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discriminating between frequency and phase-locked activity (Baker 
et al., 1999; Mima and Hallett, 1999; Salinas and Sejnowski, 2001; 
Fries, 2005; Womelsdorf et al., 2007). It is usually assumed that 
amplitude or power variations take place on long time scales when 
compared to the phase dynamics and are therefore considered neg-
ligible. The coupling that does, or does not, yield synchrony between 
oscillators hence exclusively depends on the phase. Here we ask 
whether this assumption is valid, and by this, tackle if a sole focus 
on phase really covers all functional characteristics of networks. In 
the present study we describe the dynamics of neural populations 
at every node as a neural mass model (Wilson and Cowan, 1972; 
Lopes Da Silva et al., 1974, 1976; Freeman, 1975; Lopes Da Silva, 
1991; Jansen and Rit, 1995; Deco et al., 2008) that can behave like 
weakly coupled self-sustained non-linear oscillators. This descrip-
tion generally allows for deducing the corresponding phase dynam-
ics (Schuster and Wagner, 1990a,b; Aoyagi, 1995; Tass, 1999) and, 
by this, to investigate how amplitude affects the phase dynamics 
in neural networks. The phase dynamics is indeed influenced by 
the amplitudes of the individual oscillators as we show analytically.

In a nutshell, we start off with a network of N Wilson–Cowan 
neural mass models (Wilson and Cowan, 1972) that are each located at 
network nodes k = 1, 2, …, N and linked solely through excitatory con-
nections. Every model displays self-sustained oscillations with slightly 
different natural frequencies. Given a certain structural connectivity 
between the oscillators denoted by C

kl
, we discuss how the connec-

tivity D
kl
 between phases explicitly depends on the oscillators ampli-

tudes R
k
. The expression D

kl
∝(R

l
/R

k
)C

kl
 can be derived  analytically 

IntroductIon
The interplay between structural and functional brain networks has 
become a popular topic of research in recent years. It is currently 
believed that the topologies of structural and functional networks in 
various empirical systems may disagree (Sporns and Kötter, 2004) 
but systematic analyses tackling this issue are few and far between. 
In a combined neural mass and graph theoretical model of electro-
encephalographic signals, it was found that patterns of functional 
connectivity are influenced by – but not identical to – those of 
the corresponding structural level (Ponten et al., 2010). In this 
and many other studies, functional connectivity has been defined 
through the synchronization between activities at different nodes.

Neurons synchronize their firing pattern in accordance with 
different behavioral states. On a larger scale, synchronous activi-
ties are considered to stem from meso-scale neural populations 
that oscillate at certain frequencies with certain amplitudes. That 
is, oscillatory activity may yield synchronization characteristics 
within a neural population or between populations (Salenius and 
Hari, 2003). The amplitude of a single oscillatory neural popula-
tion reflects the degree of synchronization of its neurons, that is, 
it measures local synchrony. By contrast, synchronization between 
two or more oscillatory neural populations is typically defined by 
their (relative) phase variance. Changes in instantaneous phase 
locking or coherence reflect changes in more global, distributed 
synchronization, i.e., between ensembles or between areas. In fact, 
synchronized activity across neural networks is believed to offer 
an effective mechanism for information transfer, especially when 
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by  characterizing every oscillator via its amplitude and phase and 
formulating for the latter the dynamics in terms of a Kuramoto net-
work (Kuramoto, 1984; Strogatz, 2000; Acebron et al., 2005).

The discussed structural connectivities differ qualitatively in 
their topology. In detail, we consider the fully connected isotropic 
network, a network with small-world topology generated by the 
Watts–Strogatz model (Watts and Strogatz, 1998), and an anatomi-
cal network reported by Hagmann et al. (2008). Capitalizing on 
the derived analytical expression for D

kl
, we show how the ampli-

tude dependency can alter the topology of connectivity in the 
network of Wilson–Cowan oscillators when reducing them to the 
Kuramoto-like network of mere phase oscillators. The connectivity 
at the level of phase dynamics, D

kl
, largely prescribes the func-

tional connectivity as quantified by the resulting synchronization 
patters. We illustrate this numerically using the aforementioned 
network topologies that are known to influence synchronizability 
(Watts and Strogatz, 1998; Barahona and Pecora, 2002; Achard and 
Bullmore, 2007; Brede, 2008).

