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Abstract: A catalyst-free coupling reaction between O-peracetylated, O-perbenzoylated, O-permethyl
ated, and O-permethoxymethylated 2,6-anhydro-aldose tosylhydrazones (C-(β-D-glycopyranosyl)for
maldehyde tosylhydrazones) and aromatic boronic acids is reported. The base-promoted reaction
is operationally simple and exhibits a broad substrate scope. The main products in most of the
transformations were open-chain 1-C-aryl-hept-1-enitol type compounds while the expected β-
D-glycopyranosylmethyl arenes (benzyl C-glycosides) were formed in subordinate yields only. A
mechanistic rationale is provided to explain how a complex substrate may change the well-established
course of the reaction.

Keywords: coupling; anhydro-aldose tosylhydrazones; C-glycosides; heptenitols

1. Introduction

N-Tosylhydrazones have extensively been used in organic synthesis for more than
half a century. In the past decade N-tosylhydrazones were generally applied in a variety
of carbon–carbon and carbon–heteroatom bond forming reactions [1–6]. These transition
metal catalyzed or catalyst-free cross-coupling reactions proceed through the in situ gener-
ated diazo compounds, followed by the formation of metal–carbene or carbene intermedi-
ates, which lead to the corresponding coupled products. Carbohydrate tosylhydrazones
are also known, but their application in coupling reactions is poorly investigated.

In our research group an easy, one-step method was worked out for the synthesis
of anhydro-aldose tosylhydrazones from readily accessible glycosyl cyanides [7–9]. We
began a systematic study aimed at the investigation of the applicability of anhydro-aldose-
tosylhydrazones 1 [7–9] in coupling reactions. In this project C-O [10], C-S [11], and C-N [12]
bonds were successfully formed under metal-free conditions, while C-C bonds [13,14] were
obtained in Pd-catalyzed reactions (Scheme 1).

The metal-free reaction between the diazo precursor N-tosylhydrazones and alkyl,
alkenyl, and arylboronic acids has been established in recent years as a powerful C(sp3)–C
bond-forming transformation (Scheme 2a) that avoids the application of precious metal cat-
alysts and highly air/moisture-sensitive or expensive coupling partners [15,16]. However,
this reaction was primarily limited to benzylic, α-heterocyclic, and/or aldehyde-derived
tosylhydrazones at the substrate level, with lower yields observed for substrates that
differed from these [15,17–20]. Dai and coworkers expanded this reductive coupling to
acylferrocene tosylhydrazones, producing highly substituted α-arylalkylferrocenes [21]. N-
Tosylhydrazones derived from 2-, 3-, and 4-substituted cyclohexanones and 4-substituted
cyclopentanone were also used in couplings with alkenyl boronic acids [22]. The reductive
coupling of N-tosylhydrazones under the standard reaction conditions was also examined
with diarylborinic acids (Ar2B(OH)) to give diarylmethanes with good yields [23]. Kirschn-
ing developed a flow protocol for the reductive coupling reaction of N-tosylhydrazones
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with aryl boronic acids. To increase the practical applicability of the reaction, a two-step
continuous flow protocol, starting with carbonyl compounds and tosylhydrazide, was also
developed [24]. Nakagawa and coworkers expanded the scope of the transformation to a
set of challenging heterocycle-containing aldehyde tosylhydrazones, such as those of pro-
tected azetidine, imidazole, and azaindole derivatives. These couplings resulted in low to
good yields of drug-like molecules, bicyclic products, with a methylene linker between the
rings (Scheme 2b) [25]. This type of coupling of indole-3-carbaldehyde tosylhydrazone with
boronic acids was used for the synthesis of biologically important 3-benzyl indole deriva-
tives (Scheme 2b) [26]. Ley and coworkers used the procedure for the metal-free coupling of
4-, 5-, and 6-membered saturated heterocyclic p-methoxyphenyl (PMP) sulfonylhydrazones
with (het)aryl boronic acids to form sp2−sp3 linked bicyclic building blocks, including
oxetanes, piperidines, and azetidines, from their parent ketones (Scheme 2c) [27]. The
reductive coupling was also applied for the synthesis of 9-arylfluorenes (Scheme 2d) [28].
Thus, a wide range of 9-arylfluorenes was prepared in a one-pot process from 9-fluorenones
by treatment with N-tosylhydrazide, followed by the reductive coupling of (het)aryl and
alkyl boronic acids in the presence of potassium carbonate. A similar protocol was applied
for the synthesis of triarylmethanes from less reactive diaryl ketones (Scheme 2d) [29]
and 1(or 2)-(1-phenylethyl)naphthalenes from acetyl naphthalene derivatives [30]. Wang
and coworkers developed a three-component transition-metal-free reaction from α-halo-N-
tosylhydrazones in the presence of N-alkylindoles and arylboronic acids to form a range of
3-substituted indoles [31]. A new type of cascade cyclization by reaction of alkenylboronic
acids with 2-cyanoethyl or 3-cyanopropylcyclohexanone N-tosylhydrazones was devel-
oped by Valdés et al. [32,33]. A similar reaction between γ-azido-N-tosylhydrazones and
boronic acids led to the formation of 2,2-disubstituted pyrrolidines in a domino process
under microwave activation [34].
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As the tosylhydrazone-boronic acid coupling can be of a great potential to avoid
the utility of costly and poisonous metals and ligands, metal-free coupling reactions of
boronic acids with anhydro-aldose tosylhydrazones were examined as a new type of
substrate with higher complexity in comparison to the previous ones (Scheme 2e). This
transformation offers a simple possibility for the formation of C-glycosylmethyl derivatives
whose preparation is rather cumbersome in the literature [13,35–43]. Herein we disclose
our experiences with this reaction using various sugar configurations, protecting groups
and boronic acids.
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2. Results and Discussion

We started our study with the reaction between O-perbenzoylated C-(β-D-glucopyran
osyl)formaldehyde tosylhydrazone 1a [7–9] and phenylboronic acid (Table 1). First, the liter-
ature conditions [15] were applied using 1.5 equivalents of boronic acid and 1.5 equivalents
of K2CO3 as the base in dry dioxane at reflux temperature (entry 1). The transformation
resulted in a complex mixture, containing heptenitols 3a and 4a and exo-glucal 5 [8,44,45]
but we did not observe the formation of the expected C-glucoside 2a [13]. However, it
can be assumed that the formation of the open chain compounds might occur by a base
mediated ring-opening process, whose driving force could be the resonance stabilization of
styrene 3a. Similar heptenitols were obtained by the Wittig reaction [46,47]. Migration of a
benzoyl protecting group could result in 4a, and intramolecular carbene insertion into the
C-2-H bond yielded exo-glucal 5 [8,44,45]. With other bases (Bu4NF, LiOtBu, and K3PO4)
the formation of the coupled product 2a could also not be observed (entries 2–4). Instead,
we obtained variable amounts of the heptenitols 3a and 4a, and exo-glucal 5. Increasing
the amount of K3PO4 raised the yield of heptenitol 3a to 43% (entry 5). The effects of
solvents other than dioxane were also studied, but in each case, complex reaction mixtures
were obtained (entries 6–8). On the other hand, performing the reaction in the presence of
five equivalents of phenylboronic acid with three or four equivalents of K3PO4 gave the
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C-glucoside 2a in a very low yield beside 3a, while 4a and 5 were also isolated (entries 9 and
10). Raising the base excess gave exo-glucal 5 in moderate yield and heptenitols 3a and 4a
in traces (entry 11). The best result was achieved with 20-fold excess of phenylboronic acid
and 10-fold excess of K3PO4, to give heptenitol 3a in 70% yield (entry 12). Thus, instead of
the expected C-glycosylmethylarene derivative 2a, an open chain compound, 3a, proved to
be the main product of the transformation.

Table 1. Optimization of the coupling reaction of 1 with phenylboronic acid.
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E. Reaction Conditions Yield (%)

1 PhB(OH)2
(Equiv.)

Base
(Equiv.) Solvent T

(◦C) t (h) 2a 3a 4a 5

1 a 1.5 K2CO3
(1.5) 1,4-dioxane 101 3 - - 28 -

2 a 1.5 Bu4NF
(1.5) 1,4-dioxane 101 3 complex reaction mixture

3 a 1.5 LiOtBu
(1.5) 1,4-dioxane 101 3 - + a + a 16

4 a 1.5 K3PO4
(1.5) 1,4-dioxane 101 3 - + a - 38

5 a 1.5 K3PO4
(3) 1,4-dioxane 101 3 - 43 - -

6 a 1.5 K3PO4
(3) fluorbenzene 85 3.5 complex reaction mixture

7 a 1.5 K3PO4
(3) acetonitrile 82 3 complex reaction mixture

8 a 1.5 K3PO4
(3) toluene 111 3.5 complex reaction mixture

9 a 5 K3PO4
(3) 1,4-dioxane 101 3.5 2 36 b 11 b 2 b

10 a 5 K3PO4
(4) 1,4-dioxane 101 3 4 38 b 12 b -

11 a 5 K3PO4
(10) 1,4-dioxane 101 3 - + a + a 39

12 a 20 K3PO4
(10) 1,4-dioxane 101 2.5 - 70 - -

13 b 2 - 1,4-dioxane 101 2 + a 22 - -
14 b 5 - 1,4-dioxane 101 2 + a 19 - -
15 b 10 - 1,4-dioxane 101 2 7 b 17 b 15 b 15 b

a Compounds were detected in the mixture. b Yields were calculated on the basis of the 1H NMR spectra of the
worked-up reaction mixture.

To avoid base mediated side reactions, such as the acyl migration, C-(β-D-glucopyra
nosyl)formaldehyde tosylhydrazone Li-salt 1b [10,12] was used for the couplings, where
no added base is needed. Attempted reactions under UV irradiation (λ = 254 nm and
368 nm) carried out in a quartz tube proved to be totally ineffective, resulting in complex
reaction mixtures. However, thermic conditions gave, generally, 3a as the main product,
besides C-glucoside 2a and exo-glucal 5 (entries 13 and 14). Although the application
of 10 equivalents of boronic acid significantly increased the yields (entry 15), the Li-salt
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reactions appeared less effective. Thus, tosylhydrazone 1a and 1.5 or 20-fold excess of a
boronic acid and 3 or 10-fold excesses of K3PO4 were used in further transformations.

The coupling reaction of 1a was also examined with a variety of aryl boronic acids un-
der the conditions selected above. These reactions resulted in varying yields of compound
types 2–5, among which the heptenitols 3 and 4 were the main products (Table 2). Applica-
tion of higher excess of boronic acids and K3PO4 improved the yields in couplings with
4-(dibenzofuranyl) and 4-methoxyphenyl boronic acids (compare entries 3–4 and 6–7), but
in other cases, this had no significant effect on the reaction outcome (compare entries 1–2,
10–11 and 12–13). The coupling was found to be significantly affected by the substituents
on the aromatic ring; boronic acids with electron-releasing (entries 1–7) and chloro (entries
8 and 9)-substituents gave better yields. However, with the strong electron-withdrawing
nitro group (entries 10–13) exo-glucal 5 was the main product, the coupled compound 2h
was observed in only one case. Isolation of the products in pure state often encountered
difficulties. Due to very similar mobilities in silica gel column chromatography, C-glucosyl
compounds 2 were polluted with the exo-glucal 5, and heptenitols 3 and 4 polluted each
other, therefore the yields were generally calculated on the basis of the 1H NMR spectra
(Supplementary Materials).

