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Epitope-based design of vaccines, immunotherapeutics, and immunodiagnostics is complicated by structural changes that radically
alter immunological outcomes. This is obscured by expressing redundancy among linear-epitope data as fractional sequence-
alignment identity, which fails to account for potentially drastic loss of binding affinity due to single-residue substitutions even
where thesemight be considered conservative in the context of classical sequence analysis. From the perspective of immune function
based on molecular recognition of epitopes, functional redundancy of epitope data (FRED) thus may be defined in a biologically
more meaningful way based on residue-level physicochemical similarity in the context of antigenic cross-reaction, with functional
similarity between epitopes expressed as the Shannon information entropy for differential epitope binding. Such similarity may be
estimated in terms of structural differences between an immunogen epitope and an antigen epitope with reference to an idealized
binding site of high complementarity to the immunogen epitope, by analogy between protein folding and ligand-receptor binding;
but this underestimates potential for cross-reactivity, suggesting that epitope-binding site complementarity is typically suboptimal
as regards immunologic specificity. The apparently suboptimal complementarity may reflect a tradeoff to attain optimal immune
function that favors generation of immune-system components each having potential for cross-reactivity with a variety of epitopes.

1. Introduction

Immunological targeting of antigens exemplified by pathogen
virulence factors, allergens, and even typical drugs is funda-
mental to the solution of global-health problems including
both infectious and noninfectious diseases [1–3]. This entails
molecular recognition of antigens by immune-system com-
ponents (e.g., antibodies and T-cell receptors), which occurs
via binding of epitopes (i.e., the recognized submolecular
structural features of antigens) [4, 5]. Epitope prediction (i.e.,
computational identification of epitopes among biomolecules
such as proteins) aims to enable selective incorporation of
particular epitopes (e.g., actual targets of protective immune
responses rather than disease-enhancing immunological
decoys) into antigenic constructs (e.g., synthetic peptides) for
novel vaccines, immunotherapeutics, and immunodiagnos-
tics [6]. However, this is complicated by the limited accuracy

of existing tools for epitope prediction [7]. The present work
thus explores the crucial yet largely neglected issue of epitope-
data redundancy as a key consideration in epitope-prediction
tool development.

Progressive development of epitope-prediction tools
requires empirical epitope data for both training (e.g., in
the context of machine learning) and benchmarking [8–
10]. Hence, epitope-data redundancy is a major concern
especially where data-driven statistical andmachine-learning
methods are employed to develop tools for epitope prediction
and also related applications (e.g., MHC binding prediction),
as studies might yield biased results due to overrepresenta-
tion of similar epitopes. Similarity among epitopes is often
expressed as sequence similarity, particularly for linear pep-
tidic epitopes which include continuous B-cell epitopes (each
consisting of a single unbroken epitope-residue sequence, in
contrast to discontinuous epitopes wherein epitope residues
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are separated in the sequence by intervening residues) and
typical T-cell epitopes (each bound by a MHC molecule
for presentation to T-cells). For these, classical heuristic
approaches to decrease the redundancy entail setting a
similarity threshold (typically expressed as a fraction of
identical residues for a pair of aligned sequences), such that
subsequent analyses may compensate accordingly (e.g., by
excluding sequences sharing a degree of similarity above
the threshold). This practice is well-established for general-
purpose protein structural analyses [11–13] but potentially
problematic if applied to peptidic epitopes in view of the
nonlinear relationship between sequence similarity and anti-
genic similarity (e.g., as demonstrated by radically divergent
antigenic properties arising from a structural difference of
only a single chemical group [14]). This suggests the need
for a more functionally meaningful alternative approach to
expressing redundancy of epitope data.

Protein folding and binding [15] may be regarded as
manifestations of the same underlying phenomenon driven
by the hydrophobic effect, favoring burial of nonpolar sur-
faces in general away from solvent water, albeit with more
selective burial of polar surfaces that favors complemen-
tary pairing between hydrogen-bond donors and acceptors.
Residues that thus become completely buried (e.g., within
the core of a folded protein or at the binding interface of a
ligand-receptor complex) are sterically and electrostatically
constrained by surrounding residues, to a much greater
extent than unfolded or even folded but only partially buried
residues (e.g., at solvent-exposed protein surfaces). Conse-
quently,molecular recognition of epitopes, which ismediated
by local ligand-receptor binding interactions, depends on
sequence detailsmuchmore than overall (i.e., global) features
of protein structure do, notably in the sense of protein
folds.

Proteinsmay share the same fold (e.g., as demonstrated by
structural superposition of their backbones) well into the so-
called twilight zone below the threshold for reliable detection
of aligned-sequence similarity (i.e., less than 35% pairwise
sequence identity) [16, 17]. Residue substitutions can be
tolerated at surface-exposed positions (e.g., with replacement
of certain polar residues by others whose side-chains differ
in steric and electrostatic properties). Even at buried-core
positions, certain nonpolar residues may be replaced by
others whose side-chains differ in volume, especially where
additional substitutions or other changes compensate for the
volume differences, although the introduction of unsatisfied
hydrogen-bond donors or acceptors and of unpaired formal
charges tends to be poorly tolerated [18, 19]. However,
even just a single-residue substitution in an epitope may
abolish epitope-specific immune binding (e.g., by antibod-
ies) if surface complementarity is disrupted at the epitope-
binding interface (much as the structural organization of
a protein core is disrupted by a radical substitution), as
observed with immune evasion by pathogen escape mutants.
Hence, the notion of conservative residue substitutions as
conceptualized for evolving protein sequences (e.g., on the
basis of changes in both volume and hydrophobicity) is of
questionable applicability to epitopes as it obscures crucial
details of changes in steric and electrostatic complementarity.