MaterIals and Methods
network Models
To understand the qualitative relationship between macroscopically 
defined functional networks and the (underlying) structural con-
nectivity, modeling local populations of neurons in terms of aver-
aged properties like their mean voltage and/or firing rates appears 
very efficient. This mean-field-like approach has a long tradition 
and is typically referred to as neural mass modeling (Wilson and 
Cowan, 1972; Lopes Da Silva et al., 1974, 1976; Freeman, 1975; 
Lopes Da Silva, 1991; Jansen and Rit, 1995; Deco et al., 2008). Neural 
mass models have been used to study the origin of alpha rhythm, 
evoked potentials, pathological brain rhythms, and the transition 
between normal and epileptic activity (Lopes Da Silva et al., 1974; 
Jansen and Rit, 1995; Stam et al., 1999a,b; Valdes et al., 1999; David 
et al., 2005). Several studies considered small networks of two or 
three interconnected neural mass models (Van Rotterdam et al., 
1982; Schuster and Wagner, 1990a,b; Wendling et al., 2001; David 
and Friston, 2003; Ursino et al., 2007) as well as larger networks 
of interconnected models (Sotero et al., 2007; Ponten et al., 2010).

Here we chose for Wilson–Cowan as seminal neural mass model 
because it can readily be derived from microscopic descriptions 
like integrate-and-fire neurons, but also from more general models 
like Haken (2002) pulse-coupled neurons. By the same token, the 
Wilson–Cowan model provides a comprehensive link toward an 
even more macroscopic description as its continuum limit resembles 
by now well-established neural field equations (Jirsa and Haken, 
1996). That is, Wilson–Cowan units may be viewed as an interme-
diate but in some sense generic description of densely connected 
neural populations.

Network of Wilson–Cowan models
As said, we are going to put individual Wilson–Cowan models at 
every node k of the network under study. Every model contains 
distinct populations of excitatory and inhibitory neurons that are 
described by their firing rates. If e

n
 denotes the firing rate of an 

excitatory neuron and i
n
 the firing rate of an inhibitory neuron, 

then a neural mass description can be obtained by averaging over 
the neural population in terms of E eN n

N
ne

e= ∑ =
1

1  and, I iN n
N

ni

i= ∑ =
1

1  

where N
e
 and N

i
 are the numbers of excitatory and inhibitory neu-

rons. By this averaging, E and I represent the mean firing rates of 
all excitatory and inhibitory neurons, respectively, of the neural 
population in question, i.e., that at node k.

Within that population, every neuron receives input from all 
other neurons of the population. Furthermore, the excitatory units 
individually receive constant external inputs p

n
, whose average is 

given by P pN n
N

ne

e= ∑ =
1

1 . The sum of all inputs is (instantaneously) 
integrated in time when it exceeds some threshold u. This thresh-
olding is realized by means of a sigmoid function S. Without loss of 
generality we here chose S[x] = (1 + e−x)−1; we note that, in general, 
the thresholds may differ between excitatory and inhibitory units1. 
In consequence, the mean firing rates of the neural populations can 
be cast in the following dynamical system

d

dt
E E S a c E c I P

d

dt
I I S a c E c I

E EE IE E

I EI II I

= − + − − +( ) 

= − + − −( )

u

u 

The characteristics of this dynamical system range from a mere 
fixed-point relaxation to limit cycle oscillations (self-sustained 
oscillations) depending on parameter settings (Wilson and Cowan, 
1972), in particular on the choice of the external input P. That input 
is usually chosen at random. In the current study, we restrict all 
parameter values to the regime within which the dynamics displays 
self-sustained oscillations; see Appendix.

To combine Wilson–Cowan models in a network, different pop-
ulations are now connected via their excitatory units by virtue of 
the sum of all E

l
 in the dynamics of E

k
 (see Figure 1). The dynamics 

at node k then becomes

d

dt
E E S a c E c I P

N
C E

d

dt

k k E k k E k kl l
l

N

= + − + +
















=
∑− −EE IE u
h

1

II I S a c E c Ik k I EI k II k I= − + − −( ) u  (1)

In words, all Wilson–Cowan oscillators, located at nodes l in the 
network drive the change of the firing rate of the excitatory units 
E

k
. The connectivity is given by the real-valued matrix C

kl
 that has 

vanishing diagonal elements, i.e., C
kk

 = 0. That connectivity matrix 
is scaled via the overall coupling strength h. It is important to note 
that the C

kl
 connectivity matrix is here always identified as the 

structural connectivity.
As the different Wilson–Cowan models display self-sustained 

oscillations, it seems obvious to describe them using their ampli-
tude and phase dynamics. The required transforms and approxima-
tions are summarized in the Appendix and the outcomes reveal a 
phase dynamics similar to the seminal Kuramoto network of phase 

1At the individual neuron level, the dynamics reads:

d

dt
e e S a u e v i p

d

n n e N mn mm

N

N mn m n
e

m

N
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e

i
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= =∑ ∑1

1

1

1
u

ddt
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N
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i
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N
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e
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= =∑ ∑1

1

1

1
u

where u, v, w, and z are positive constants representing coupling matrices within 
the local neural population – see, e.g., Schuster and Wagner (1990a,b) for details.