Table 2. Reactions of tosylhydrazone 1a with aryl boronic acids.
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Entry Reaction Conditions Yield (%)

Ar
Boronic

Acid
(Equiv.)

K3PO4
(Equiv.)

t
(h) 2 3 4 5

1 b 2-naphthyl 1.5 3 2 7 a 39 a 14 a 3 a

2 2-naphthyl 20 10 1.5 4 44 a 31 a -
3 c 4-(dibenzofuranyl) 1.5 3 2 3 a 16 + b 18 a

4 4-(dibenzofuranyl) 20 10 2 19 a 9 a 47 15 a

5 d 4-MeC6H4 1.5 3 2 - 31 a 12 a -
6 e 4-MeOC6H4 1.5 3 3 - 34 a 14 a -
7 4-MeOC6H4 20 10 3 - + b 42 -
8 f 3-ClC6H4 1.5 3 1.5 5 a 34 a 18 a 11 a

9 g 4-ClC6H4 1.5 3 2 - 68 - 4 a

10 h 4-NO2C6H4 1.5 3 2 - - - 63
11 4-NO2C6H4 20 10 2.5 10 a - - 12 a

12 i 3-NO2C6H4 1.5 3 2 complex reaction
mixture 22

13 3-NO2C6H4 20 10 2 complex reaction
mixture 62

a Yields were calculated on the basis of the 1H NMR spectra of the worked-up reaction mixture. b Compounds
were detected in the mixture.

The coupling of O-peracetylated C-(β-D-galactopyranosyl)formaldehyde tosylhydra-
zone (6, Table 3) with phenylboronic acid was also investigated. With 1.5 equivalents of
phenylboronic acid and 3 equivalents of potassium carbonate, only traces of the known
compound types 7, 8, and 10 [8,44,45] were detected in the complex product mixture (entry
1), but with a 20-fold excess of the boronic acid C-(galactosyl)phenylmethane 7 was formed
in low yield and heptenitols 8 and 9 proved to be the main products (entry 2). A compound
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with a free 6-OH (analogue of 3), though might be formed, could not be detected possibly
due to a faster acetyl migration to give 8 and 9.

Table 3. Reactions of tosylhydrazone 6 with phenyl boronic acids.
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a Yields were calculated on the basis of the 1H NMR spectra of the worked-up reaction mixture.

The NMR analysis provided evidence for the structure of all of the above derivatives
and these are illustrated here by the examples of compounds 2, 3, and 4. Anhydro-heptitol
2a, synthesized in our group earlier [13], showed characteristic 1H NMR resonances for the
C-1 methylene (δ 2.96 ppm (H-1a), 2.92 ppm (H-1b), with a great geminal coupling constant
(12.3 Hz) between them) and the H-2 (‘anomeric’) protons (4.00 ppm). The characteristic 13C
NMR resonances were δ 38.0 ppm (C-1) and 79.2 ppm (C-2). 1H and 13C NMR analysis of
C-glycosyl derivatives 2b,c,f,h showed similar chemical shifts for H-1a (2.92–3.44 ppm), H-
1b (2.90–3.29 ppm), H-2 (3.98–4.33 ppm), C-1 (32.1–38.1), and C-2 (77.9–79.2) with geminal
coupling constants of H-1a-1b in the range of 14.3–15.0 Hz. These data indicated the
similar structure of the C-glycosyl derivatives 2. Ring-opened heptenitols 3 and 4 showed
quite different spectral data. Signals characteristic for C-1 and C-2 of compounds 2 in
the above ranges were missing in the 13C NMR spectra of 3 and 4, instead resonances
for –CH= type carbons in the ranges 130.8–136.9 ppm (for C-1) and 119.6–125.9 ppm (for
C-2) appeared to prove the presence of a double bond in the molecules. The acyclic form
was evidenced by the small vicinal coupling constants (in the range of 0.8–8.9 Hz). The
great values (14.9–16.3 Hz) of coupling constant 3J1,2 proved the E-configured double bond
C-1=C-2 in these structures. The position of the free OH groups of heptenitols 3 and 4 were
confirmed by observing cross peaks between OH and H-6 in heptenitols 3 and OH and H-5
in molecules 4 in their 1H–1H COSY spectra.

To further prove the formation of heptenitols and acyl group migration, benzoyla-
tion/acetylation of the corresponding compounds under standard conditions were carried
out. Benzoylation [47] of the mixture of heptenitols 3 and 4 resulted in a single product 11
(Table 4) while acetylation [48] of heptenitol 9 gave O-peracetylated product 12 in good to
excellent yields (Scheme 3).

Molecules 2022, 27, x FOR PEER REVIEW 7 of 33 
 

 

Table 4. Benzoylation of heptenitols 3 and 4. 

 
Entry  Reaction Conditions Yield of 11 (%) 

  Ar 
t 

(h)  

1 a Ph 2 90 
2 b 4-(dibenzofuranyl) 2 54 

 
Scheme 3. Acetylation of heptenitol 9. 

To get an insight into the effect of hydrolytically resistant ether type protecting 
groups on the outcome of the studied coupling reactions, O-permethylated (β-D-glucopy-
ranosyl)formaldehyde tosylhydrazone 17 was synthesized. Methyl glucoside 13 was O-
permethyled to get 14 [49] which was converted to the acetate derivative 15 [50] (Scheme 
4). On reacting 15 with trimethylsilyl cyanide in the presence of boron trifluoride etherate, 
cyanide 16 [51] was obtained. The anomers were separated by column chromatography. 
Then, β-cyanide 16β was reduced in the presence of tosylhydrazide to give β-D-glucosyl 
tosylhydrazone 17 as a mixture of E and Z isomers. 

 
Scheme 4. Synthesis of O-permethylated (β-D-glucopyranosyl)formaldehyde tosylhydrazone 17. 

Couplings with 17 gave cleaner product mixtures in better yields, and resulted in C-
glucosides 18 (Table 5, entries 2, 4, and 8) or open-chain heptenitols 19 and 20 as the main 
products (entries 1, 5, 6, 7, 9, 10). Exo-glucal 21 [52] was always formed as a by-product. 
Compounds 18 and 21 proved inseparable, similar to open chain isomers 19 and 20. 

  

Scheme 3. Acetylation of heptenitol 9.



Molecules 2022, 27, 1795 7 of 31

Table 4. Benzoylation of heptenitols 3 and 4.
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Entry Reaction Conditions Yield of 11 (%)

Ar t
(h)

1 a Ph 2 90
2 b 4-(dibenzofuranyl) 2 54

To get an insight into the effect of hydrolytically resistant ether type protecting groups
on the outcome of the studied coupling reactions, O-permethylated (β-D-glucopyranosyl)for
maldehyde tosylhydrazone 17 was synthesized. Methyl glucoside 13 was O-permethyled
to get 14 [49] which was converted to the acetate derivative 15 [50] (Scheme 4). On reacting
15 with trimethylsilyl cyanide in the presence of boron trifluoride etherate, cyanide 16 [51]
was obtained. The anomers were separated by column chromatography. Then, β-cyanide
16β was reduced in the presence of tosylhydrazide to give β-D-glucosyl tosylhydrazone 17
as a mixture of E and Z isomers.
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Couplings with 17 gave cleaner product mixtures in better yields, and resulted in
C-glucosides 18 (Table 5, entries 2, 4, and 8) or open-chain heptenitols 19 and 20 as the main
products (entries 1, 5, 6, 7, 9, 10). Exo-glucal 21 [52] was always formed as a by-product.
Compounds 18 and 21 proved inseparable, similar to open chain isomers 19 and 20.

The transformation was extended to the acetal protected galactose derivative 24,
which was synthesized from the galactosyl cyanide 22 in two steps. Compound 22 was
reacted with methoxymethyl chloride to obtain cyanide 23 [53], then a reduction step in the
presence of tosylhydrazide gave a mixture of E and Z isomers of 24 (Scheme 5).
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Table 5. Reactions of tosylhydrazone 17 with aryl boronic acids.
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Entry Reaction Conditions Yield (%)

Ar Boronic Acid
(Equiv.)

K3PO4
(Equiv.)

t
(h) 18 19 20 21

1. a Ph 1.5 3 3.5 17 a 61 a 7 a 13 a

2. b 4-(dibenzofuranyl) 1.5 3 1 8 - - + b

3. 4-COOHC6H4 1.5 3 3 complex reaction mixture
4. c 4-CF3C6H4 1.5 3 1.5 45 16 a + b 26
5. d 4-FC6H4 1.5 3 5.5 14 55 a 18 a + b

6. e 3-ClC6H4 1.5 3 2.5 29 37 a 4 a + b

7. f 4-BrC6H4 1.5 3 1.5 22 35 a 4 a + b

8. g 4-NO2C6H4 1.5 3 1.5 46 - - 13
9. h 4-MeOC6H4 1.5 3 1.5 9 52 a 2 a + b

10. i 4-MeC6H4 1.5 3 3.5 20 a 50 a 6 a 7 a

a Yields calculated on the basis of the 1H NMR spectra of the worked-up reaction mixture. b Compounds were
detected in the mixture.

The coupling reation of 24 with phenylboronic acid resulted in E heptenitol 26 as the
main product and an inseparable mixture of C-(galactopyranosyl)phenylmethane 25 and
exo-galactal 28 [53]. The Z isomer 27 was also detected in the mixture (Scheme 6).
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For the structure elucidation of Me (18–20) and MOM (25–27), protected derivatives
1D-NMR (1H, 13C) and 2D-NMR (1H–1H COSY, HSQC, and HMBC) spectra were recorded.
The characteristic chemical shifts of C-1 (32.0–38.1 ppm vs. 132.3–134 ppm) and C-2
(79.0–80.9 ppm vs. 124.3–130.4 ppm) clearly revealed the structures of the anhydro-heptitols
18, 25, and heptenitols 19, 20, 26, 27, respectively.

In contrast to the transformations of acylated derivatives 2 and 7, those of tosylhy-
drazones 17 and 24 possessing ether-type protecting groups (Me, MOM) resulted in no
migration of the protecting groups as expected, but the E and Z isomers of the acyclic
derivatives were isolated. The configuration of the double bonds was identified by the
vicinal coupling constants being 16.0 Hz for the E and 11.4–12.1 Hz for the Z isomers. The
measured vicinal coupling constants showed high variety for heptenitols 19 and 20, in
contrast to the cyclic 4C1 conformers 18, where these values were 8.7 and 9.8 Hz for the
trans diaxial protons. The position of the free OH groups of heptenitols 19, 20, 26, and
27 were confirmed by observing cross peaks between OH and H-6 in their 1H–1H COSY
spectra.
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Table 6. Examination of possible ring opening of some anhydro-heptitols.
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Table 7. Examination of possible ring closing of heptenitols.
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1 19c, 20c 4-CF3C6H4 1.5 3 21 no
conversion

2 19d, 20d 4-FC6H4 - 3 21 no
conversion

3 19e, 20e 4-ClC6H4 1.5 - 21 no
conversion

To obtain more information about the formation of the open-chain heptenitols, first
we checked the possibility of the ring opening of the anhydro-heptitols under the reaction
conditions. Thus, 2a was reacted with K3PO4 but partial deprotection of 2a was observed
only, without the formation of 3a (Table 6, entry 1). The methyl protected derivatives 18c or
18g reacted neither in the presence of K3PO4, nor of a boronic acid or both (entries 2–4).