From the perspective of immune function, redundancy
of epitope data arguably implies potential for antigenic
cross-reaction (i.e., recognition of different epitopes by
a common B- or T-cell receptor or equivalent thereof)
rather than sequence similarity defined without reference to
any immune-system component. Hence, the present work
outlines a generic theoretical framework for quantitatively
expressing epitope data redundancy in terms of potential
antigenic cross-reactivity as estimated from an idealized lim-
iting case of optimal ligand-receptor complementarity (com-
parable to the steric and electrostatic self-complementarity
observedwithin folded proteins [20]).This is applied to linear
peptidic epitopes, for clarity of illustration and considering
their envisioned roles as immune targets in relation to
peptide-based vaccines and immunodiagnostics. Theoretical
results are compared with informative available experimental
data on antigenic cross-reactivity of structurally related short
peptides, in light of possible suboptimal ligand-receptor com-
plementarity and its biomedical implications vis-a-vis epitope
sequence variation (e.g., arising as pathogen mutations and
host polymorphisms).

2. Theory and Methods

2.1. Functional Redundancy of Epitope Data. The present
work aims to support the use of available empirical data
to further develop epitope-prediction methods, without dis-
carding unique epitopes deemed redundant on the basis
of some sequence similarity threshold. Epitope data thus
retained must be characterized as to redundancy, for which
a reduced epitope count is introduced below.This is based on
epitope similarity defined in terms of either aligned-sequence
similarity or functional similarity as regards cross-reactive
epitope binding. Aligned-sequence similarity is explored
first because it is a familiar and readily calculated quantity.
However, its limitations become apparent in the context
of attempting to describe antigenic cross-reaction from a
physicochemical perspective. Hence, functional similarity is
also explored.

For a set of epitopes (construed as epitope structures,
e.g., linear peptidic sequences), functional redundancy can
be expressed as a reduced epitope count 𝑟 such that 1 ≤

𝑟 ≤ 𝑛, where 𝑛 is the total epitope count, with 𝑟 = 1 and
𝑟 = 𝑛, respectively, corresponding to extreme cases wherein
every epitope is either maximally or minimally similar to
every other epitope from a functional standpoint. Thus,
structurally identical epitopes would be maximally similar
to one another; but structurally nonidentical epitopes might
also be regarded as maximally similar if their structural
difference was negligible or otherwise irrelevant from a
functional standpoint. For simplicity, further elaboration of
concepts herein focuses on cases wherein all epitopes are
structurally unique peptidic sequences of equal length. (The
qualifier of “structurally unique” is consistent with real-
world epitope databases insofar as they regard each epitope
as a structurally unique entity. The qualifier of “equal length”
is clearly applicable to typical class I MHC-restricted T-cell
epitopes and relatively short linear B-cell epitopes, albeit less
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so for longer B-cell epitopes and class II MHC-restricted T-
cell epitopes.)

For a set of 𝑛 structurally unique epitopes, the reduced
epitope count may be defined as

𝑟 =

𝑛

∑

𝑖=1

𝑤
𝑖
, (1)

where 𝑤
𝑖
is the contribution of the 𝑖th epitope to 𝑟. In turn,

𝑤
𝑖
may be defined as

𝑤
𝑖
=

1 + ∑
𝑛

𝑗=1
(1 − 𝑆

𝑖𝑗
)

𝑛

,
(2)

where 𝑆
𝑖𝑗
is the functional similarity between the 𝑖th and 𝑗th

epitopes, such that 0 ≤ 𝑆
𝑖𝑗
≤ 1, with 𝑆

𝑖𝑗
= 0 and 𝑆

𝑖𝑗
= 1,

respectively, corresponding to extreme cases wherein the 𝑖th
and 𝑗th epitopes are either minimally or maximally similar
froma functional standpoint. If all the epitopes are of uniform
sequence length𝑚 amino-acid residues, 𝑆

𝑖𝑗
might be defined

for a pairwise epitope sequence alignment as

𝑆
𝑖𝑗
=

∑
𝑚

𝑘=1
𝑠
𝑖𝑗𝑘

𝑚

, (3)

where 𝑠
𝑖𝑗𝑘

is the functional similarity between amino-acid
residues 𝑎

𝑖𝑘
and 𝑎

𝑗𝑘
at the 𝑘th sequence positions of the

aligned 𝑖th and 𝑗th epitope sequences, respectively, such that
0 ≤ 𝑠

𝑖𝑗𝑘
≤ 1, with 𝑠

𝑖𝑗𝑘
= 0 and 𝑠

𝑖𝑗𝑘
= 1, respectively,

corresponding to extreme cases wherein 𝑎
𝑖𝑘

and 𝑎
𝑗𝑘

are
either minimally or maximally similar from a functional
standpoint. Accordingly, 𝑠

𝑖𝑗𝑘
might be simply defined as

𝑠
𝑖𝑗𝑘
=

{

{

{

0, if 𝑎
𝑖𝑘

̸= 𝑎
𝑗𝑘

1, if 𝑎
𝑖𝑘
= 𝑎
𝑗𝑘
,

(4)

for (3) to yield the fraction of identical aligned residues,
which is a conventional measure of protein sequence simi-
larity [11–13]. However, this is an oversimplification that fails
to capture the possibility of minimal functional similarity
between epitopes (e.g., operationally defined as undetectable
antigenic cross-reactivity in an immunoassay) arising from
a structural difference of only a single chemical group [14],
unless the possibility of antigenic cross-reaction is denied
altogether.