Daffertshofer and van Wijk Amplitude influences phase connectivity

Frontiers in Neuroinformatics www.frontiersin.org July 2011 | Volume 5 | Article 6 | 2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


d

dt Nk k
l

N

l kw v
h

w w= + −( )
=
∑sin

1

For the sake of legibility, however, we here refer to (2) also as 
the Kuramoto model.

As mentioned above, the effect of increasing h in the isotropic 
case is to increase the phase synchrony amongst the oscillators. 
Suppose the coupling is weak (i.e., smaller than the critical value, 
or h  h

c
, then the oscillators’ phases disperse, whereas for strong 

coupling h ? h
c
 the oscillators become synchronous, i.e., the phases 

are locked at fixed differences. In the intermediate case h ≈ h
c
 , clus-

ters of synchronous oscillators may emerge. However, many other 
oscillators, whose natural frequencies are at the tails of the distribu-
tion, are not locked into a cluster. In other words, as h increases, the 
interaction functions overcome the dispersion of natural frequencies 
v

n
 resulting in a transition from incoherence, to partial and then 

full synchronization (Acebron et al., 2005; Breakspear et al., 2010).

Linking neural mass models to phase oscillators
When deriving the Kuramoto network from the Wilson–Cowan oscil-
lator network, the major ingredient is to average every oscillator over 
one cycle when assuming that its amplitude and phase change slowly 
as compared to the oscillator’s frequency. That is, time-dependent 
amplitude and phase are fixed, the system is integrated over one period 
to remove all harmonic oscillations, and, subsequently, amplitude and 
phase are again considered to be time-dependent (Guckenheimer and 
Holmes, 1990) – this procedure is also referred to as a combination of 
rotating wave approximation and slowly varying amplitude approxi-
mation (Haken, 1974). As shown in more detail in the Appendix, the 
phase dynamics of the system (1) can in this way be approximated as

d

dt N
C a S

R

R

N
C a

k k kl E
l

N

E k
l

k

l kw v
h

x w w

h

= +   −( )

+

=

( )∑
2

16

1

0′ , sin

kl EE
l

N

E k k l l kS R R c c

c c

3

1

0 2 23

2

=

( )∑   +( )( −( )

+

″′ x w w, sin

c

EE IE

EE IE oos w wl k−( ))
with S′ and S′′′ referring to the first and third derivative of the 
sigmoid function S. The parameter xE k,

( )0
 is given by

x u
h

E k E k k E k l
l

N

a c E c I P
N

C E,
0 0 0 0

1

( ) ( ) ( ) ( )

=

= − − + +




∑EE IE kl

with ( , )( ) ( )E Ik k
0 0  defining the unstable node within the limit cycle of 

the Wilson–Cowan model (1) and at network node k. For more 
details including the definition of the natural frequency we refer 
to the Appendix. Considering the case that the amplitudes R

k
 are 

reasonably small, this phase dynamics can be further simplified to

d

dt N
a S

R

R
Ck k E E k

l

N
l

k

kl l kw v
h

x w w≈ +   −( )( )

=
∑

2
0

1

′ , sin

which does resemble a Kuramoto network. In fact, by comparing 
this form with the dynamics (2) we find

D a S
R

R
Ckl E E k

l

k

kl=  
( )1

2
0′ x ,

 
(3)

oscillators. The Kuramoto model and its link to the here-discussed 
network of Wilson–Cowan models will be briefly sketched in the 
following two sub-sections.

Kuramoto network of phase oscillators
The collective behavior of a network of oscillators, whose states are 
captured by a single scalar phase w

k
 each, can, in first approximation, 

be represented by the set of N coupled differential Eq.

d

dt N
Dk k

i

N

l kw v
h

w w= + −( )
=
∑ kl sin

1  

(2)

That is, the k-th oscillator, with natural frequency v
k
, adjusts its 

phase according to input from other oscillators through a pair-wise 
phase interaction function sin(w

l
 – w

k
). The connectivity matrix 

D
kl
 is again scaled by an overall coupling strength, h. As will be 

sketched below, h serves as a bifurcation parameter in that small 
values of h yield a network behavior that essentially agrees with 
the entirely uncoupled case (i.e., the phases are not synchronized), 
whereas h larger than a certain critical value h

c
 causes the phases 

to synchronize. The frequencies v
k
 are distributed according to 

a specified probability density usually taken to be a symmetric, 
unimodal distribution (e.g., Lorentzian or Gaussian distributions) 
with mean v

0
. Although the sinusoidal interaction function is an 

approximation, it still permits a variety of highly non-trivial solu-
tions. As such the model (2) can be viewed as the canonical form 
for synchronization in extended, oscillatory media. We note that 
the connectivity matrix D

kl
 represents also a structural connectiv-

ity that does not necessarily agree with that of the Wilson–Cowan 
model – see below.