Next, formation of C-(glycosyl)arylmethane derivatives 18c,d,e was examined from
the corresponding heptenitols 19c,d,e and 20c,d,e. Attempted reactions in the presence of
base and/or boronic acid resulted in no conversion (Table 7).

Based on these observations, it can be concluded that the cyclic C-glycosylmethyl
derivatives and the open-chain heptenitols are not interconvertible under the applied
conditions, they must be formed from the same intermediate during the reaction.

To explain these experiences, the following mechanistic possibilities can be considered
(Scheme 7). Loss of a sulfinate ion from tosylhydrazones I upon deprotonation or from
Li-salt V may lead to the diazo intermediate VI which can give rise to carbene VII by
eliminating a nitrogen molecule. The zwitterionic intermediate VIII, which arises from
carbene VII (path a) or boronate complex X, formed from the diazo compound VI (path b),
may lead to intermediate IX. Then, protodeboronation of IX under basic conditions can
give anhydro-heptitol type products III (path c). Nevertheless, in intermediate IX, the ring
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oxygen, as a Lewis base, can attack the electron deficient boron atom to form the open chain
heptenitol borate XI (path e) which, upon hydrolysis, can lead to the isolated heptenitols
IV. The driving force of this rearrangement may be the conjugation of the double bond
with the aromatic system, leading to an energetically more stable species. The standard
by-product exo-glycal II can be formed by an intramolecular insertion reaction of carbene
VII (path d).
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3. Conclusions

This study on the metal-free coupling reactions of C-(β-D-glycopyranosyl)formaldehyde
(2,6-anhydro-aldose) tosylhydrazones with aromatic boronic acids revealed that the main
reaction pathway was the formation of ring-opened hept-1-enitol derivatives, while the
expected C-glycopyranosyl compounds (benzyl C-glycosides) were formed only in low
to moderate yields. The corresponding exo-glycals always appeared as unavoidable by-
products. O-Acyl protecting groups on the carbohydrate moieties underwent migrations
which further increased the number of products in the otherwise rather complex reaction
mixtures. Tosylhydrazones with ether type O-protections gave cleaner reactions but re-
sulted in the same product types in similar ratios. The suggested mechanistic rationale
explained how the complex sugar-derived tosylhydrazone substrates changed the reaction
pathway. We think that this study also highlights the importance of transformations of high
complexity which, though resulting in several products, may lead to a better understanding
of their mechanism and may thus inspire further work.

4. Experimental
4.1. General Methods

Optical rotations were determined with a Perkin–Elmer 241 polarimeter or Jasco P-
2000 (Easton, MD, USA) at room temperature. NMR spectra were recorded with a Bruker
AM Avance DRX 360 MHz (360/90 MHz for 1H/13C) or Bruker AM Avance I 400 MHz
(400/100 MHz for 1H/13C) or Bruker AM Avance II 500 MHz (500/125 MHz for 1H/13C)
spectrometers. Chemical shifts are referenced to TMS as the internal reference (1H), or
to the residual solvent signals (13C). The assignments of the 1H and 13C NMR signals of
compounds 2–4, 7–9, 11, 12, 18–20, and 25–27 were performed by their COSY (2a, 3a,c, 4a,e,
7, 8, 9, 11a,b, 12, 18b,f,i, 19a,c,h,i, 20a,d,i, 25, 26, 27), HSQC (2a, 3a,c, 4a,e, 7, 8, 9, 11a,b,
12, 18b,f,i, 19a,c,h,i, 20a,d,i, 25, 26, 27), or HMBC (3a,c, 4a,e, 7, 8, 9, 11a,b, 12, 18b,e,f,i,
19a,c,h,i, 20a,d,i, 25, 26, 27) spectra. Mass spectra were recorded with maXis II UHR ESI-
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QTOF MS (Bruker Daltonik, Bremen, Germany) instruments in positive ion mode with the
electrospray ionization technique, or Thermo LTQ XL (Thermo Electron Corp., San Jose, CA,
USA) mass spectrometers operated in a full scan positive ion ESI and APCI mode. TLC was
performed on a DCAlurolle Kieselgel 60 F254 (Merck). TLC plates were visualized under
UV light, and by gentle heating (generally no spray reagent was used but, if more intense
charring was necessary, the plate was sprayed with the following solution: abs. EtOH
(95 mL), cc. H2SO4 (5 mL), anisaldehyde (1 mL)). For column chromatography Kieselgel
60 (Merck, particle size (0.063–0.200 mm) was applied. The compound 1,4-dioxane was
distilled from sodium benzophenone ketyl and stored over sodium wires.

4.2. General Procedure I: Conditions for the Reaction of Anhydro-Aldose Tosylhydrazones with
Boronic Acids

A boronic acid (1.5 or 20 mmol, specified with the particular reactions) and K3PO4 (3 or
10 mmol, specified with the particular reactions) were suspended in dry 1,4-dioxane (15 mL).
The suspension was stirred and heated to reflux, and then a solution of a tosylhydrazone (1;
17 or 24, 1 mmol) in dry 1,4-dioxane (15 mL) was added dropwise over ~20 min. When TLC
(1:2 EtOAc–hexane for 1 and 17, 1:1 EtOAc–hexane for 24) indicated complete consumption
of the starting compound (20 min–4 h), the mixture was cooled down and the insoluble
material was filtered off and washed thoroughly with dry 1,4-dioxane (3 × 20 mL). The
solvent was removed under reduced pressure, and the residue was purified by column
chromatography, with eluents indicated for the particular compounds to give anhydro
heptitols and hept-1-enitols.

4.3. Characterization of Anhydro-Heptitols 2
4.3.1. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-Deoxy-1-Phenyl-D-glycero-D-gulo-Heptitol (2a)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), phenylboronic acid
(1.5 equiv., 0.02 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General
procedure I by column chromatography (1:2 EtOAc–hexane) to yield 3 mg (4%) of 2a as a
white amorphous product. Optical rotation, NMR and MS spectra are identical with those
reported [13].
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4.3.2. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-Deoxy-1-(Naphth-2-yl)-D-glycero-D-gulo-
Heptitol (2b)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), naphthalen-2-
ylboronic acid (20 equiv., 0.44 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol)
according to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield
4 mg (4%) of 2b as a pale brown amorphous solid. Rf: 0.42 (1:2 EtOAc–hexane); [α]D + 6
(c 0.16, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.99–7.19 (27H, m, aromatics), 5.90 (1H,
pszeudo t, J4,5 9.6 Hz, H-4), 5.62 (1H, pseudo t, J5,6 9.7 Hz, H-5), 5.52 (1H, pseudo t, J3,4
9.6 Hz, H-3), 4.57 (1H, dd, J7a,7b 12.0 Hz, H-7a), 4.41 (1H, dd, H-7b), 4.09 (1H, ddd, J1a,2
5.1, J1b,2 6.6, J2,3 9.8 Hz, H-2), 4.04 (1H, ddd, J6,7a 2.7, J6,7b 6.3 Hz, H-6), 3.12 (1H, dd, J1a,1b
14.8 Hz, H-1a), 3.08 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 166.3, 166.1, 165.6, 165.5
(4 × CO), 136.6–124.7 (aromatics), 79.2 (C-2), 76.3 (C-6), 74.7 (C-4), 72.6 (C-3), 70.1 (C-5), 63.6
(C-7), 38.3 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 743.2252, found:
[M + Na]+ = 743.2253; C45H36O9 (720.24).
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4.3.3. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1-Deoxy-D-glycero-
D-gulo-Heptitol (2c)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-
4-ylboronic acid (20 equiv., 0.55 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol)
according to General procedure I by column chromatography (1:3 EtOAc–hexane) to yield
30 mg pale brown amorphous solid containing 2c and 5 in 1:1 ratio. Rf: 0.50 (1:2 EtOAc–
hexane). 1H NMR (400 MHz, CDCl3) δ 8.21–6.93 (27H, m, aromatics), 5.91 (1H, pseudo t,
J4,5 9.5 Hz, H-4), 5.64 (1H, pseudo t, J5,6 9.8 Hz, H-5), 5.52 (1H, pseudo t, J3,4 9.8 Hz, H-3),
4.56 (1H, dd, J7a,7b 12.0 Hz, H-7a), 4.42 (1H, dd, H-7b), 4.33 (1H, ddd, J1a,2 3.2, J1b,2 8.0, J2,3
9.8 Hz, H-2), 4.07 (1H, ddd, J6,7a 2.9, J6,7b 5.9 Hz, H-6), 3.44 (1H, dd, J1a,1b 14.6 Hz, H-1a),
3.29 (1H, dd, H-1b). 13C NMR (100 MHz, CDCl3) δ 166.3, 166.1, 165.5 (4 × CO), 135.6–110.4
(aromatics), 77.9 (C-2), 76.2 (C-6), 74.8 (C-4), 72.5 (C-3), 70.1 (C-5), 63.5 (C-7), 32.1 (C-1).
HR-ESI-MS positive mode (m/z): calc. for [M + H]+ = 761.2381, found: [M + H]+ = 761.2379;
C47H36O10 (760.23).
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omatics), 77.9 (C-2), 76.2 (C-6), 74.8 (C-4), 72.5 (C-3), 70.1 (C-5), 63.5 (C-7), 32.1 (C-1). HR-
ESI-MS positive mode (m/z): calc. for [M + H]+ = 761.2381, found: [M + H]+ = 761.2379; 
C47H36O10 (760.23). 

 

4.3.4. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1-Deoxy-D-glycero-D-
gulo-Heptitol (2f) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 3-chlorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
13 mg white amorphous solid containing 2f and 5 in 1:2 ratio. Rf: 0.48 (1:2 EtOAc–hexane). 
1H NMR (400 MHz, CDCl3) δ 8.13–7.76 (12H, m, aromatics), 7.63–6.94 (12H, m, aromatics), 
5.89 (1H, pseudo t, J4,5 9.7 Hz, H-4), 5.60 (1H, pseudo t, J5,6 9.7 Hz, H-5), 5.45 (1H, pseudo 
t, J3,4 9.5 Hz, H-3), 4.57 (1H, dd, J7a,7b 12.1 Hz, H-7a), 4.42 (1H, dd, H-7b), 4.05 (1H, ddd, J6,7a 
2.8, J6,7b 6.2 Hz, H-6), 3.98 (1H, ddd, J1a,2 5.3, J1b,2 6.6, J2,3 9.7 Hz, H-2), 2.92 (1H, dd, J1a,1b 15.0 
Hz, H-1a), 2.90 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 166.3, 166.1, 165.7, 165.6 (4 × 
CO), 156.3–125.7 (aromatics), 78.8 (C-2), 76.4 (C-6), 74.6 (C-4), 72.6 (C-3), 70.1 (C-5), 63.5 

4.3.4. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1-Deoxy-D-glycero-D-gulo-
Heptitol (2f)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 3-chlorophenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 13 mg white
amorphous solid containing 2f and 5 in 1:2 ratio. Rf: 0.48 (1:2 EtOAc–hexane). 1H NMR
(400 MHz, CDCl3) δ 8.13–7.76 (12H, m, aromatics), 7.63–6.94 (12H, m, aromatics), 5.89 (1H,
pseudo t, J4,5 9.7 Hz, H-4), 5.60 (1H, pseudo t, J5,6 9.7 Hz, H-5), 5.45 (1H, pseudo t, J3,4
9.5 Hz, H-3), 4.57 (1H, dd, J7a,7b 12.1 Hz, H-7a), 4.42 (1H, dd, H-7b), 4.05 (1H, ddd, J6,7a
2.8, J6,7b 6.2 Hz, H-6), 3.98 (1H, ddd, J1a,2 5.3, J1b,2 6.6, J2,3 9.7 Hz, H-2), 2.92 (1H, dd, J1a,1b
15.0 Hz, H-1a), 2.90 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 166.3, 166.1, 165.7, 165.6
(4 × CO), 156.3–125.7 (aromatics), 78.8 (C-2), 76.4 (C-6), 74.6 (C-4), 72.6 (C-3), 70.1 (C-5), 63.5
(C-7), 37.4 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 727.1705, found:
[M + Na]+ = 727.1708; C41H33ClO9 (704.18).