A more realistic physicochemically grounded alternative
is to conceptualize functional similarity on the basis of
biomolecular binding interactions, thereby relating func-
tional similarity to binding affinity as measured via an
immunoassay that employs some epitope-binding probe (e.g.,
antibody). Thus, functional similarity between epitopes (i.e.,
𝑆
𝑖𝑗
of (2) and (3)) may be defined alternatively as the Shannon

information entropy [34–36] for the equilibrium distribution
of epitope-bound probe between the 𝑖th and 𝑗th epitopes,
with both epitopes at the same concentration in the presence
of much less probe, such that

𝑆
𝑖𝑗
= − (𝑓

𝑖
log
2
𝑓
𝑖
+ 𝑓
𝑗
log
2
𝑓
𝑗
) , (5)

where 𝑓
𝑖
and 𝑓

𝑗
are the fractions of epitope-bound probe

bound to the 𝑖th and 𝑗th epitopes, respectively (noting that
𝑓
𝑖
+ 𝑓
𝑗
= 1; and 𝑆

𝑖𝑗
= 1, where the 𝑖th and 𝑗th epitopes are

indistinguishable by means of the immunoassay). Constrain-
ing 𝑓
𝑗
as 𝑓
𝑗
≤ 𝑓
𝑖
, it may in turn be defined as

𝑓
𝑗
=

∏
𝑚

𝑘=1
𝑠
𝑖𝑗𝑘

1 + ∏
𝑚

𝑘=1
𝑠
𝑖𝑗𝑘

, (6)

where 𝑠
𝑖𝑗𝑘

retains its meaning as introduced in (3). However,
retaining the definition of 𝑠

𝑖𝑗𝑘
given by (4) would be tanta-

mount to denying the possibility of antigenic cross-reaction;
hence, an alternative is warranted.

A plausible starting point is the essential unity of protein
folding and binding phenomena based on steric and elec-
trostatic complementarity of molecular surfaces as observed
within typical folded proteins [20]. If this is regarded as rep-
resentative of ligand-receptor interfaces wherein the ligand is
a peptidic epitope bound to one or more protein receptors
(e.g., antibody, or MHC molecule, and T-cell receptor), an
idealized epitope-binding site may be devised to estimate
epitope similarity as potential antigenic cross-reactivity in
terms of structural differences, assuming optimal comple-
mentarity with all epitope atoms completely surrounded by
and close-packed against the binding-site contact atoms.
Hence, suboptimal complementarity would arguably result
if even a single epitope amino-acid residue was structurally
altered. Notably, steric clashes conceivably would preclude
antigenic cross-reaction if the altered residue was sterically
incompatible with its original counterpart in the sense of
failing to assume any conformation allowing it to fit entirely
within the region of space (as defined by residue van der
Waals surfaces) that otherwise would have been occupied
by the original residue at the binding site. Thus, functional
similarity between epitope amino-acid residues (i.e., 𝑠

𝑖𝑗𝑘
of

(3), (4), and (6)) may be defined alternatively as

𝑠
𝑖𝑗𝑘

=

{
{

{
{

{

0, if 𝑎
𝑖𝑘
, 𝑎
𝑗𝑘

sterically incompatible

exp(−
ΔΔ𝐺
𝑖𝑗𝑘

𝑅𝑇

) , otherwise,

(7)

where 𝑖 and 𝑗 denote the original and altered epitopes,
respectively; 𝑎

𝑖𝑘
and 𝑎

𝑗𝑘
retain their meanings as in (4);

ΔΔ𝐺
𝑖𝑗𝑘

is the contribution to the change in the overall free-
energy change of epitope binding, due to replacement of 𝑎

𝑖𝑘

by 𝑎
𝑗𝑘
;𝑅 is the gas constant; and𝑇 is the absolute temperature.

ΔΔ𝐺
𝑖𝑗𝑘

is analogous to the change in the free-energy change
of folding due to replacement of the 𝑘th residue of a protein
by a structurally different residue (e.g., to generate a mutant
version of a wild-type protein).

To evaluate (7), steric incompatibility is posited for every
substitution wherein the net change in volume is positive
(i.e., wherever bulk increases) and also for other substitutions
wherein stereochemical differences (e.g., relating to bond
angles and branching) are deemed sufficient to result in steric
clashes that preclude antigenic cross-reaction. Steric incom-
patibility is conceptualized herein on the basis of grouping
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Figure 1: Subsets of the 20 proteinogenic amino acids grouped by stereochemical similarity. Structures were obtained from the ChEBI
(Chemical Entities of Biological Interest) database (http://www.ebi.ac.uk/chebi/). Within each subset comprising two or more amino acids,
these are arranged from left to right in order of decreasing size, such that sterically incompatible changes are avoided by substitution of a
smaller amino acid for a larger one. The subsets are linked to form the residue substitution paths in Figure 2, wherein Subset 1 comprises an
entire path while the other subsets comprise the upstream segments of paths converging on either Cys (C) or Ala (A).

the 20 proteinogenic amino acids into subsets according
to stereochemical similarity, as depicted in Figure 1. Subset
assignments are based on the covalent bonding geometry
of nonhydrogen side-chain atoms. In particular, these atoms
are characterized as either tetrahedral or trigonal planar,
and branching of tetrahedral atoms is also considered. For
example,methyl andmethylene carbon atoms are tetrahedral,
as are sulfur and amine nitrogen atoms. Hence, the sulfhydryl
group of Cys is regarded as isosteric with a methyl group,
whereas the sulfur atom of Met and the side-chain imino
group of Arg are both regarded as isosteric with a methylene
group. In contrast, amide and carboxyl carbon atoms are
trigonal planar rather than tetrahedral.

The subsets defined in Figure 1 are linked to form residue
substitution paths avoiding sterically incompatible changes,
as depicted in Figure 2. Subset 1 comprises an entire path
while the other subsets comprise the upstream segments of
paths converging on either Cys or Ala. The path of Subset 2
converges on Cys, as members of Subset 1 larger than Cys are
sterically incompatible with Subset 2, whose 𝛿-carbon atom is
trigonal planar. The path of Subset 3 converges on Ala rather

K R (1)

(2) (5) (6)

Q E M L I

(3) (4)

Y W C T V

F H S P (7)

N D A G

Figure 2: Amino-acid residue substitution paths avoiding sterically
incompatible changes (cf. (7)) for the 20 canonical proteinogenic
residues. Numbers correspond to the subsets of stereochemically
similar amino acids depicted in Figure 1. For every residue substi-
tution along the paths shown, the number of unsatisfied hydrogen
bonds is presented in Table 1.



Advances in Bioinformatics 5

Table 1: Numbers of unsatisfied hydrogen bonds for amino-acid residue substitutions of Figure 2, calculated according to (9).