Strictly speaking the system (2) does not represent the Kuramoto 
model in its original form as there the coupling between nodes k 
and l was considered isotropic and homogeneous, i.e., D

kl
 = 1 for 

all connections, by which the model reduces to

cEI

cEE

CkI EI

cIE

cII

Ik

Pk
Ek

Figure 1 | Network of Wilson–Cowan models. At each node k a neural 
population containing excitatory and inhibitory units (Ek and Ik, respectively) 
yields self-sustained oscillations. Other nodes are connected to the excitatory 
unit by means of SCklEl. Note that this (mean-field) coupling is scaled by a 
scalar h – see Eq. 1 for details.
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strength h we induced qualitative differences in synchronization as 
the order parameter was expected to undergo well-defined bifurca-
tions from an unlocked state to in-phase locking. We simulated both 
the network of Wilson–Cowan oscillators as well as the Kuramoto 
network. For the Wilson–Cowan model, we defined the phase as the 
quadrant-corrected inverse tangents of the ratio of excitatory and 
inhibitory units at node k, i.e., w

k
 = arctan(E

k
/I

k
) – this phase largely 

agreed with the Hilbert-phase of E
k
 because of the smoothness of 

the Wilson–Cowan limit cycle. For the Kuramoto network, the phase 
was, of course, the state variable under study, which did not require 
any further definition. In all simulations the primary outcome vari-
able in all simulations was, hence, r(h) for different network types 
and, in the case of the Wilson–Cowan network, distinct ranges of 
input values P

k
 as will be explained below in all detail. In addition, 

we computed the phase locking index of the pair-wise relative phases 
between nodes which served as definition of the functional networks. 
The precise transform of the Kuramoto network dynamics to the 
dynamics of relative phases is beyond the scope of the current paper.

To study potentially “erroneous” simulations of the phase 
dynamics – and thus possible “misinterpretations” of structural 
connectivity when solely looking at functional networks defined 
via phase synchrony – we ignored for the Kuramoto network the 
amplitude dependency (3) of the connectivity matrix and simply 
identified D

kl
 by C

kl
. We further accelerated numerical simulations 

by adding some small dynamic noise (Stratonovich, 1963; Risken, 
1989; Daffertshofer, 1998), so-called Langevin forces G

k
(t), in 

the form of mean-centered Gaussian white noise. The simulated 
dynamics hence looked like

d

dt
E E S a c E c I P

N
C Ek k E EE k IE k E k kl l

l

N

k= − + − − + + +













=
∑u
h

e2
1

G



= − + − −( ) 
d

dt
I I S a c E c Ik k I EI k II k Iu

 
 

(4)

and

d

dt N
Ck k kl l k k

l

N

w v
h

w w e= + −( ) +
=
∑ sin 2

1

G

 
(5)

Recall that the connectivity in (5) differs from (2) by means 
of D

kl
 → C

kl
.

Throughout simulations we fixed parameter settings as: a
E
 = 1.2, 

a
I
 = 2, c

EE
 = 5, c

II
 = 1, c

IE
 = 6, c

EI
 = 10, u

E
 = 2, u

I
 = 3.5. The strength 

of the dynamical noise was always considered very small (it only 
served to accelerate numerics and not to discuss impact of stochas-
tic forces). It was set to e = 10−4 for all simulations of the Wilson–
Cowan network (4) and to e = 10−2 for the Kuramoto network (5). 
Simulations were realized using a simple Euler-forward scheme 
with step-size 10−2. Per run a total number of 105 samples were 
simulated. For each network, simulations were repeated with 10 
different realizations of constant but random inputs P

k
 (Wilson–

Cowan oscillators) or constant but random natural frequencies v
n
 

(Kuramoto oscillators). In addition, for the small-world network, 
new C

kl
 matrices were generated with different rewiring pattern for 

each realization. Each of these 10 realizations was again repeated 
five times with different initial values of E