Molecules 2022, 27, x FOR PEER REVIEW 13 of 33 
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boronic acid (20 equiv., 1.30 g, 7.72 mmol), and K3PO4 (10 equiv., 0.82 g, 3.86 mmol) ac-
cording to General procedure I by column chromatography (1:3 EtOAc–hexane) to yield 
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dd, J1a,1b 14.3 Hz, H-1a), 3.02 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 166.4, 166.2, 165.7, 
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found: [M + Na]+ = 738.1950; C41H33NO11 (715.21). 

 

4.4. Characterization of Hept-1-Enitols 3 and 4 
4.4.1. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (3a)  

Prepared from tosylhydrazone 1a (0.80 g, 1.03 mmol), phenylboronic acid (20 equiv., 
2.51 g, 20.60 mmol), and K3PO4 (10 equiv., 2.19 g, 10.30 mmol) according to General pro-
cedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 484 mg (70%) 
of 3a as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 21 (c 0.20, CH2Cl2). 
1H NMR (500 MHz, CDCl3) δ 8.18–7.82 (8H, m, aromatics), 7.64–7.15 (17H, m, aromatics), 
6.78 (1H, d, J1,2 15.9 Hz, H-1), 6.32 (1H, dd, J2,3 6.9 Hz, H-2), 6.14–6.02 (2H, m, H-3, H-4), 
5.76 (1H, dd, J4,5 0.8, J5,6 8.9 Hz, H-5), 4.53 (1H, dd, J6,7a 2.6, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, 
J6,7b 5.7 Hz, H-7b), 4.21–4.11 (1H, m, H-6), 3.58 (1H, d, J6,OH 4.3 Hz, OH). 13C NMR (125 MHz, 
CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.7 (C-1), 136.3–125.9 (aromatics), 122.1 (C-
2), 73.9 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z): 
calc. for [M + Na]+ = 693.2095, found: [M + Na]+ = 693.2095; C41H34O9 (670.22). 

 

  

4.3.5. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-Deoxy-1-(4-Nitrophenyl)-D-glycero-D-gulo-
Heptitol (2h)

Isolated from a reaction of tosylhydrazone 1a (0.30 g, 0.39 mmol), 4-nitrophenylboronic
acid (20 equiv., 1.30 g, 7.72 mmol), and K3PO4 (10 equiv., 0.82 g, 3.86 mmol) according to
General procedure I by column chromatography (1:3 EtOAc–hexane) to yield 32 mg pale
brown amorphous solid containing 2h and 5 in 4:1 ratio. Rf: 0.44 (1:2 EtOAc–hexane). 1H
NMR (400 MHz, CDCl3) δ 8.32–7.72 (8H, m, aromatics), 7.69–7.16 (16H, m, aromatics), 5.90
(1H, pseudo t, J4,5 9.5 Hz, H-4), 5.58 (1H, pseudo t, J5,6 9.8 Hz, H-5), 5.45 (1H, pseudo t,
J3,4 9.7 Hz, H-3), 4.53 (1H, dd, J7a,7b 12.2 Hz, H-7a), 4.48 (1H, dd, H-7b), 4.05 (1H, ddd, J6,7a
3.2, J6,7b 6.6 Hz, H-6), 3.99 (1H, ddd, J1a,2 5.1, J1b,2 7.0, J2,3 9.7 Hz, H-2), 3.03 (1H, dd, J1a,1b
14.3 Hz, H-1a), 3.02 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 166.4, 166.2, 165.7, 165.6
(4 × CO), 161.7–115.1 (aromatics), 78.3 (C-2), 76.4 (C-6), 74.5 (C-4), 72.5 (C-3), 70.0 (C-5), 63.3
(C-7), 37.8 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 738.1946, found:
[M + Na]+ = 738.1950; C41H33NO11 (715.21).
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Heptitol (2h)  

Isolated from a reaction of tosylhydrazone 1a (0.30 g, 0.39 mmol), 4-nitrophenyl-
boronic acid (20 equiv., 1.30 g, 7.72 mmol), and K3PO4 (10 equiv., 0.82 g, 3.86 mmol) ac-
cording to General procedure I by column chromatography (1:3 EtOAc–hexane) to yield 
32 mg pale brown amorphous solid containing 2h and 5 in 4:1 ratio. Rf: 0.44 (1:2 EtOAc–
hexane). 1H NMR (400 MHz, CDCl3) δ 8.32–7.72 (8H, m, aromatics), 7.69–7.16 (16H, m, 
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found: [M + Na]+ = 738.1950; C41H33NO11 (715.21). 

 

4.4. Characterization of Hept-1-Enitols 3 and 4 
4.4.1. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (3a)  

Prepared from tosylhydrazone 1a (0.80 g, 1.03 mmol), phenylboronic acid (20 equiv., 
2.51 g, 20.60 mmol), and K3PO4 (10 equiv., 2.19 g, 10.30 mmol) according to General pro-
cedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 484 mg (70%) 
of 3a as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 21 (c 0.20, CH2Cl2). 
1H NMR (500 MHz, CDCl3) δ 8.18–7.82 (8H, m, aromatics), 7.64–7.15 (17H, m, aromatics), 
6.78 (1H, d, J1,2 15.9 Hz, H-1), 6.32 (1H, dd, J2,3 6.9 Hz, H-2), 6.14–6.02 (2H, m, H-3, H-4), 
5.76 (1H, dd, J4,5 0.8, J5,6 8.9 Hz, H-5), 4.53 (1H, dd, J6,7a 2.6, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, 
J6,7b 5.7 Hz, H-7b), 4.21–4.11 (1H, m, H-6), 3.58 (1H, d, J6,OH 4.3 Hz, OH). 13C NMR (125 MHz, 
CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.7 (C-1), 136.3–125.9 (aromatics), 122.1 (C-
2), 73.9 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z): 
calc. for [M + Na]+ = 693.2095, found: [M + Na]+ = 693.2095; C41H34O9 (670.22). 

 

  

4.4. Characterization of Hept-1-Enitols 3 and 4
4.4.1. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (3a)

Prepared from tosylhydrazone 1a (0.80 g, 1.03 mmol), phenylboronic acid (20 equiv.,
2.51 g, 20.60 mmol), and K3PO4 (10 equiv., 2.19 g, 10.30 mmol) according to General
procedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 484 mg (70%)
of 3a as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 21 (c 0.20, CH2Cl2).
1H NMR (500 MHz, CDCl3) δ 8.18–7.82 (8H, m, aromatics), 7.64–7.15 (17H, m, aromatics),
6.78 (1H, d, J1,2 15.9 Hz, H-1), 6.32 (1H, dd, J2,3 6.9 Hz, H-2), 6.14–6.02 (2H, m, H-3, H-4),
5.76 (1H, dd, J4,5 0.8, J5,6 8.9 Hz, H-5), 4.53 (1H, dd, J6,7a 2.6, J7a,7b 11.9 Hz, H-7a), 4.34 (1H,
dd, J6,7b 5.7 Hz, H-7b), 4.21–4.11 (1H, m, H-6), 3.58 (1H, d, J6,OH 4.3 Hz, OH). 13C NMR
(125 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.7 (C-1), 136.3–125.9 (aromatics),
122.1 (C-2), 73.9 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7). HR-ESI-MS positive mode
(m/z): calc. for [M + Na]+ = 693.2095, found: [M + Na]+ = 693.2095; C41H34O9 (670.22).
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4.3.5. 2,6-Anhydro-3,4,5,7-Tetra-O-Benzoyl-1-Deoxy-1-(4-Nitrophenyl)-D-glycero-D-gulo-
Heptitol (2h)  

Isolated from a reaction of tosylhydrazone 1a (0.30 g, 0.39 mmol), 4-nitrophenyl-
boronic acid (20 equiv., 1.30 g, 7.72 mmol), and K3PO4 (10 equiv., 0.82 g, 3.86 mmol) ac-
cording to General procedure I by column chromatography (1:3 EtOAc–hexane) to yield 
32 mg pale brown amorphous solid containing 2h and 5 in 4:1 ratio. Rf: 0.44 (1:2 EtOAc–
hexane). 1H NMR (400 MHz, CDCl3) δ 8.32–7.72 (8H, m, aromatics), 7.69–7.16 (16H, m, 
aromatics), 5.90 (1H, pseudo t, J4,5 9.5 Hz, H-4), 5.58 (1H, pseudo t, J5,6 9.8 Hz, H-5), 5.45 
(1H, pseudo t, J3,4 9.7 Hz, H-3), 4.53 (1H, dd, J7a,7b 12.2 Hz, H-7a), 4.48 (1H, dd, H-7b), 4.05 
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dd, J1a,1b 14.3 Hz, H-1a), 3.02 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 166.4, 166.2, 165.7, 
165.6 (4 × CO), 161.7–115.1 (aromatics), 78.3 (C-2), 76.4 (C-6), 74.5 (C-4), 72.5 (C-3), 70.0 (C-
5), 63.3 (C-7), 37.8 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 738.1946, 
found: [M + Na]+ = 738.1950; C41H33NO11 (715.21). 

 

4.4. Characterization of Hept-1-Enitols 3 and 4 
4.4.1. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (3a)  

Prepared from tosylhydrazone 1a (0.80 g, 1.03 mmol), phenylboronic acid (20 equiv., 
2.51 g, 20.60 mmol), and K3PO4 (10 equiv., 2.19 g, 10.30 mmol) according to General pro-
cedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 484 mg (70%) 
of 3a as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 21 (c 0.20, CH2Cl2). 
1H NMR (500 MHz, CDCl3) δ 8.18–7.82 (8H, m, aromatics), 7.64–7.15 (17H, m, aromatics), 
6.78 (1H, d, J1,2 15.9 Hz, H-1), 6.32 (1H, dd, J2,3 6.9 Hz, H-2), 6.14–6.02 (2H, m, H-3, H-4), 
5.76 (1H, dd, J4,5 0.8, J5,6 8.9 Hz, H-5), 4.53 (1H, dd, J6,7a 2.6, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, 
J6,7b 5.7 Hz, H-7b), 4.21–4.11 (1H, m, H-6), 3.58 (1H, d, J6,OH 4.3 Hz, OH). 13C NMR (125 MHz, 
CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.7 (C-1), 136.3–125.9 (aromatics), 122.1 (C-
2), 73.9 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z): 
calc. for [M + Na]+ = 693.2095, found: [M + Na]+ = 693.2095; C41H34O9 (670.22). 

