factor; FBS, fetal bovine serum; HS, horse

serum. The data in these figures clearly show differences in cell

responses to growth factors, which depend on the concentrations

of surrounding serum. For the low serum concentration, the

number of cells gradually converges to the origin in the control

condition, but it begins to increase in the presence of EGF.

Furthermore, the number of differentiated cells increases, but the

number of proliferating cells decreases in the presence of NGF.

Approximately, 100% (determined as y=(xzy)|100) of cells are

differentiated when the number of proliferating cells converges to

x~0, and the fraction is sustained for several days until the

number of differentiated cells becomes y~0. At the high serum

concentration, we cannot find definite effects of EGF addition on

the number of cells u(t). After the addition of NGF, the number of

differentiated cells y(t) increases with the accumulation of

proliferating cells x(t), indicating an inefficient differentiation.

Under the serum-free condition, the number of cells converges to

the origin for the three cases, and growth factors affect the extent

of differentiation especially in the early stages of cell-fate processes

(immediately after addition of growth factors).

(TIF)

Figure S3 Dependency of the initial conditions on the
dynamics of the number of cells in a phase portrait. (A)

The dynamics of the number of cells under the low serum condition

(HS 0:1% and FBS 0:05%) in the presence of NGF (50ng=ml). We

added NGF at Day 0, and cultured for the first fix days (Day 0{6 in

blue-solid lines). The number of differentiated cells efficiently

increases. Blue-dashed lines are for Day 6{17. (B) We cultured cells

in the low serum condition without NGF for eleven days (Day

6{17 in blue-solid lines). Blue-dashed lines are for Day 0{6. At

Day 6, we washed out the medium containing NGF, and refreshed

medium. The number of differentiated cells drastically decreases,

and the number of proliferating cells increases along the one of

eigenvectors. For both figures, phase portraits of experiment 3 in

Table S1 were used. Blue-dashed lines are only for indication.

(TIF)

Figure S4 Dependency of response rates on initial

conditions. The initial response speeds JEGF=CTL
n and

JNGF=CTL
n (n~x,y,z) (A), or the time averages of response speeds

Jn
EGF=CTL

and Jn
NGF=CTL

(B) for several initial conditions (x0 and

y0) and serum conditions (High serum: 10% horse serum (HS) and

5% fetal bovine serum (FBS); low serum: 0:1% HS and 0:05%
FBS; serum free: 1% bovine serum albumin.) were calculated. The

initial condition z0 do not affect those speeds. For each initial

condition, we compared the speeds among three serum conditions.

When the speed was maximal (minimal) in the middle entropy

condition, we plotted a red (blue) point on a graph, respectively.

When the speeds monotonically changed, the region of a graph is

white. Initial conditions for our experimental results were also

plotted on a graph (a cross mark for the control conditions, a

circled mark for EGF-added conditions, and a box mark for NGF-

added conditions). Estimated parameter values of experiment 1 in

Table S1 was used for calculating these figures.

(TIF)

Figure S5 Log-normal distributions of the simulated
cell density. Histograms of the cell densities (cells/mm2) at day 5
are calculated using parameters in the serum free conditions (A),

the low serum conditions (B), and the high serum conditions (C) in

the presence or absence of growth factors (CTL, control).

Simulations have done using the parameters in the high serum

condition of model-1. Black lines denote normal distribution using

means and variances from simulated data.

(TIF)

Figure S6 Power-law relations under various parameter
values and initial conditions. To examine the generality of

the result in Fig. 7, simulations were carried out changing the

parameter values and initial distribution. (A–F) The relationship

between mean and variance of cell density was calculated using

parameter values h~fm, k1, k2, d1, d2g independently selected

from uniform random numbers with the range of ½0,1�. The mean

initial numbers of cells n(0)~fx0, y0, z0g were constant

fx0, y0, z0g~f30 ,1, 5g (A, C), or independently selected from

½1,30� (B, D–F). Initial distribution was set to obey lognormal (A,

B), exponential (C, D), or Poisson (E, F) distribution. For the initial

distributions, we used the equations (20) for a lognormal

distribution, a function f (n; l)~l exp({ln) (where n§0) with
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l~1=n0 (~x0, y0, or z0) for a exponential distribution, and a

function f (k; l)~lk exp({l)=k! (where k is a natural number)

with l~n0 (~x0, y0, or z0) for a Poisson distribution. We

simulated n(t) (methods were shown in models section), 1000 times

with constant parameters and the initial number of cells to

calculate means and variances at day 0,1, � � � ,8 (A–E, red circles)

or day 20, 21, � � � ,50 (F, red circles). We repeated 90 times of this

procedure with randomly sampled parameters or initial condi-

tions, and estimated the slope b for log10 s2
n~b log10 mnz log10 a

(red lines). The slopes b were 2:39 (A), 2:21 (B), 2:54 (C), 2:23 (D),

1:48 (E), and 2:31 (F). The blue line in (E) denotes an equation

with b~1:0 (Poisson distribution). In the figure (F), we used

only x(t) and y(t), and omitted log10 s2
nv0 values to evaluate

a slope b. (G) Distributions of cell density were calculated at

day 20 with arbitrarily defined parameter values

h~f0:40, 0:30, 0:05, 0:10, 0:05g and the mean initial condi-

tions n(0)~f30,1,5g for a Poisson distribution. We simulated

50000 sample paths to make this distribution.

As shown here, power-law relation did not depend on the

specific conditions of parameter values and the initial number

of cells when the initial distribution was lognormal and

exponential. For Poisson distribution, the slope b initially ~1
gradually increased to 2:31 (E, F). In addition, the distribution

of the number of cells became lognormal even when the

initial number of cells obeyed a Poisson distribution (G).

Therefore, the power-law relationship between mean and

variance of cell density with b&2:3 and log normal

distribution of cell density after long period of cell culture

seem to be general features of our three state cell fate decision

model. In the simulation, cell culture started from Poisson

distribution takes much longer days to reach log normal

distribution than the experiments. It should be caused

experimental difficulty to disperse cells completely when they

transferred to subcultures.

(TIF)

Figure S7 Dependency of parameter estimations on the
initial conditions. To show the typical process of parameter

estimations under different initial conditions, these figures plotted

selected parameter values m(s) with the maximum likelihood in a

constant temperature T(s) at each simulation step s. We used

experimental data from experiment 2 of high serum and control

condition in Table S1. The gamma distributions with parameters

a~1:0, and b~3:0 (A, C) or b~30:0 (B) were used as the prior

distribution. For the initial temperature, we defined Ti,1~10
(A, B) or Ti,1~100 (C). We selected the final temperature as

Tf ~0:01 for all figures. The initial parameter values in step

s~0 and at time t~0 were m(0)~0:01, 0:1, 1, 10, or 100, where

m(0)~k1(0)~k2(0)~d1(0)~d2(0). In each figure, we showed

three sample paths with the same initial conditions. In all cases,

a wide range of values was searched in estimation and m(s)
converged to similar values when s§400. The parameter m(s)
converged to 0:352+0:00150 (A), 0:352+0:00286 (B), and

0:354+0:00141 (C).

(TIF)

Table S1 Estimated parameter values in four indepen-
dent experiments. High serum: 10% HS and 5% FBS, low

serum: 0:1% HS and 0:05% FBS, serum free: 1% BSA. The initial

conditions (x0, y0, z0) for each serum and stimulus condition did

not strictly affect estimation, and we arbitrarily assigned several

values which could be estimated from experimental results. Values

were estimated on the basis of the results shown in Figure 2 in the

main text. Estimations were done for the independent four

experimental results of the time courses of the number of cells.

(PDF)
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