k
 and I

k
,
 
or w

k
. The resulting 

r(h) values were computed over the final 100 samples of every run 

In sum, the phase dynamics can, in good approximation, be cast 
into the form of a Kuramoto network provided the connectivity matrix 
is corrected by means of (3). This correction yields a non-trivial ampli-
tude dependence of the connectivity at the level of the phase dynam-
ics. Since S is a sigmoid function, S′ becomes bell-shaped implying 
a change in connectivity D

kl
 whenever the parameter xE k,

( )0
 is altered, 

e.g., by shifting the center of the Wilson–Cowan limit cycle at node 
k and/or l. This probably more global dependence is supplemented 
by the here more important node-by-node dependence. When the 
amplitudes R

k
 differ per node, the ratio R

l
/R

k
 in (3) directly affects the 

value of D
kl
, which can, strictly speaking, be entirely independent on 

the choice of the connectivity matrix C
kl
. Put differently, the structural 

connectivity at the neural mass level does not necessarily agree with 
the structural connectivity at the phase dynamics level.

Given our interest in amplitude dependency, we finally add a 
note about “large” amplitudes. In line with the Appendix Eq. A.7 
including larger amplitudes yields a slight modification of the phase 
dynamics that we here abbreviate as

d

dt N
Dk k kl

l

N

l k klw v
h

w w a= + − −( )
=
∑ 

1

sin

Interestingly, the presence of large amplitudes yields, apart from 
slightly different coupling coefficients Dkl , phase shifts a

kl
 that 

translate to finite transmission delays. Prior studies that incorporate 
transmission delays into phase oscillators have revealed elaborate 
synchronization behaviors (Zanette, 2000; Jeong et al., 2002). The 
more complex dynamics due to a suggests the notion of frustra-
tion, whereby the interaction functions require some finite phase 
offset in order to vanish (Acebron et al., 2005). For a more detailed 
discussion we refer to a recent review by Breakspear et al. (2010). 
Note that for our analytical estimates we always consider the case 
in which Eq. (2) and (3) apply to good approximation.

sIMulatIons
More recently, several research groups started investigating the 
relationship between structural and functional connectivity, sug-
gesting that functional connectivity may indeed resemble aspects 
of structural connectivity, at least to some extent (Lebeau and 
Whittington, 2005; Ingram et al., 2006; Honey et al., 2007, 2009, 
2010; Voss and Schiff, 2009; D’angelo et al., 2010). In most stud-
ies, a fixed structural architecture was implemented based on, for 
instance, the cortical structure of the cat (Zhou et al., 2007), or 
the macaque neo-cortex (Honey et al., 2007). Yet it is unclear how 
variations in the network properties at the structural level or fixed 
network properties with variations by means of (node-dependent) 
amplitudes may affect the synchronization strength and more 
global network characteristics at the functional level.

Synchronization was quantified via the phase locking index or 
the phase uniformity r, defined as (Mardia and Jupp, 2000)

r w=
=

∑1

1N
ei

k

N
k

This index agrees with the so-called Kuramoto order parameter 
and reflects the degree of divergence of the different phases in the 
network (not the relative phases). By varying the overall coupling 
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Small-world network
The model for generating small-world networks employed here 
was introduced by Watts and Strogatz (1998) to generate graphs 
with high clustering and low path length (high efficiency). 
Starting from an ordered network on a ring lattice where nodes 
are only connected to a small number of direct neighbors, con-
nections are subsequently rewired to a random (distant) node 
with certain probability. The introduction of a few random con-
nections in an ordered network drastically increases the synchro-
nizability of the network (Watts and Strogatz, 1998; Barahona 
and Pecora, 2002; Motter et al., 2005; Zhou and Kurths, 2006; 
Stam and Reijneveld, 2007; Wu et al., 2008; Chen et al., 2009). 
We used a network with an average degree of 10 and a rewir-
ing probability of 0.2. An example of a C

kl
 matrix is given in 

Figure 5 below.

Hagmann network
Empirical networks are unlikely to have an organization that can 
be exactly described by one of the theoretical network models. 
To study a network that more realistically represents anatomical 
connections in the human brain we repeated our simulations on 
a network that was based on axonal pathways obtained by dif-
fusion spectrum imaging. This dataset has been used to identify 
the so-called “structural core” of anatomical connections in the 
human cerebral cortex as described by Hagmann et al. (2008), 
which is accessible via http://www.connectomeviewer.org/viewer/
datasets. To reduce the size of the network and, by this, acceler-
ate simulation time, the original 998 regions were assigned to a 
66-node parcellation scheme and averaged over all five subjects as 
was also done in the original study (Hagmann et al., 2008). The 
resulting weighted, undirected network was subsequently thresh-
olded to obtain a binary network with an average degree of 10. 
This network served as our connectivity matrix C

kl
; see Figure 2 

and also Figure 6 below.