 

  4.4.2. (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (4a)

Isolated from a reaction of tosylhydrazone 1a (0.30 g, 0.39 mmol), phenylboronic
acid (20 equiv., 0.94 g, 7.72 mmol), and K3PO4 (10 equiv., 8.20 g, 3.86 mmol) according
to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 24 mg
yellow amorphous solid containing 4a and 3a in 10:2 ratio. Rf: 0.37 (1:2 EtOAc–hexane).
1H NMR (400 MHz, CDCl3) δ 8.22–7.77 (8H, m, aromatics), 7.63–7.06 (17H, m, aromatics),
6.99 (1H, d, J1,2 15.6 Hz, H-1), 6.31 (1H, dd, J2,3 8.0 Hz, H-2), 6.23 (1H, pseudo t, J3,4 8.6 Hz,
H-3), 5.82 (1H, dd, J4,5 1.3 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.3, J6,7b 4.4, J5,6 8.0 Hz, H-6),
4.81 (1H, dd, J7a,7b 12.4 Hz, H-7a), 4.74 (1H, dd, H-7b), 4.39 (1H, pseudo t, H-5), 3.25 (1H,
d, J5,OH 8.4 Hz, OH). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.7, 165.4 (4 × CO),
136.9 (C-1), 136.3–124.1 (aromatics), 122.7 (C-2), 74.6 (C-3), 72.4 (C-4), 71.7 (C-6), 68.5 (C-
5), 63.4 (C-7). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 693.2095, found:
[M + Na]+ = 693.2096; C41H34O9 (670.22).
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4.4.2. (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (4a) 
Isolated from a reaction of tosylhydrazone 1a (0.30 g, 0.39 mmol), phenylboronic acid 

(20 equiv., 0.94 g, 7.72 mmol), and K3PO4 (10 equiv., 8.20 g, 3.86 mmol) according to Gen-
eral procedure I by column chromatography (1:2 EtOAc–hexane) to yield 24 mg yellow 
amorphous solid containing 4a and 3a in 10:2 ratio. Rf: 0.37 (1:2 EtOAc–hexane). 1H NMR 
(400 MHz, CDCl3) δ 8.22–7.77 (8H, m, aromatics), 7.63–7.06 (17H, m, aromatics), 6.99 (1H, 
d, J1,2 15.6 Hz, H-1), 6.31 (1H, dd, J2,3 8.0 Hz, H-2), 6.23 (1H, pseudo t, J3,4 8.6 Hz, H-3), 5.82 
(1H, dd, J4,5 1.3 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.3, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.81 (1H, dd, J7a,7b 
12.4 Hz, H-7a), 4.74 (1H, dd, H-7b), 4.39 (1H, pseudo t, H-5), 3.25 (1H, d, J5,OH 8.4 Hz, OH). 
13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.7, 165.4 (4 × CO), 136.9 (C-1), 136.3‒124.1 
(aromatics), 122.7 (C-2), 74.6 (C-3), 72.4 (C-4), 71.7 (C-6), 68.5 (C-5), 63.4 (C-7). HR-ESI-MS 
positive mode (m/z): calc. for [M + Na]+ = 693.2095, found: [M + Na]+ = 693.2096; C41H34O9 
(670.22). 

 

4.4.3. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Naphth-2-yl-D-gluco-Hept-1-Enitol (3b) 
and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Naphth-2-yl-D-gluco-Hept-1-Enitol (4b) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), naphthalen-2-
ylboronic acid (20 equiv., 0.44 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol) 
according to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
70 mg pale brown amorphous solid containing 3b and 4b in 1.5:1 ratio. Rf: 0.25 (1:2 EtOAc–
hexane). 

 

3b: 1H NMR (400 MHz, CDCl3) δ 8.20–7.03 (27H, m, aromatics), 6.94 (1H, d, J1,2 15.9 
Hz, H-1), 6.45 (1H, dd, J2,3 6.7 Hz, H-2), 6.19–6.09 (2H, m, H-3, H-4), 5.82 (1H, dd, J4,5 1.2, 
J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b 11.9 Hz, H-7a), 4.35 (1H, dd, J6,7b 5.7 Hz, H-7b), 
4.24–4.13 (1H, m, H-6), 3.66 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 167.2, 166.7, 165.6, 
165.4 (4 × CO), 136.6 (C-1), 136.4–123.3 (aromatics), 122.4 (C-2), 73.9 (C-3), 73.2 (C-4), 71.3 
(C-5), 68.5 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 743.2252, 
found: [M + Na]+ = 743.2250; C45H36O9 (720.24). 

4b: 1H NMR (400 MHz, CDCl3) δ 8.20–7.03 (28H, m, aromatics, H-1), 6.44 (1H, dd, J1,2 
15.8, J2,3 8.4 Hz, H-2), 6.31 (1H, pseudo t, J3,4 8.9 Hz, H-3), 5.88 (1H, dd, J4,5 1.4 Hz, H-4), 5.48 
(1H, ddd, J6,7a 3.3, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.82 (1H, dd, J7a,7b 12.4 Hz, H-7a), 4.75 (1H, dd, 
H-7b), 4.44 (1H, d, H-5), 3.57 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 166.9, 166.3, 165.8, 
165.4 (4 × CO), 136.9 (C-1), 136.4–123.0 (aromatics), 123.1 (C-2), 74.8 (C-3), 72.5 (C-4), 71.6 
(C-6), 68.4 (C-5), 63.4 (C-7). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 743.2252, 
found: [M + Na]+ = 743.2254; C45H36O9 (720.24). 

4.4.4. (E)-3,4,5,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (3c) 

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-4-ylboronic 
acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to 
General procedure I. Purified by column chromatography (1:2 EtOAc–hexane) to yield 16 
mg (16%) of 3c as a pale brown amorphous solid. Rf: 0.32 (1:2 EtOAc–hexane); [α]D + 5 (c 
0.11, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.38–7.68 (12H, m, aromatics), 7.64–7.16 (15H, 
m, aromatics), 7.15–6.92 (2H, m, H-1, H-2), 6.22 (1H, dd, J2,3 5.5, J3,4 8.0 Hz, H-3), 6.16 (1H, 
dd, J4,5 1.7 Hz, H-4), 5.87 (1H, dd, J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b 11.9 Hz, H-7a), 

4.4.3. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Naphth-2-yl-D-gluco-Hept-1-Enitol (3b)
and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Naphth-2-yl-D-gluco-Hept-1-Enitol (4b)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), naphthalen-2-
ylboronic acid (20 equiv., 0.44 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol)
according to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield
70 mg pale brown amorphous solid containing 3b and 4b in 1.5:1 ratio. Rf: 0.25 (1:2
EtOAc–hexane).
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4.4.2. (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (4a) 
Isolated from a reaction of tosylhydrazone 1a (0.30 g, 0.39 mmol), phenylboronic acid 

(20 equiv., 0.94 g, 7.72 mmol), and K3PO4 (10 equiv., 8.20 g, 3.86 mmol) according to Gen-
eral procedure I by column chromatography (1:2 EtOAc–hexane) to yield 24 mg yellow 
amorphous solid containing 4a and 3a in 10:2 ratio. Rf: 0.37 (1:2 EtOAc–hexane). 1H NMR 
(400 MHz, CDCl3) δ 8.22–7.77 (8H, m, aromatics), 7.63–7.06 (17H, m, aromatics), 6.99 (1H, 
d, J1,2 15.6 Hz, H-1), 6.31 (1H, dd, J2,3 8.0 Hz, H-2), 6.23 (1H, pseudo t, J3,4 8.6 Hz, H-3), 5.82 
(1H, dd, J4,5 1.3 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.3, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.81 (1H, dd, J7a,7b 
12.4 Hz, H-7a), 4.74 (1H, dd, H-7b), 4.39 (1H, pseudo t, H-5), 3.25 (1H, d, J5,OH 8.4 Hz, OH). 
13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.7, 165.4 (4 × CO), 136.9 (C-1), 136.3‒124.1 
(aromatics), 122.7 (C-2), 74.6 (C-3), 72.4 (C-4), 71.7 (C-6), 68.5 (C-5), 63.4 (C-7). HR-ESI-MS 
positive mode (m/z): calc. for [M + Na]+ = 693.2095, found: [M + Na]+ = 693.2096; C41H34O9 
(670.22). 

 

4.4.3. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Naphth-2-yl-D-gluco-Hept-1-Enitol (3b) 
and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-Naphth-2-yl-D-gluco-Hept-1-Enitol (4b) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), naphthalen-2-
ylboronic acid (20 equiv., 0.44 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol) 
according to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
70 mg pale brown amorphous solid containing 3b and 4b in 1.5:1 ratio. Rf: 0.25 (1:2 EtOAc–
hexane). 

 

3b: 1H NMR (400 MHz, CDCl3) δ 8.20–7.03 (27H, m, aromatics), 6.94 (1H, d, J1,2 15.9 
Hz, H-1), 6.45 (1H, dd, J2,3 6.7 Hz, H-2), 6.19–6.09 (2H, m, H-3, H-4), 5.82 (1H, dd, J4,5 1.2, 
J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b 11.9 Hz, H-7a), 4.35 (1H, dd, J6,7b 5.7 Hz, H-7b), 
4.24–4.13 (1H, m, H-6), 3.66 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 167.2, 166.7, 165.6, 
165.4 (4 × CO), 136.6 (C-1), 136.4–123.3 (aromatics), 122.4 (C-2), 73.9 (C-3), 73.2 (C-4), 71.3 
(C-5), 68.5 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 743.2252, 
found: [M + Na]+ = 743.2250; C45H36O9 (720.24). 

4b: 1H NMR (400 MHz, CDCl3) δ 8.20–7.03 (28H, m, aromatics, H-1), 6.44 (1H, dd, J1,2 
15.8, J2,3 8.4 Hz, H-2), 6.31 (1H, pseudo t, J3,4 8.9 Hz, H-3), 5.88 (1H, dd, J4,5 1.4 Hz, H-4), 5.48 
(1H, ddd, J6,7a 3.3, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.82 (1H, dd, J7a,7b 12.4 Hz, H-7a), 4.75 (1H, dd, 
H-7b), 4.44 (1H, d, H-5), 3.57 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 166.9, 166.3, 165.8, 
165.4 (4 × CO), 136.9 (C-1), 136.4–123.0 (aromatics), 123.1 (C-2), 74.8 (C-3), 72.5 (C-4), 71.6 
(C-6), 68.4 (C-5), 63.4 (C-7). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 743.2252, 
found: [M + Na]+ = 743.2254; C45H36O9 (720.24). 