G A S C D T P N V E Q H L I M K R F Y W
G 0 — — — — — — — — — — — — — — — — — — —
A 0 0 — — — — — — — — — — — — — — — — — —
S 1 1 0 — — — — — — — — — — — — — — — — —
C 0 0 1 0 — — — — — — — — — — — — — — — —
D 2 2 — — 0 — — — — — — — — — — — — — — —
T 1 1 0 1 — 0 — — — — — — — — — — — — — —
P 1 1 — — — — 0 — — — — — — — — — — — — —
N 2 2 — — 2 — — 0 — — — — — — — — — — — —
V 0 0 1 0 — 1 — — 0 — — — — — — — — — — —
E 2 2 3 2 — — — — — 0 — — — — — — — — — —
Q 2 2 3 2 — — — — — 2 0 — — — — — — — — —
H 2 2 — — — — — — — — — 0 — — — — — — — —
L 0 0 1 0 — — — — — — — — 0 — — — — — — —
I 0 0 1 0 — 1 — — 0 — — — — 0 — — — — — —
M 0 0 1 0 — — — — — — — — — — 0 — — — — —
K 1 1 2 1 — — — — — — — — — — 1 0 — — — —
R 3 3 4 3 — — — — — — — — — — 3 4 0 — — —
F 0 0 — — 2 — — 2 — — — — — — — — — 0 — —
Y 1 1 — — 3 — — 3 — — — — — — — — — 1 0 —
W 1 1 — — — — — — — — — 1 — — — — — — — 0

than Cys, because the 𝛾-carbon atom is trigonal planar in
Subset 3. The case of Subset 4 is thus similar to that of Subset
3, but the 𝛾-carbon atom in Subset 4 is constrained as part of
a five-membered ring, such that Subsets 3 and 4 are deemed
sterically incompatible. The path of Subset 5 (Leu) converges
on Cys, as members of Subset 1 larger than Cys are sterically
incompatible with the branching at the 𝛾-carbon atomof Leu.
The path of Subset 6 converges on Ala instead of Cys, because
of the branching at the 𝛽-carbon atom of Subset 6. Finally,
the path of Subset 7 (Pro) converges on Ala, as the Pro side-
chain is constrained by ring formation with the main-chain
nitrogen atom and thus distorted beyond the 𝛽-carbon atom.

According to Figure 2, a substitution from any residue
upstream to any residue downstream along a particular path
avoids steric incompatibility. Conversely, downstream-to-
upstream and off-path substitutions are deemed sterically
incompatible. This is a qualitative first approximation using
a highly idealized model, rather than an attempt at definitive
categorization.

As regards ΔΔ𝐺
𝑖𝑗𝑘

(in (7)), this is related to amino-acid
residue structural differences (as a qualitative first approxi-
mation, rather than an attempt to obtain quantitatively very
accurate results) by heuristic partitioning as

ΔΔ𝐺
𝑖𝑗𝑘
= 𝑐Δ𝑉

𝑖𝑗𝑘
+ 𝑏𝑁
𝑖𝑗𝑘
, (8)

where 𝑐 and 𝑏 are both proportionality constants while Δ𝑉
𝑖𝑗𝑘

is the change in residue volume and 𝑁
𝑖𝑗𝑘

is the number of
unsatisfied hydrogen bonds (Table 1, wherein the residues are
ordered by their volumes [21]), considering that an energetic
penalty is incurred with unsatisfied hydrogen bonds upon
binding a suboptimally complementary epitope.

Table 1 is sparse, with a null value (“—”) for most
cells, because (8) is evaluated only for sterically compatible
substitutions (cf. (7)). Hence, the numbers in Table 1 are
for sterically compatible substitutions according to Figure 2.
The said numbers were each obtained assuming that every
available highly electronegative atom participates in the
formation of a hydrogen bond, as

𝑁
𝑖𝑗𝑘
= 𝐴
𝑖𝑗𝑘
− 𝐵
𝑖𝑗𝑘
, (9)

where 𝐴
𝑖𝑗𝑘

is the total number of oxygen and nitrogen
atoms in the aligned residues while 𝐵

𝑖𝑗𝑘
is the number of

such atoms for which direct correspondence was affirmed
as regards structural superposability, atom identity, and
covalent bonding partners (according to Figure 1). Thus,𝑁

𝑖𝑗𝑘

increases with each failure to affirm a direct correspondence
between hydrogen-bonding atoms. Physically, such failure
corresponds to an unsatisfied hydrogen bond on the epitope,
its binding site, or both.

Direct correspondence was affirmed for all main-chain
(i.e., backbone) carbonyl oxygen atoms. In view of the
difference between Pro and other residues at the main-chain
nitrogen atom, direct correspondence was affirmed for this
atom between Pro and itself as well as between non-Pro
residues. Among side-chain atoms, direct correspondence
was affirmed only between hydroxyl oxygen atoms of Ser
and Thr, carbonyl oxygen atoms of Asp and Asn and of
Glu and Gln, and 𝛿-nitrogen atoms of His and Trp. To
facilitate explication, a residue is termed polar if its side-chain
contains at least one oxygen or nitrogen atom but nonpolar
if otherwise. Accordingly, 𝑁

𝑖𝑗𝑘
= 0 for pairs of identical

residues (along the diagonal of Table 1) and of non-Pro
nonpolar residues. For Pro paired with Gly or Ala, 𝑁

𝑖𝑗𝑘
= 1
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due to themain-chain nitrogen difference. For a polar residue
paired with a non-Pro nonpolar residue, 𝑁

𝑖𝑗𝑘
is the total

number of side-chain oxygen and nitrogen atoms. For a pair
of polar residues, the total number of side-chain oxygen and
nitrogen atoms is an upper bound on 𝑁

𝑖𝑗𝑘
. Hence, 𝑁

𝑖𝑗𝑘
= 3

for Tyr paired with Asn, although 𝑁
𝑖𝑗𝑘

= 2 for Asn paired
with Asp.