results
The changes in synchronization r as a function of overall coupling 
strength h are summarized in Figure 3. First thing to notice is that, 
for a critical h, the Wilson–Cowan model shows a brisk increase 
in r after which maximal synchronization is reached. Increasing h 
again after a critical value breaks down the synchronization as the 
individual Wilson–Cowan oscillators leave the stable limit cycle 
regime when their inputs exceed a certain value (Schuster and 
Wagner, 1990a). That means, the neural masses at the different 
nodes stop oscillating altogether if coupling is too strong. Of course, 
this does not apply for the Kuramoto model since, by construction, 
the phases keep oscillating. In consequence, r keeps increasing with 
h and reaches asymptotically maximum synchronization (see bot-
tom row’s panels in Figure 3).

The different choices of P
k
 intervals result in altered synchro-

nization curves. This was most apparent for the [−0.8,…,−0.7] 
and [0.7,…,0.8] intervals (blue solid lines in Figure 3, third row’s 
panels) when amplitudes lie furthest apart. In general, different 
P

k
 intervals caused a shift in critical h, with networks with larger 

amplitudes reaching maximum synchronization for lower coupling 
strength than oscillators with smaller amplitude. Interestingly, the 
cases with bimodal amplitude distributions (dashed lines) were 

and averaged over all simulations. Primary outcome variable was, 
hence, r(h) for simulations of (4) and (5) using the three different 
network types, and in the case of the Wilson–Cowan network (4), 
using altered input-distributions to set P

k
.

For the Kuramoto model the natural frequencies v
n
 were ran-

domly drawn from a Cauchy–Lorentz distribution with width 
g = 0.5 and initial w

k
 values at time t = 0 were drawn from a uni-

form distribution over the interval [0, 2π). The initial E
k
 and I

k
 

values for the Wilson–Cowan oscillators were uniformly chosen 
from the interval [0, 1].

By default, the constant input values P
k
 were drawn from a uni-

form distribution with −0.25 ≤ P
k
 ≤ 0.25 for every node k. In order 

to tackle amplitude effects, however, we looked also at the case in 
which (selected) nodes displayed oscillations with clearly different 
amplitudes than others. For this we selected four different intervals 
from which P

k
 was drawn: −0.25 ≤ P

k
 ≤ −0.20; 0.20 ≤ P

k
 ≤ 0.25; 

−0.8 ≤ P
k
 ≤ −0.7; and 0.7 ≤ P

k
 ≤ 0.8. Simulations were performed 

using either a single interval or a combination of two intervals 
for which the first 50% of the nodes were assigned a P

k
 from the 

first interval and the second 50% from the second interval. These 
combinations of intervals were between similar ranges, hence: 
−0.25 ≤ P

k
 ≤

k
 −0.20 with 0.20 ≤ P

k
 ≤ 0.25 and −0.8 ≤ P

k
 ≤ −0.7 

with 0.7 ≤ P
k
 ≤ 0.8. As shown in the final part of the Appendix 

the stationary amplitude at network node k either vanishes, i.e., 
R

k,stationary
 = 0 or it obeys the form

R
a c S a c S

a c
k

E EE E k I II I k

E

,stationary =
− ′   + ′  

( ) ( )

8
2 0 0

3

x x, ,

EEE EE IE E k I II II EI I kc c S a c c c S2 2 0 3 2 2 0+( ) ′′′   − +( ) ′′′( ) ( )x x, ,
 

that by virtue of xE k,
( )0

 explicitly depends on the input P
k
. Given this 

dependency, varying the input P
k
 systematically could be used to 

create different scenarios of amplitude effects, which – in particular 
if selected nodes received significantly different input than others 
– potentially caused pronounced, qualitative differences between 
C

kl
 and D

kl
. In these cases, the simulations of (4) and (5) were 

expected to disagree.
The connectivity matrices C

kl
 were chosen as either a fully con-

nected isotropic network, as a network with small-world topology 
generated by the Watts–Strogatz model (Watts and Strogatz, 1998), 
or via an anatomical network reported by Hagmann et al. (2008). 
For all the connectivities we estimated the functional networks via 
phase locking between nodes.