4.4.4. (E)-3,4,5,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (3c) 

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-4-ylboronic 
acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to 
General procedure I. Purified by column chromatography (1:2 EtOAc–hexane) to yield 16 
mg (16%) of 3c as a pale brown amorphous solid. Rf: 0.32 (1:2 EtOAc–hexane); [α]D + 5 (c 
0.11, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.38–7.68 (12H, m, aromatics), 7.64–7.16 (15H, 
m, aromatics), 7.15–6.92 (2H, m, H-1, H-2), 6.22 (1H, dd, J2,3 5.5, J3,4 8.0 Hz, H-3), 6.16 (1H, 
dd, J4,5 1.7 Hz, H-4), 5.87 (1H, dd, J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b 11.9 Hz, H-7a), 

3b: 1H NMR (400 MHz, CDCl3) δ 8.20–7.03 (27H, m, aromatics), 6.94 (1H, d, J1,2
15.9 Hz, H-1), 6.45 (1H, dd, J2,3 6.7 Hz, H-2), 6.19–6.09 (2H, m, H-3, H-4), 5.82 (1H, dd,
J4,5 1.2, J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b 11.9 Hz, H-7a), 4.35 (1H, dd, J6,7b
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5.7 Hz, H-7b), 4.24–4.13 (1H, m, H-6), 3.66 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ
167.2, 166.7, 165.6, 165.4 (4 × CO), 136.6 (C-1), 136.4–123.3 (aromatics), 122.4 (C-2), 73.9
(C-3), 73.2 (C-4), 71.3 (C-5), 68.5 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z): calc. for
[M + Na]+ = 743.2252, found: [M + Na]+ = 743.2250; C45H36O9 (720.24).

4b: 1H NMR (400 MHz, CDCl3) δ 8.20–7.03 (28H, m, aromatics, H-1), 6.44 (1H, dd,
J1,2 15.8, J2,3 8.4 Hz, H-2), 6.31 (1H, pseudo t, J3,4 8.9 Hz, H-3), 5.88 (1H, dd, J4,5 1.4 Hz,
H-4), 5.48 (1H, ddd, J6,7a 3.3, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.82 (1H, dd, J7a,7b 12.4 Hz, H-7a),
4.75 (1H, dd, H-7b), 4.44 (1H, d, H-5), 3.57 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ
166.9, 166.3, 165.8, 165.4 (4 × CO), 136.9 (C-1), 136.4–123.0 (aromatics), 123.1 (C-2), 74.8
(C-3), 72.5 (C-4), 71.6 (C-6), 68.4 (C-5), 63.4 (C-7). HR-ESI-MS positive mode (m/z): calc. for
[M + Na]+ = 743.2252, found: [M + Na]+ = 743.2254; C45H36O9 (720.24).

4.4.4. (E)-3,4,5,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (3c)

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-4-ylboronic
acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I. Purified by column chromatography (1:2 EtOAc–hexane) to yield
16 mg (16%) of 3c as a pale brown amorphous solid. Rf: 0.32 (1:2 EtOAc–hexane); [α]D +
5 (c 0.11, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.38–7.68 (12H, m, aromatics), 7.64–7.16
(15H, m, aromatics), 7.15–6.92 (2H, m, H-1, H-2), 6.22 (1H, dd, J2,3 5.5, J3,4 8.0 Hz, H-3),
6.16 (1H, dd, J4,5 1.7 Hz, H-4), 5.87 (1H, dd, J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b
11.9 Hz, H-7a), 4.35 (1H, dd, J6,7b 5.7 Hz, H-7b), 4.23–4.15 (1H, m, H-6), 3.60 (1H, d, J6,OH
5.3 Hz, OH). 13C NMR (100 MHz, CDCl3) δ 167.2, 166.7, 165.6, 165.4 (4 × CO), 130.8 (C-1),
156.5–111.9 (aromatics), 125.9 (C-2), 74.1 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7).
C47H36O10 (760.23). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 783.2201,
found: [M + Na]+ = 783.2202; C47H36O10 (760.23).
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4.35 (1H, dd, J6,7b 5.7 Hz, H-7b), 4.23–4.15 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.3 Hz, OH). 13C 
NMR (100 MHz, CDCl3) δ 167.2, 166.7, 165.6, 165.4 (4 × CO), 130.8 (C-1), 156.5–111.9 (aro-
matics), 125.9 (C-2), 74.1 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7). C47H36O10 
(760.23). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 783.2201, found: [M + Na]+ 
= 783.2202; C47H36O10 (760.23). 

 

4.4.5. (E)-3,4,6,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (4c) 

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-4-ylboronic 
acid (20 equiv., 0.55 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol) according to 
General procedure I. Purified by column chromatography (1:3 EtOAc–hexane) to yield 29 
mg (30%) of 4c as a yellow amorphous solid. Rf: 0.32 (1:2 EtOAc–hexane); [α]D + 5 (c 0.11, 
CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.23–6.76 (27H, m, aromatics), 7.02 (1H, d, J1,2 16.2 
Hz, H-1), 6.97 (1H, dd, J2,3 8.2 Hz, H-2), 6.29 (1H, pseudo t, J3,4 9.0 Hz, H-3), 5.91 (1H, dd, 
J4,5 1.5 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.5, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.77 (1H, dd, J7a,7b 12.4 Hz, 
H-7a), 4.68 (1H, dd, H-7b), 4.50–4.41 (1H, m, H-5), 3.28 (1H, d, J5,OH 6.0 Hz, OH). 13C NMR 
(100 MHz, CDCl3) δ 167.1, 166.9, 165.9, 165.8 (4 × CO), 131.7 (C-1), 156.3–111.0 (aromatics), 
120.6 (C-2), 75.1 (C-3), 72.5 (C-4), 71.7 (C-6), 68.4 (C-5), 63.3 (C-7). HR-ESI-MS positive 
mode (m/z): calc. for [M + Na]+ = 783.2201, found: [M + Na]+ = 783.2202; C47H36O10 (760.23). 

 

4.4.6. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-Enitol 
(3d) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-
enitol (4d) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methylphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
44 mg pale yellow amorphous solid containing 3d and 4d in 2:1 ratio. Rf: 0.38 (1:2 EtOAc–
hexane).  

 

3d: 1H NMR (400 MHz, CDCl3) δ 8.20–7.81 (8H, m, aromatics), 7.64–7.01 (16H, m, 
aromatics), 6.74 (1H, d, J1,2 15.9 Hz, H-1), 6.26 (1H, dd, J2,3 6.7 Hz, H-2), 6.12–6.02 (2H, m, 
H-3, H-4), 5.75 (1H, dd, J4,5 1.1, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a 2.9, J7a,7b 11.9 Hz, H-7a), 
4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.20–4.10 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.2 Hz, OH), 2.33 
(3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.8 (C-1), 
139.5–126.1 (aromatics), 120.9 (C-2), 74.0 (C-3), 73.4 (C-4), 71.4 (C-5), 68.6 (C-6), 65.5 (C-7), 

4.4.5. (E)-3,4,6,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (4c)

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-4-ylboronic
acid (20 equiv., 0.55 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol) according to
General procedure I. Purified by column chromatography (1:3 EtOAc–hexane) to yield
29 mg (30%) of 4c as a yellow amorphous solid. Rf: 0.32 (1:2 EtOAc–hexane); [α]D + 5 (c
0.11, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.23–6.76 (27H, m, aromatics), 7.02 (1H, d, J1,2
16.2 Hz, H-1), 6.97 (1H, dd, J2,3 8.2 Hz, H-2), 6.29 (1H, pseudo t, J3,4 9.0 Hz, H-3), 5.91 (1H,
dd, J4,5 1.5 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.5, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.77 (1H, dd, J7a,7b
12.4 Hz, H-7a), 4.68 (1H, dd, H-7b), 4.50–4.41 (1H, m, H-5), 3.28 (1H, d, J5,OH 6.0 Hz, OH).
13C NMR (100 MHz, CDCl3) δ 167.1, 166.9, 165.9, 165.8 (4 × CO), 131.7 (C-1), 156.3–111.0
(aromatics), 120.6 (C-2), 75.1 (C-3), 72.5 (C-4), 71.7 (C-6), 68.4 (C-5), 63.3 (C-7). HR-ESI-
MS positive mode (m/z): calc. for [M + Na]+ = 783.2201, found: [M + Na]+ = 783.2202;
C47H36O10 (760.23).
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4.35 (1H, dd, J6,7b 5.7 Hz, H-7b), 4.23–4.15 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.3 Hz, OH). 13C 
NMR (100 MHz, CDCl3) δ 167.2, 166.7, 165.6, 165.4 (4 × CO), 130.8 (C-1), 156.5–111.9 (aro-
matics), 125.9 (C-2), 74.1 (C-3), 73.3 (C-4), 71.3 (C-5), 68.6 (C-6), 65.5 (C-7). C47H36O10 
(760.23). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 783.2201, found: [M + Na]+ 
= 783.2202; C47H36O10 (760.23). 

 

4.4.5. (E)-3,4,6,7-Tetra-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (4c) 

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), dibenzo[b,d]furan-4-ylboronic 
acid (20 equiv., 0.55 g, 2.57 mmol), and K3PO4 (10 equiv., 0.27 g, 1.29 mmol) according to 
General procedure I. Purified by column chromatography (1:3 EtOAc–hexane) to yield 29 
mg (30%) of 4c as a yellow amorphous solid. Rf: 0.32 (1:2 EtOAc–hexane); [α]D + 5 (c 0.11, 
CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.23–6.76 (27H, m, aromatics), 7.02 (1H, d, J1,2 16.2 
Hz, H-1), 6.97 (1H, dd, J2,3 8.2 Hz, H-2), 6.29 (1H, pseudo t, J3,4 9.0 Hz, H-3), 5.91 (1H, dd, 
J4,5 1.5 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.5, J6,7b 4.4, J5,6 8.0 Hz, H-6), 4.77 (1H, dd, J7a,7b 12.4 Hz, 
H-7a), 4.68 (1H, dd, H-7b), 4.50–4.41 (1H, m, H-5), 3.28 (1H, d, J5,OH 6.0 Hz, OH). 13C NMR 
(100 MHz, CDCl3) δ 167.1, 166.9, 165.9, 165.8 (4 × CO), 131.7 (C-1), 156.3–111.0 (aromatics), 
120.6 (C-2), 75.1 (C-3), 72.5 (C-4), 71.7 (C-6), 68.4 (C-5), 63.3 (C-7). HR-ESI-MS positive 
mode (m/z): calc. for [M + Na]+ = 783.2201, found: [M + Na]+ = 783.2202; C47H36O10 (760.23). 

 

4.4.6. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-Enitol 
(3d) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-
enitol (4d) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methylphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
44 mg pale yellow amorphous solid containing 3d and 4d in 2:1 ratio. Rf: 0.38 (1:2 EtOAc–
hexane).  

 

3d: 1H NMR (400 MHz, CDCl3) δ 8.20–7.81 (8H, m, aromatics), 7.64–7.01 (16H, m, 
aromatics), 6.74 (1H, d, J1,2 15.9 Hz, H-1), 6.26 (1H, dd, J2,3 6.7 Hz, H-2), 6.12–6.02 (2H, m, 
H-3, H-4), 5.75 (1H, dd, J4,5 1.1, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a 2.9, J7a,7b 11.9 Hz, H-7a), 
4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.20–4.10 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.2 Hz, OH), 2.33 
(3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.8 (C-1), 
139.5–126.1 (aromatics), 120.9 (C-2), 74.0 (C-3), 73.4 (C-4), 71.4 (C-5), 68.6 (C-6), 65.5 (C-7), 
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4.4.6. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-Enitol
(3d) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-
enitol (4d)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methylphenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 44 mg pale
yellow amorphous solid containing 3d and 4d in 2:1 ratio. Rf: 0.38 (1:2 EtOAc–hexane).
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120.6 (C-2), 75.1 (C-3), 72.5 (C-4), 71.7 (C-6), 68.4 (C-5), 63.3 (C-7). HR-ESI-MS positive 
mode (m/z): calc. for [M + Na]+ = 783.2201, found: [M + Na]+ = 783.2202; C47H36O10 (760.23). 