Provisional values for the proportionality constants 𝑐
and 𝑏 in (8) were obtained from literature. In particular,
𝑐 was regarded as the energetic penalty per unit volume
of a cavity formed due to substitution of a less bulky
residue within the interior of a folded protein, with value
of −0.024 kcalmol−1 Å−1 estimated empirically from protein
mutation studies [37]; and 𝑏 was likewise regarded as the
energetic cost of breaking a hydrogen bond, with a conser-
vative estimated value of 0.5 kcalmol−1 per bond [38].

Thus using (1) through (8) in conjunction with Table 1,
the literature values for constants in (8), and published
amino-acid residue volumes [21], reduced epitope counts
(1) were computed for artificial epitope sequences and also
actual experimentally studied epitope sequences, assuming a
temperature of 37∘C (310.15 K).

2.2. Retrieval and Processing of Epitope Data. Epitope data
were obtained via the Immune Epitope Database (IEDB,
at http://www.iedb.org/) [39] as database records retrieved
through searches conducted from 4 to 6 October 2015 using
its B-Cell Search and T-Cell Search facilities, in the latter
case restricting searches to either MHC class I or II alleles,
with each record thus retrieved pertaining to an individual
B-cell or T-cell assay and containing data fields defined in
relation to the key concepts of “Object Type” (i.e., molecule
type in the context of chemical structure), “Epitope Relation”
(i.e., molecule relationship to epitope), “1st Immunogen”
(i.e., immunogen initially administered to elicit the immune
response), and “Antigen” (i.e., antigen used in the B-cell or T-
cell assay). Searches were restricted such that the data fields
named “1st Immunogen Object Type” and “1st Immunogen
Epitope Relation” had values of “Linear Peptide” and “Epi-
tope”, respectively, with the “MHC class” option set to either
“I” or “II” for T-Cell Search. Employing this basic search
strategy, both narrow and broad searches were conducted, the
former to retrieve data on cross-reactivity between epitopes
differing by only a single amino-acid residue substitution
and the latter to survey the entire repertoire of available
data on linear peptidic epitopes (as illustrated by example in
Figure 3).

Narrow searches were first attempted to retrieve records
for which structural data on epitope binding were available,
setting the “Yes” option for the Viewer Flag (under “3D
Structure of Complex”). Subsequently, the searches were con-
ducted to separately retrieve records curated as containing
either negative or positive data on cross-reactivity and were
restricted such that the data fields named “Antigen Object
Type” and “Antigen Epitope Relation” had values of “Linear
Peptide” and “Structurally Related”, respectively, with the
data field named “QualitativeMeasurement” having a value of
either “negative” or “positive.” In the latter case, searches were
further limited to class I MHC-restricted T-cell assays for

Figure 3: IEDB T-Cell Search facility interface
(http://www.iedb.org/advancedQueryTcell.php). Example shown
corresponds to narrow search for class I MHC-restricted T-cell
assays with positive data on cross-reactivity between epitopes
differing by only a single amino-acid residue substitution. Searches
for B-cell assays were performed using IEDB B-Cell Search
facility interface (http://www.iedb.org/advancedQueryBcell.php)
of analogous form (e.g., without assay-related fields for “MHC
allele”); narrow searches for negative data were performed without
specified value for field labeled as “Epitope Structure Defines”; and
broad searches were performed without specified value for both
said field and that named “Qualitative Measurement” (see main text
for additional details.).

which the data field named “Epitope Structure Defines” had
a value of either “Exact Epitope” (rather than “epitope con-
taining region/antigenic site”), as cross-reaction may occur
with structural differences outside any relevant epitopes
unless this is for a peptide confined within a class I MHC
binding cleft. For each record thus retrieved, the immunogen
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Figure 4: Reduced epitope counts (1) for peptidic sequences of
uniform length varying only at a single-residue position. Each count
corresponds to a set of 20 peptides representing every standard
proteinogenic amino-acid residue at the variable-residue position.
Functional similarity is equated with either fractional aligned-
sequence identity (“◻”; (3) and (4)) or the Shannon information
entropy for differential epitope binding ((5) through (9)). In the
latter case, countswere based on steric incompatibility only (“”; (7)
and Figure 2), both steric incompatibility and cavity formation (“⬦”;
𝑐Δ𝑉
𝑖𝑗𝑘

in (8)), or steric incompatibility with both cavity formation
and hydrogen bonding (“△”; (8) and (9) and Table 1).

and antigen sequences (i.e., values of the data fields named
“1st Immunogen Object Primary Molecule Sequence” and
“Antigen Object Primary Molecule Sequence,” resp.) were
compared. The record was considered for further processing
only if the said sequences were of equal length and differed
at exactly one amino-acid residue position, and the record
was ultimately retained only if a corresponding record with a
“Qualitative Measurement” data-field value of “positive” was
found sharing the same immunogen and immunoassay pro-
tocol except that the antigen was identical to the immunogen
(thus confirming that the immunogen had elicited a relevant
anti-peptide immune response in the first place).The epitope
data thus obtained were analyzed in light of the preceding
Section 2.1.

The broad searches were conducted to retrieve records
on linear peptidic epitopes in general. Among the epitope
records thus retrieved, those wherein the data field named
“Modification”was nonempty (indicating amino-acid residue
covalent modification) were excluded from further consider-
ation, and the remainder were analyzed as regards functional
redundancy according to the preceding Section 2.1.

3. Results and Discussion

3.1. Functional Redundancy versus Sequence. As depicted in
Figure 4, computed functional redundancy increases with

epitope sequence length if functional similarity is equated
with fractional aligned-sequence identity (“◻”), whereas it
is independent of sequence length if functional similar-
ity is equated with the Shannon information entropy for
differential epitope binding (“,” “⬦,” and “△”). The lat-
ter approach thus better accounts for the possibility of a
structural difference in only a single chemical group being
sufficient to preclude antigenic cross-reaction provided that
the sequence under consideration is entirely encompassed
by the relevant epitope structure, as structural differences
may be functionally irrelevant if they lie outside the epitope.
Moreover, computed functional redundancy decreases (i.e.,
the reduced epitope count approaches the total epitope
count) when both steric incompatibility and the energetic
penalty of cavity formation are considered (“⬦”) instead of
steric incompatibility alone (“”).The redundancy decreases
even further if the energetic penalty of unsatisfied hydrogen
bonds (more generally representing suboptimal electrostatic
complementarity) is also considered (“△”).