Fully connected homogeneous network
The original Kuramoto network comprises a fully connected homo-
geneous network – see above. C

kl 
in this case consists of an N × N 

matrix containing ones everywhere except for the diagonal, where 
all values were set to zero, i.e., we did not allow for self-connections. 
We note that discarding diagonal elements is, strictly speaking, not 
necessary for the phase dynamics (2) or (6) as the coupling via the 
sine of relative phase vanishes, i.e., by construction (or symmetry) 
there are no self-connections. This argument, however, does not 
apply for the network (1) or (5), hence we always set C

kk
 = 0.

Although the Kuramoto network is usually studied for large 
size networks, we chose a network of 66 nodes in order to make a 
better comparison with the Hagmann dataset.
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synchronize for a combination of the two. A closer look at the func-
tional synchronization patterns between individual nodes of this 
network revealed that two distinct clusters emerged corresponding 
to the bimodal inputs and thus amplitude distribution (Figure 4).

less synchronizable than their unimodal counterparts. An exam-
ple of this phenomenon is the case of a fully connected network 
that reaches global synchronization for each of the [−0.8,…,−0.7] 
and [0.7,…,0.8] P

k
 intervals separately but appears unable to fully 
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Figure 2 | Plot of the Hagmann network (Hagmann et al., 2008). The original 998 regions were assigned to a 66-node parcellation scheme. For the sake of 
visualization, all 66 nodes are located on the circle; see text for more details.
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local clusters but the large difference between the input intervals pre-
vented them from synchronizing with one another. It is important 
to note that, if amplitude effects were not taken into account, a full 
synchronization of the network would have been found.

With the current parameter settings no full global synchroniza-
tion could be achieved in both the small-world and the Hagmann 
network. However, partial synchronization patterns could be observed 
that did not correspond with the structural connectivity but also not 
with the distribution of amplitudes (Figures 5 and 6). These patterns 
rapidly emerged and disappeared with varying h. Although the match 
with the amplitude distribution was not as clear-cut as in the case of 
the fully connected network (Figure 4), a similar clustering could be 
observed, by which the functional connectivities turned out to dif-
fer not only quantitatively but also qualitatively from the underlying 
structural connectivity – a fact that would be missed if relying on a 
description of sole phase oscillators that show such partial synchroni-
zation patterns only in close vicinity of the critical coupling strength.

dIscussIon and conclusIon
The introduction of network analysis to neuroscience has paved new 
ways for the study of neural network organizations. Particular focus 
has been on the search for complex networks since many of these 
networks – especially in the neuroinformatics context – are known 
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If the structural connectivity is isotropic, then amplitude 
 distribution largely (if not fully) prescribes the functional connectivity 
pattern that thus clearly disagrees with the structural connectivity. In 
consequence, the current example revealed two strongly synchronized 
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 electrophysiological signals, for instance, M/EEG. We have shown 
that, even if the local dynamics at every node of a network can be 
described as phase dynamics in the form of a Kuramoto network, 
the connectivity matrix at this level of phases does not necessar-
ily agree with the connectivity at the level of neural mass models 
describing firing rates of local neural populations. The connectivity 
at the phase dynamics level has to be corrected by its amplitude 
dependency. This phase level is indeed closely related to the empiri-
cally assessed functional connectivity matrix as this, as said, is com-
monly defined through locking patterns of phases. If relying on 
Kuramoto-like approximations, the connectivity matrix has to be 
corrected via the relation (3) that may include non-trivial ampli-
tude dependency. Especially, when the amplitudes differ from node 
to node, the connectivity at the level of phases can qualitatively 
differ from the structural connectivity at the level of neural mass 
or mean firing rates. That is, structural and functional connectivity 
may differ simply because of the latter’s amplitude dependency.

In consequence, phase dynamics and, hence, synchrony patterns 
should always be analyzed in conjunction with the correspond-
ing amplitude changes. Patterns of global synchrony (phase) may 
depend on local synchrony (amplitude). This may have profound 
impacts when linking, for instance, M/EEG studies to neural 
modeling. Amplitude there translates to (spectral) power, which 
typically differs between distinct behavioral states or due to pathol-
ogy. Incorporating these amplitude changes will certainly help to 
understand how structural and functional network organizations 
in the cortex, in particular, and in the central nervous system, in 
general, may relate to one another.
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holds. In principle this can be any solution but here we identify 
( , )( ) ( )E Ik k