 

4.4.6. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-Enitol 
(3d) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methylphenyl)-D-gluco-Hept-1-
enitol (4d) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methylphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
44 mg pale yellow amorphous solid containing 3d and 4d in 2:1 ratio. Rf: 0.38 (1:2 EtOAc–
hexane).  

 

3d: 1H NMR (400 MHz, CDCl3) δ 8.20–7.81 (8H, m, aromatics), 7.64–7.01 (16H, m, 
aromatics), 6.74 (1H, d, J1,2 15.9 Hz, H-1), 6.26 (1H, dd, J2,3 6.7 Hz, H-2), 6.12–6.02 (2H, m, 
H-3, H-4), 5.75 (1H, dd, J4,5 1.1, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a 2.9, J7a,7b 11.9 Hz, H-7a), 
4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.20–4.10 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.2 Hz, OH), 2.33 
(3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.8 (C-1), 
139.5–126.1 (aromatics), 120.9 (C-2), 74.0 (C-3), 73.4 (C-4), 71.4 (C-5), 68.6 (C-6), 65.5 (C-7), 

3d: 1H NMR (400 MHz, CDCl3) δ 8.20–7.81 (8H, m, aromatics), 7.64–7.01 (16H, m,
aromatics), 6.74 (1H, d, J1,2 15.9 Hz, H-1), 6.26 (1H, dd, J2,3 6.7 Hz, H-2), 6.12–6.02 (2H, m,
H-3, H-4), 5.75 (1H, dd, J4,5 1.1, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a 2.9, J7a,7b 11.9 Hz, H-7a),
4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.20–4.10 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.2 Hz, OH),
2.33 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 136.8
(C-1), 139.5–126.1 (aromatics), 120.9 (C-2), 74.0 (C-3), 73.4 (C-4), 71.4 (C-5), 68.6 (C-6), 65.5
(C-7), 21.4 (CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 707.2252, found:
[M + Na]+ = 707.2251; C42H36O9 (684.24).

4d: 1H NMR (400 MHz, CDCl3) δ 8.21–7.73 (8H, m, aromatics), 7.72–7.01 (16H, m,
aromatics), 6.96 (1H, d, J1,2 14.9 Hz, H-1), 6.25 (1H, dd, J2,3 6.6 Hz, H-2), 6.21 (1H, pseudo t,
J3,4 8.6 Hz, H-3), 5.81 (1H, dd, J4,5 1.3 Hz, H-4), 5.44 (1H, ddd, J6,7a 3.4, J6,7b 4.5, J5,6 8.5 Hz,
H-6), 4.79 (1H, dd, J7a,7b 12.4 Hz, H-7a), 4.74 (1H, dd, H-7b), 4.39 (1H, pseudo t, J5,OH 8.8 Hz,
H-5), 3.16 (1H, bs, OH), 2.35 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 167.1, 166.9,
165.9, 165.3 (4 × CO), 135.9 (C-1), 139.5–115.0 (aromatics), 121.6 (C-2), 74.7 (C-3), 72.5 (C-4),
71.7 (C-6), 68.5 (C-5), 63.4 (C-7), 21.4 (CH3). HR-ESI-MS positive mode (m/z): calc. for
[M + Na]+ = 707.2252, found: [M + Na]+ = 707.2254; C42H36O9 (684.24).

4.4.7. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methoxyphenyl)-D-gluco-Hept-1-
Enitol (3e) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methoxyphenyl)-D-gluco-
Hept-1-Enitol (4e)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methoxyphenylbor
onic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according
to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 43 mg
yellow amorphous solid containing 3e and 4e in 2.5:1 ratio. Rf: 0.31 (1:2 EtOAc–hexane).
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21.4 (CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 707.2252, found: [M + 
Na]+ = 707.2251; C42H36O9 (684.24). 
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(C-6), 68.5 (C-5), 63.4 (C-7), 21.4 (CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ 
= 707.2252, found: [M + Na]+ = 707.2254; C42H36O9 (684.24). 

4.4.7. (E)-3,4,5,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methoxyphenyl)-D-gluco-Hept-1- 
Enitol (3e) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methoxyphenyl)-D-gluco-
Hept-1-Enitol (4e) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methoxyphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
43 mg yellow amorphous solid containing 3e and 4e in 2.5:1 ratio. Rf: 0.31 (1:2 EtOAc–
hexane).  

 

3e: 1H NMR (400 MHz, CDCl3) δ 8.28–7.67 (8H, m, aromatics), 7.65–7.09 (14H, m, ar-
omatics), 6.81 (2H, d, J 8.8 Hz, aromatics), 6.71 (1H, d, J1,2 15.7 Hz, H-1), 6.25–6.11 (1H, m, 
H-2), 6.10–6.02 (2H, m, H-3, H-4), 5.75 (1H, dd, J4,5 1.0, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a 
3.0, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.21–4.09 (1H, m, H-6), 3.80 (3H, s, 
OCH3), 3.63 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 
136.5 (C-1), 160.9–112.7 (aromatics), 119.6 (C-2), 74.2 (C-3), 73.4 (C-4), 71.4 (C-5), 68.5 (C-
6), 65.5 (C-7), 55.4 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 723.2201, 
found: [M + Na]+ = 723.2204; C42H36O10 (700.23). 

4e: 1H NMR (400 MHz, CD3OD) δ 8.19–7.74 (8H, m, aromatics), 7.65–7.12 (14H, m, 
aromatics), 6.96 (1H, d, J1,2 15.8 Hz, H-1), 6.90 (2H, d, J 8.7 Hz, aromatics), 6.32 (1H, dd, J2,3 
8.2 Hz, H-2), 6.21 (1H, pseudo t, J3,4 9.1 Hz, H-3), 5.82 (1H, dd, J4,5 1.5 Hz, H-4), 5.45 (1H, 
ddd, J6,7a 2.5, J6,7b 5.1 Hz, H-6), 4.93 (1H, dd, J7a,7b 12.2 Hz, H-7a), 4.57 (1H, dd, H-7b), 4.52 
(1H, dd, J5,6 9.1 Hz, H-5), 3.80 (3H, s, OCH3), 3.58 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) 
δ 167.0, 166.9, 165.8, 165.4 (4 × CO), 136.6 (C-1), 160.9–112.7 (aromatics), 120.3 (C-2), 74.5 
(C-3), 72.5, 71.7 (C-4, C-6), 68.8 (C-5), 63.4 (C-7), 55.5 (OCH3). HR-ESI-MS positive mode 
(m/z): calc. for [M + H]+ = 701.2381, found: [M + H]+ = 701.2381; C42H36O10 (700.23). 

4.4.8. (E)-3,4,5,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-Enitol 
(3f) and (E)-3,4,6,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (4f) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 3-chlorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
60 mg white amorphous solid containing 3f and 4f in 2:1 ratio with two unidentified spe-
cies. Rf: 0.35 (1:2 EtOAc–hexane).  

  

3e: 1H NMR (400 MHz, CDCl3) δ 8.28–7.67 (8H, m, aromatics), 7.65–7.09 (14H, m,
aromatics), 6.81 (2H, d, J 8.8 Hz, aromatics), 6.71 (1H, d, J1,2 15.7 Hz, H-1), 6.25–6.11 (1H, m,
H-2), 6.10–6.02 (2H, m, H-3, H-4), 5.75 (1H, dd, J4,5 1.0, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a
3.0, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.21–4.09 (1H, m, H-6), 3.80 (3H, s,
OCH3), 3.63 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO),
136.5 (C-1), 160.9–112.7 (aromatics), 119.6 (C-2), 74.2 (C-3), 73.4 (C-4), 71.4 (C-5), 68.5 (C-6),
65.5 (C-7), 55.4 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 723.2201,
found: [M + Na]+ = 723.2204; C42H36O10 (700.23).

4e: 1H NMR (400 MHz, CD3OD) δ 8.19–7.74 (8H, m, aromatics), 7.65–7.12 (14H, m,
aromatics), 6.96 (1H, d, J1,2 15.8 Hz, H-1), 6.90 (2H, d, J 8.7 Hz, aromatics), 6.32 (1H, dd, J2,3
8.2 Hz, H-2), 6.21 (1H, pseudo t, J3,4 9.1 Hz, H-3), 5.82 (1H, dd, J4,5 1.5 Hz, H-4), 5.45 (1H,
ddd, J6,7a 2.5, J6,7b 5.1 Hz, H-6), 4.93 (1H, dd, J7a,7b 12.2 Hz, H-7a), 4.57 (1H, dd, H-7b), 4.52
(1H, dd, J5,6 9.1 Hz, H-5), 3.80 (3H, s, OCH3), 3.58 (1H, bs, OH). 13C NMR (90 MHz, CDCl3)
δ 167.0, 166.9, 165.8, 165.4 (4 × CO), 136.6 (C-1), 160.9–112.7 (aromatics), 120.3 (C-2), 74.5
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(C-3), 72.5, 71.7 (C-4, C-6), 68.8 (C-5), 63.4 (C-7), 55.5 (OCH3). HR-ESI-MS positive mode
(m/z): calc. for [M + H]+ = 701.2381, found: [M + H]+ = 701.2381; C42H36O10 (700.23).

4.4.8. (E)-3,4,5,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-Enitol (3f)
and (E)-3,4,6,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-Enitol (4f)

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 3-chlorophenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 60 mg white
amorphous solid containing 3f and 4f in 2:1 ratio with two unidentified species. Rf: 0.35
(1:2 EtOAc–hexane).

Molecules 2022, 27, x FOR PEER REVIEW 16 of 33 
 

 

21.4 (CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 707.2252, found: [M + 
Na]+ = 707.2251; C42H36O9 (684.24). 
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= 707.2252, found: [M + Na]+ = 707.2254; C42H36O9 (684.24). 
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Enitol (3e) and (E)-3,4,6,7-Tetra-O-Benzoyl-1,2-Dideoxy-1-(4-Methoxyphenyl)-D-gluco-
Hept-1-Enitol (4e) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-methoxyphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
43 mg yellow amorphous solid containing 3e and 4e in 2.5:1 ratio. Rf: 0.31 (1:2 EtOAc–
hexane).  

 

3e: 1H NMR (400 MHz, CDCl3) δ 8.28–7.67 (8H, m, aromatics), 7.65–7.09 (14H, m, ar-
omatics), 6.81 (2H, d, J 8.8 Hz, aromatics), 6.71 (1H, d, J1,2 15.7 Hz, H-1), 6.25–6.11 (1H, m, 
H-2), 6.10–6.02 (2H, m, H-3, H-4), 5.75 (1H, dd, J4,5 1.0, J5,6 8.9 Hz, H-5), 4.52 (1H, dd, J6,7a 
3.0, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, J6,7b 5.9 Hz, H-7b), 4.21–4.09 (1H, m, H-6), 3.80 (3H, s, 
OCH3), 3.63 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 167.3, 166.7, 165.6, 165.4 (4 × CO), 
136.5 (C-1), 160.9–112.7 (aromatics), 119.6 (C-2), 74.2 (C-3), 73.4 (C-4), 71.4 (C-5), 68.5 (C-
6), 65.5 (C-7), 55.4 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 723.2201, 
found: [M + Na]+ = 723.2204; C42H36O10 (700.23). 