3.2. Empirical Cross-Reactivity Data. IEDB searches yielded
26 records on epitope cross-reactivity vis-a-vis single-residue
substitution (Table 2), all of which contain only qualitative
rather than quantitative binding data, without reference to
atomic coordinates or other structural details of bound
epitopes. The data suggest that the posited steric incompat-
ibility (in (7) and Figure 2) assumes too little tolerance for
suboptimal complementarity, especially as regards volume
differences between immunogen and antigen in Figure 5,
which depicts examples of cross-reaction despite substitu-
tions increasing residue bulk (i.e., positive-data points to the
left of the diagonal). This might be at least partially corrected
by relaxing or even eliminating the steric-incompatibility
criteria, possibly replacing them with a continuous-form
shape-dependent energetic penalty (considering that they
assume an infinite-step hard-sphere model of steric clashes
between atoms, whereas potential energy may be more accu-
rately represented by continuous functions of interatomic
separation distances); likewise, electrostatic complementarity
also might be more accurately described, for example, in
terms of differential energetic contributions due to charged
and uncharged hydrogen-bonding partners. However, typical
epitope binding actuallymay be suboptimal considering ther-
modynamic and kinetic constraints on affinity maturation in
B-cell ontogeny and the typical absence of affinitymaturation
in T-cell ontogeny, which may underlie heteroclitic cross-
reaction wherein antigen is bound with higher affinity than
immunogen.

Notwithstanding the problem of suboptimal complemen-
tarity described above, data presented in Table 2 suggest
that the approach to epitope sequence redundancy proposed
herein is more conceptually and practically meaningful than
setting threshold (i.e., cutoff) values for fractional aligned-
sequence identity. This is exemplified by the control-reaction
epitopes of data rows 18 and 19 (having consensus sequence
LLXRDSFEV). These epitopes differ from each other at just
one residue position. As typical MHC class I-restricted T-
cell epitopes, they are nonapeptides, for which the highest
meaningful sequence-identity threshold value is 8/9 (∼89%).
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Figure 5: Peptide cross-reactivity assay data of Table 2 vis-a-vis
amino-acid residue volume [21] of immunogen and antigen at
single-residue substitution positions along sequence alignments.

For longer epitopes (e.g., typical MHC class II-restricted
T-cell epitopes), the value is even higher. For example, in
the case of data rows 4 and 5 (having consensus sequence
NTWTTCQSIAXPSK), the said value is 13/14 (∼93%). The
threshold values thus calculated are markedly higher than
those used (e.g., 70% [20]) for conventional protein sequence
analysis. Moreover, regardless of the exact sequence lengths,
applying such threshold values would entail discarding data
on epitopes differing by one residue (e.g., the examples just
cited from Table 2). To avoid such loss of potentially valuable
information, all the available epitope data might be analyzed
and a corresponding reduced epitope count reported to
indicate the level of redundancy in the underlying dataset.

3.3. Survey of Peptidic Epitope Sequence Data. IEDB searches
yielded 11497 records on peptidic epitopes of length less than
50 residues (i.e., the general cutoff provided in the IEDB
curation manual [39]), curated as covalently unmodified
and comprising 4443 B-cell and 7054 T-cell epitope records
(the latter divided between 2749 and 4305 records for MHC
restriction classes I and II, resp.), for which computed
functional redundancy vis-a-vis sequence length is depicted
in Figure 6.

Considering the wide range of sequence counts for the
various sequence lengths in Figure 6, a logarithmic scale was
chosen to depict the data in a compact form. Consequently,
the difference calculated as sequence count − reduced count
was plotted instead of reduced count itself where sequence
count > reduced count, to avoid crowding of data points. For
all positive sequence counts (“◻”), the said differences were

consistently higher where functional similarity was equated
with fractional aligned-sequence identity (“×”) rather than
the Shannon information entropy of the differential epitope
binding (“△”). In the latter case (“△”), the differences were
consistently less than 1, with reduced count close or even
equal to sequence count.These results are anticipated in view
of Figure 4, which shows that reduced count is independent of
sequence length using the entropy-based approach proposed
herein but decreases with sequence length using fractional
aligned-sequence identity.

The data in Figures 4 and 6 thus point to key considera-
tions in evaluating functional redundancy. Clearly, functional
redundancy may be overestimated by simply equating func-
tional similarity with fractional aligned-sequence identity,
especially with increasing sequence length for highly similar
sequences. On the other hand, functional redundancy may
be underestimated where functional similarity is equated
with the Shannon information entropy of differential epitope
binding if the sequence under consideration extends beyond
the relevant epitope structure, which becomes more likely
with increasing sequence length. Hence, the information-
entropy approach as developed herein is conceivably appli-
cable to sequences not exceeding a realistic application-
dependent epitope length (e.g., six residues for antigen
binding by anti-peptide antibodies [40]), although rigorous
generalization to longer sequences might be pursued by
aligning subsequences of such length andpossibly accounting
for differential immunodominance among immunogen epi-
topes [41]. For example, if a set of peptides were to be found
such that each of them comprised a single immunodominant
epitope having fixed length (e.g., six residues in all cases), the
information-entropy approach might be applied to the entire
set even if the peptides were of variable length. Moreover,
even if the said immunodominant epitopes were highly
similar to one another in terms of fractional aligned-sequence
identity, all the available data still could be included in
subsequent analyses, provided that both the total and reduced
epitope counts would be reported in order to account for
functional redundancy. In this way, useful epitope data could
be retained instead of discarded.