0 0  with the unstable fixed-point (unstable node to be pre-
cise) within the stable limit cycle (see the intersection point of 
the nullclines in Figure A1). We investigate the deviation of this 
solution by means of
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As said, this “mean”-centering allows for expanding the sigmoid 
function to the M-th order, S x x S x S x xn
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here S(n) denotes the n-th derivative of S; see also Figure A2. Inserting 
this expansion into (A.2) yields the following system differential Eq.
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Here the zero-th order S(0) cancels because of (A.1). The sys-
tem (A.4) is weakly non-linear presuming M is small implying 
the presence of only low-order polynomial terms. Put differ-
ently, the sigmoid function S is evaluated close to its threshold. 
For the sake of simplicity we here use M = 3. Furthermore we 
set overall coupling strength h to be small, i.e., we drop all 
terms containing h2 or higher orders in h. By this (A.4) can 
be reduced to
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appendIx
To show the link between the network of Wilson–Cowan models 
(1) and the Kuramoto network of phase oscillators (2) we adopt 
Schuster and Wagner’s derivation (Schuster and Wagner, 1990). In 
contrast to their description of two coupled oscillators, however, 
we explicitly account for a network structure containing N nodes.

When deriving the Kuramoto network, the strategy is to consider 
the Wilson–Cowan model in the oscillatory regime, i.e., in the pres-
ence of a stable limit cycle (Figure A1), which is first “mean”-centered 
simplifying the expansion of the sigmoid function S. Then, the oscil-
lator is averaged over one cycle when assuming that its amplitude 
and phase change slowly as compared to the oscillator’s frequency. 
That is, time-dependent amplitude and phase are fixed, the system 
is integrated over one period to remove all harmonic oscillations, 
and, subsequently, amplitude and phase are again considered to 
be time-dependent (Guckenheimer and Holmes, 1990) – we note 
that this procedure is also referred to as a combination of rotating 
wave approximation and slowly varying amplitude approximation 
(Haken, 1974). The averaging immediately results in the oscillator 
network that, when assuming weak coupling and small amplitudes, 
resembles the Kuramoto network.

More explicitly, let ( , )( ) ( )E Ik k
0 0  be a known solution, for which
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Figure A1 | Limit cycle oscillations of a single Wilson–Cowan oscillator,

d
dt
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u 

i.e., Eq. 1 with N = 1; the sigmoid function was set to S[x] = (1 + e−x)−1. 
Dot-dashed lines represent the nullclines (temporal derivatives of E and I 
vanish). At the intersection of the nullclines is an unstable node.
Parameter values:
aE = 1.2, aI = 2, cEE = cII = 10, cIE = 6, cEI = 1, uE = 2, uI = 3.5, P = 0.5.
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For the sake of completeness we also list the natural frequen-
cies V

k
 of the uncoupled and linearized Wilson–Cowan oscillators:

Vk E EE E k I II I k

E IE E k

a c S a c S

a c S

2 0 0
21

4
= ′   + ′  ( )
− ′

x x

x

,
( )

,
( )

,
(( )

,
( )0 0 1  ′   −( )a c SE EE E kx  (A.11)

with which V in (A.9) can be defined via averaging over nodes, 
i.e., V V= ∑−
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1 .Furthermore the amplitude dynamics cor-
responding to the phase Eq. (A.7) reads
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When ignoring all coupling terms (i.e., setting h = 0), this ampli-
tude dynamics of such isolated Wilson–Cowan oscillators reduces to
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Which has the stationary solutions R
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provided the square-root exists; cf. Figure A2.

which represents a network of weakly non-linear, self-sustained 
oscillators. Conventionally its characteristics are studied after trans-
forming the system into polar coordinates

d w d wE R t I R tk k k k k k= +( ) = +( )cos sinV Vand
 

(A.6)

where R
k
 and w

k
 are the time-dependent amplitude and phase, 

respectively, of the network node k, and V is a yet unknown (mean) 
frequency. As said, we assume that amplitude and phase change 
slowly with respect to V, and average the system (A.5) over a cycle 
t = [0…2π/V). This averaging yields the phase dynamics as
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with S′ and S- referring to the first and third derivative of the sigmoid 
function S, respectively (see Figure A.2), and the frequency being given by
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As a last approximation, we consider the case in which all ampli-
tudes R

k
 are sufficiently small so that their quadratic and higher 

orders can be ignored. We note that R
k
 are the amplitudes of the 

limit cycles describing (dE
k
,dI

k
) which do not agree with the mean 

“activities” of the Wilson–Cowan oscillators as they are shifted by 
( , )( ) ( )E Ik k

0 0 . Discarding these higher order terms finally leads to
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and
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which is equivalent to (2).
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Figure A2 | Shape of the sigmoid function S[x] = 1/(1 + e−x) and its first and third derivatives. In the vicinity of the threshold x = 0, the third derivative (right 
panel) is negative allowing for the existence of the stationary amplitude Rk,stationary as given in (A.14) dependent on parameter settings.
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