3.4. Applications and Future Directions. The discussion thus
far suggests the potentially greater utility of antigenic func-
tional similarity cast as the Shannon information entropy of
differential epitope binding (instead of fractional sequence-
alignment identity) as basis for computing functional redun-
dancy of epitope data to express their structural diversity in
a biologically meaningful manner (i.e., explicitly in terms of
relative binding affinity, which underlies the balance between
the inversely related emergent continuum phenomena of
immunologic specificity and cross-reactivity). This is subject
to the caveat that assuming an idealized epitope-binding
site of optimal steric and electrostatic complementarity (e.g.,
comparable to what is typically observed in a natively
folded wild-type protein) may both overestimate affinity
for an immunogen epitope and underestimate affinity for
antigen epitopes structurally different from the immuno-
gen epitope (thereby possibly overestimating immunologic
specificity as a consequence of underestimating potential
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Figure 6: Peptidic epitope sequence data from IEDB for B-cell assays (a) and for T-cell assays of MHC restriction class I (b) or II (c).
Sequence counts (“◻”) are total epitope counts in IEDB. Corresponding reduced counts (𝑟 in (1)) are expressed as the difference (sequence
count − reduced count), with functional similarity equated with either fractional aligned-sequence identity (“×”; (3) and (4)) or the Shannon
information entropy for differential epitope binding (“△”; (5) through (9)). Missing “◻” indicates sequence count = 0 (e.g., for B-cell epitope
sequence length < 4 in (a)), where “◻” is present and missing “×” or “△” indicates sequence count − reduced count = 0 (e.g., with missing
“△” for B-cell epitope sequence length = 5 in (a)). Both “×” and “△” are missing where sequence count = 1 (e.g., for B-cell epitope sequence
length = 43 in (a)), as reduced count = 1 for sequence count = 1.

for cross-reactivity). These considerations could guide the
development of immunization strategies (e.g., via vacci-
nation) and immunodiagnostics (e.g., to produce peptidic
constructs suitable for eliciting anti-peptide antibodies that
either protect against disease or serve to detect particular
antigens in biological samples via immunoassays), noting
that the practical significance of immunologic specificity and
cross-reactivity is highly context-dependent.

From the perspective of immunization, immunity (e.g.,
induced via vaccination or passive transfer of immune-
system components) may be useful if specifically directed
against a pathogen epitope so as to favor pathogen elimi-
nation without producing harmful hypersensitivity reactions
(e.g., in the form of allergy or autoimmunity). Yet, such
immunity might be even more useful if it also favored elim-
ination of multiple antigenically related variant pathogens
via cross-reaction (such that a single vaccine epitope elicited
the production of immune-system components each cross-
reactive with multiple variant pathogen epitopes) while
still avoiding hypersensitivity. Cross-reactivity of immune
responses is thus potentially useful within limits defined by
risk of harmful hypersensitivity (e.g., due to cross-reaction
with host self-antigens). As regards immunodiagnosis, an
immunodiagnostic test may be useful if it enables specific
pathogen detection via discrimination between a pathogen

epitope and a set of other biologically relevant epitopes (e.g.,
of the host or its commensal symbionts in health, or of
other pathogens for which the clinical implications are very
different). Yet, the test might be even more useful if it also
enabled detection of multiple antigenically related variant
pathogens (such that a single immunologic probe detected
multiple variant pathogen epitopes) while still retaining
its discriminatory power with respect to other biologically
relevant epitopes, particularly where the variant pathogens
are very similar to one another in terms of their clinical
implications (e.g., prognosis and therapeutic options).Hence,
cross-reactivity strongly influences the outcomes of both
immunization and immunodiagnosis, for which reason their
development could be supported by computational tools that
estimate epitope-binding affinity for cross-reactions.

In order to estimate the epitope-binding affinity of
an immune-system component (e.g., antibody) elicited in
response to (and thus having a binding site for) immunogen
epitope 𝑖 for antigen epitope 𝑗, one possible approach would
be to express affinity in terms of association constants, for
example, as

𝐾
𝑖𝑗
= 𝐾
𝑖𝑖
𝑍
𝑖𝑗
, (10)

where 𝐾
𝑖𝑗
is the association constant for cross-reaction with

antigen epitope 𝑗, 𝐾
𝑖𝑖
is the association constant for reaction
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with immunogen epitope 𝑖, and 𝑍
𝑖𝑗
is a correction term

to account for the difference between the two association
constants. In turn,𝐾

𝑖𝑖
might be estimated as

𝐾
𝑖𝑖
= exp(−

Δ𝐺
𝑖𝑖

𝑅𝑇

) , (11)

where Δ𝐺
𝑖𝑖

is the free-energy change for reaction with
immunogen epitope 𝑖 while both 𝑅 and 𝑇 retain their
meanings as in (7). In cases where epitopes 𝑖 and 𝑗 are both𝑚
residues in length, 𝑍

𝑖𝑗
might be estimated as

𝑍
𝑖𝑗
=

{
{

{
{

{

𝑚

∏

𝑘=1

𝑠
𝑖𝑗𝑘
, if

𝑚

∏

𝑘=1

𝑠
𝑖𝑗𝑘
> 𝐾
−1

𝑖𝑖

𝐾
−1

𝑖𝑖
, otherwise,

(12)

where the product retains its meaning as in (6), such that
𝐾
𝑖𝑗
≥ 1 (with 𝐾

𝑖𝑗
= 1 for nonspecific binding). Δ𝐺

𝑖𝑖
could be

estimated from epitope structure (e.g., using structural ener-
getics [40–42]) subject to mechanism-specific constraints
(e.g., on B-cell affinity maturation [43]); and 𝑠

𝑖𝑗𝑘
could be

estimated along similar lines with regard to ΔΔ𝐺
𝑖𝑗𝑘

in (7).
The preceding discussion has alluded to epitope binding

as if it were a binary interaction, which is strictly true only
for B-cell epitopes (e.g., bound by surface immunoglobulin or
antibody); but in the context of T-cell epitopes, the epitope-
binding site is to be understood as a bipartite entity consisting
of an MHC molecule and a T-cell receptor (TCR), such
that the epitope becomes at least partly confined between
the two binding-site components. The overall process of T-
cell recognition is subject to thermodynamic and kinetic
constraints on initial MHC-peptide binding [44] and subse-
quent TCR recognition ofMHC-peptide complex [45], which
potentially complicate prediction of T-cell cross-reactivity
and functional consequences thereof (e.g., considering how
binding affinity and receptor numbers interact to influence
T-cell effector function [45]). Still, predicting B-cell epitope
cross-reactivity is challenging in view of the greater structural
diversity of B-cell epitopes, especially where only a fraction
of the epitope surface contributes to the epitope-paratope
interface, such that cross-reaction may occur with variations
in epitope structure beyond the interface. Hence, although
the analysis herein for continuous epitopes might be gener-
alized to discontinuous epitopes with indexing of residues by
relative sequence positions (instead of consecutive sequence-
position numbers) that accounts for any sequence-alignment
gaps, correlating variations in epitope-residue structure with
potential for cross-reactivity would be nontrivial.

The analysis developed herein conceivably could be
refined to better account forMHC-peptide binding as distinct
from subsequent binding of MHC-peptide complex by TCR,
cognizant of MHC polymorphism. Hence, MHC-peptide
binding could be analyzed with explicit consideration of per-
tinent MHC structural details (e.g., noting that unfavorable
peptide backbone conformations may preclude accommoda-
tion of peptide within the MHC binding cleft and emphasiz-
ing the potential affinity contributions of prospective anchor
residues on peptides vis-a-vis corresponding MHC binding
pockets). Subsequent binding of MHC-peptide complex by

TCR could be analyzed separately, with emphasis on peptide
surfaces accessible for contact by TCR (e.g., excluding those
buried within MHC binding pockets). This could be more
readily applied to class I rather than class II MHCmolecules,
as the latter typically have binding clefts that allow for
variable-length peptide overhangs. The analysis for MHC-
peptide binding might be extended for class II via docking
simulations to predict the MHC-bound conformations and
affinity contributions of the overhangs, after which the
binding of MHC-peptide complex by TCR could be analyzed
with inclusion of any overhang surfaces that are likely to be
accessible for contact by TCR.

At a more fundamental level, apparently suboptimal
complementarity (manifesting as submaximal immunologic
specificity) may be an inherent tradeoff in attaining optimal
immune function from the standpoint of biological fitness
(e.g., enabling each immune-system component to recognize
a variety of structurally distinct epitopes, albeit at the cost of
binding each of these epitopes with only submaximal affin-
ity). Investigation of this possibility may lead to insights on
how immune responses might be optimally biased (e.g., via
vaccination or immunotherapy). Moreover, the asymmetry
of cross-reaction with respect to immunogen- and antigen-
epitope structures cautions against conceptualizing antigenic
differences in terms of antigenic distance as a metric that is
independent of immunization history.

4. Summary and Conclusions

In assembling epitope datasets (e.g., to develop and bench-
mark epitope-prediction tools), sequence redundancy among
epitopes must be considered to avoid misleading results that
reflect overrepresentation of functionally similar epitopes.
However, potentially useful data may be needlessly discarded
by excluding epitopes that share an apparently high degree of
sequence similarity, as even only a single-residue difference
may manifest as extreme functional dissimilarity between
epitopes.The present work thus introduces a reduced epitope
count, as defined using (1) and (2), to account for functional
redundancy of epitope data (FRED)within an epitope dataset
(such that FRED is quantified as the difference between the
total and reduced epitope counts). This can be used, for
example, to characterize the dataset instead of excluding
epitopes with apparently similar sequences from it, thereby
maximizing the use of available epitope data.

More importantly, the present work frames FRED
in terms of potential antigenic cross-reactivity (rather
than sequence distance) construed as functional similarity
between epitopes. Hence, pairwise comparison of epitopes is
performed such that each epitope pair considered is regarded
as consisting of an immunogen epitope (which elicits the
immune response of interest) and an antigen epitope (which
is the target of cross-reactive binding in an immunoassay
to evaluate the immune response). Functional similarity
between epitopes is thus defined in a physicochemically and
biologically meaningful way as the Shannon information
entropy for differential epitope binding in (5), which is
compatible with the possibility of extreme functional dissim-
ilarity between epitopes due to seemingly minor differences
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in sequence. Consequently, the complement of functional
similarity is not a distance (in the sense of a unique value
quantifying the separation between two points in sequence
space), as its value may vary with reversal of the roles (i.e.,
immunogen or antigen) assigned to epitopes under pairwise
comparison. However, it is nonetheless a measure of epitope
dissimilarity, such that summation of its values over all
epitopes of a dataset according to (2) enables calculation of an
averaged contribution of each epitope to the reduced epitope
count.This circumvents the conventional dichotomous label-
ing of epitopes as either redundant or nonredundant based on
an arbitrarily selected threshold value of sequence similarity.
Such labeling is problematic in that selection of the actual
threshold value is difficult to justify on physicochemically and
biologically meaningful grounds and because an epitope thus
might be labeled as redundant on the basis of similarity to a
minority of other epitopes in the dataset.

In line with the preceding considerations, epitope func-
tional similarity may be estimated in terms of differences
between immunogen- and antigen-epitope structure relative
to an idealized binding site of high complementarity to the
immunogen epitope. However, this tends to underestimate
potential for cross-reactivity, which suggests that epitope-
binding site complementarity is typically suboptimal. The
apparently suboptimal complementarity may reflect a trade-
off to attain optimal immune function that favors genera-
tion of immune-system components each having potential
for cross-reactivity with a variety of epitopes. Such cross-
reactivity conceivably could be exploited in the development
of practical applications such as vaccines and immunodi-
agnostics (e.g., to aim for beneficially broad cross-reactivity
rather than overly extreme immunologic specificity).
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