4e: 1H NMR (400 MHz, CD3OD) δ 8.19–7.74 (8H, m, aromatics), 7.65–7.12 (14H, m, 
aromatics), 6.96 (1H, d, J1,2 15.8 Hz, H-1), 6.90 (2H, d, J 8.7 Hz, aromatics), 6.32 (1H, dd, J2,3 
8.2 Hz, H-2), 6.21 (1H, pseudo t, J3,4 9.1 Hz, H-3), 5.82 (1H, dd, J4,5 1.5 Hz, H-4), 5.45 (1H, 
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(1H, dd, J5,6 9.1 Hz, H-5), 3.80 (3H, s, OCH3), 3.58 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) 
δ 167.0, 166.9, 165.8, 165.4 (4 × CO), 136.6 (C-1), 160.9–112.7 (aromatics), 120.3 (C-2), 74.5 
(C-3), 72.5, 71.7 (C-4, C-6), 68.8 (C-5), 63.4 (C-7), 55.5 (OCH3). HR-ESI-MS positive mode 
(m/z): calc. for [M + H]+ = 701.2381, found: [M + H]+ = 701.2381; C42H36O10 (700.23). 

4.4.8. (E)-3,4,5,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-Enitol 
(3f) and (E)-3,4,6,7-Tetra-O-Benzoyl-1-(3-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-
Enitol (4f) 

Isolated from a reaction of tosylhydrazone 1a (0.10 g, 0.13 mmol), 3-chlorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
60 mg white amorphous solid containing 3f and 4f in 2:1 ratio with two unidentified spe-
cies. Rf: 0.35 (1:2 EtOAc–hexane).  

  
3f: 1H NMR (400 MHz, CDCl3) δ 8.18–7.82 (8H, m, aromatics), 7.64–7.02 (16H, m,

aromatics), 6.70 (1H, d, J1,2 15.9 Hz, H-1), 6.34 (1H, dd, J2,3 6.9 Hz, H-2), 6.12–6.04 (2H, m,
H-3, H-4), 5.76 (1H, dd, J4,5 0.6, J5,6 8.9 Hz, H-5), 4.54 (1H, dd, J6,7a 3.0, J7a,7b 11.9 Hz, H-7a),
4.34 (1H, dd, J6,7b 5.7 Hz, H-7b), 4.23–4.14 (1H, m, H-6), 3.64 (1H, d, J6,OH 3.9 Hz, OH).
13C NMR (90 MHz, CDCl3) δ 167.1, 166.7, 165.7, 165.5 (4 × CO), 134.9 (C-1), 138.4–123.4
(aromatics), 123.7 (C-2), 73.5 (C-3), 73.0 (C-4), 71.2 (C-5), 68.5 (C-6), 65.5 (C-7). HR-ESI-
MS positive mode (m/z): calc. for [M + Na]+ = 727.1705, found: [M + Na]+ = 727.1706;
C41H33ClO9 (704.18).

4f: 1H NMR (400 MHz, CDCl3) δ 8.18–7.79 (8H, m, aromatics), 7.69–7.06 (16H, m,
aromatics), 6.91 (1H, d, J1,2 15.8 Hz, H-1), 6.32 (1H, dd, J2,3 8.0 Hz, H-2), 6.21 (1H, pseudo t,
J3,4 8.4 Hz, H-3), 5.81 (1H, dd, J4,5 1.5 Hz, H-4), 5.43 (1H, ddd, J6,7a 3.3, J6,7b 4.3, J5,6 8.0 Hz,
H-6), 4.84 (1H, dd, J7a,7b 12.4 Hz, H-7a), 4.73 (1H, dd, H-7b), 4.38–4.27 (1H, m, H-5), 3.34
(1H, d, J5,OH 8.4 Hz, OH). 13C NMR (90 MHz, CDCl3) δ 167.1, 166.8, 165.8, 165.4 (4 ×
CO), 135.2 (C-1), 153.1–123.4 (aromatics), 124.4 (C-2), 74.4 (C-3), 72.4 (C-4), 71.7 (C-6), 68.4
(C-5), 63.4 (C-7). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 727.1705, found:
[M + Na]+ = 727.1706; C41H33ClO9 (704.18).

4.4.9. 3,4,5,7-Tetra-O-Benzoyl-1-(4-Chlorophenyl)-1,2-Dideoxy-D-gluco-Hept-1-Enitol (3g)

Prepared from tosylhydrazone 1a (0.10 g, 0.13 mmol), 4-chlorophenylboronic acid
(1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General
procedure I. Purified by column chromatography (1:2 acetone–hexane) to yield 62 mg (68%)
of 3g as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 9 (c 0.57, CH2Cl2).
1H NMR (400 MHz, CDCl3) δ 8.16–7.85 (8H, m, aromatics), 7.64–7.12 (16H, m, aromatics),
6.71 (1H, d, J1,2 16.0 Hz, H-1), 6.34–6.24 (1H, m, H-2), 6.10–6.02 (2H, m, H-3, H-4), 5.74 (1H,
dd, J4,5 0.9, J5,6 8.9 Hz, H-5), 4.53 (1H, dd, J6,7a 2.9, J7a,7b 11.9 Hz, H-7a), 4.34 (1H, dd, J6,7b
5.7 Hz, H-7b), 4.21–4.10 (1H, m, H-6), 3.60 (1H, d, J6,OH 5.1 Hz, OH). 13C NMR (100 MHz,
CDCl3) δ 167.2, 166.8, 165.5, 165.4 (4 × CO), 135.2 (C-1), 134.7–127.2 (aromatics), 122.7 (C-2),
73.7 (C-3), 73.1 (C-4), 71.2 (C-5), 68.5 (C-6), 65.5 (C-7). HR-ESI-MS positive mode (m/z):
calc. for [M + Na]+ = 727.1705, found: [M + Na]+ = 727.1703; C41H33ClO9 (704.18).
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4.5.1. 3,4,5,7-Tetra-O-Acetyl-2,6-Anhydro-1-Deoxy-1-Phenyl-D-glycero-L-manno-Heptitol (7)

Isolated from a reaction of tosylhydrazone 6 (0.10 g, 0.19 mmol), phenylboronic acid
(20 equiv., 0.46 g, 3.78 mmol), and K3PO4 (10 equiv., 0.40 g, 1.89 mmol) according to General
procedure I by column chromatography (1:4 EtOAc–hexane) to yield 6 mg (7%) of 7 as a
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white amorphous product. Optical rotation, NMR and MS spectra are identical with those
reported [13].
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as a white amorphous product. Optical rotation, NMR and MS spectra are identical with 
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4.5.2. (E)-3,5,6,7-Tetra-O-Acetyl-1,2-Dideoxy-1-Phenyl-D-galacto-Hept-1-Enitol (8) 
Isolated from a reaction of tosylhydrazone 6 (0.30 g, 0.56 mmol), phenylboronic acid 

(20 equiv., 1.38 g, 11.35 mmol), and K3PO4 (10 equiv., 1.20 g, 5.68 mmol) according to Gen-
eral procedure I by column chromatography (1:4 EtOAc–hexane) to yield 12 mg (5%) of 8 
as a white amorphous solid. Rf: 0.15 (1:2 EtOAc–hexane); [α]D + 40 (c 0.18, CHCl3). 1H NMR 
(400 MHz, CDCl3) δ 7.43–7.22 (5H, m, aromatics), 6.71 (1H, d, J1,2 16.0 Hz, H-1), 6.32 (1H, 

4.5.2. (E)-3,5,6,7-Tetra-O-Acetyl-1,2-Dideoxy-1-Phenyl-D-galacto-Hept-1-Enitol (8)

Isolated from a reaction of tosylhydrazone 6 (0.30 g, 0.56 mmol), phenylboronic acid
(20 equiv., 1.38 g, 11.35 mmol), and K3PO4 (10 equiv., 1.20 g, 5.68 mmol) according to
General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 12 mg (5%)
of 8 as a white amorphous solid. Rf: 0.15 (1:2 EtOAc–hexane); [α]D + 40 (c 0.18, CHCl3). 1H
NMR (400 MHz, CDCl3) δ 7.43–7.22 (5H, m, aromatics), 6.71 (1H, d, J1,2 16.0 Hz, H-1), 6.32
(1H, dd, J2,3 7.6 Hz, H-2), 5.54 (1H, ddd, J6,7a 4.6, J6,7b 7.7 Hz, H-6), 5.48 (1H, dd, J3,4 1.1 Hz,
H-3), 5.19 (1H, dd, J5,6 1.7 Hz, H-5), 4.26 (1H, dd, J7a,7b 11.8 Hz, H-7a), 4.05 (1H, dd, H-7b),
3.72 (1H, dd, J4,5 9.6 Hz, H-4), 3.09 (1H, bs, OH), 2.16, 2.11, 2.10, 2.04 (12H, 4s, 4 × CH3).
13C NMR (90 MHz, CDCl3) δ 171.8, 170.6, 170.4, 170.0 (4 × CO), 134.9 (C-1), 136.7–123.2
(aromatics), 123.7 (C-2), 72.4 (C-3), 70.6 (C-4), 70.1, 70.0 (C-5, C-6), 62.8 (C-7), 21.3, 21.0,
20.8 (4 × CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 445.1469, found:
[M + Na]+ = 445.1470; C21H26O9 (422.16).
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9 as a white amorphous solid. Rf: 0.10 (1:2 EtOAc–hexane); [α]D + 37 (c 0.40, CHCl3). 1H 
NMR (400 MHz, CDCl3) δ 7.57–7.09 (5H, m, aromatics), 6.63 (1H, d, J1,2 15.8 Hz, H-1), 6.03 
(1H, dd, J2,3 6.0 Hz, H-2), 5.88 (1H, dd, J3,4 1.9 Hz, H-3), 5.22 (1H, ddd, J6,7a 4.7, J6,7b 7.8 Hz, 
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3.85 (1H, dd, J5,6 1.5 Hz, H-5), 3.53 (1H, bs, OH), 2.21, 2.07, 2.04, 2.01 (12H, 4s, 4 × CH3). 13C 
NMR (100 MHz, CDCl3) δ 171.5, 171.2, 170.7, 170.0 (4 × CO), 133.0 (C-1), 136.0–121.2 (aro-
matics), 123.4 (C-2), 72.5 (C-3), 71.6 (C-4), 69.0, (C-6), 67.9 (C-5), 63.4 (C-7), 21.1, 20.8, 20.7 
(4 × CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 445.1469, found: [M + Na]+ 
= 445.1467; C21H26O9 (422.16). 

 

4.6. General Procedure II for the Synthesis of 1-Aryl-3,4,5,6,7-Penta-O-Benzoyl-1,2-Dideoxy-D-
gluco-Hept-1-Enitols 11 and 12 

A mixture of 1-aryl-tetra-O-benzoyl-1,2-dideoxy-D-gluco-hept-1-enitol (3 and 4, 1 
mmol) and dry pyridine (6.3 mmol) were dissolved in dry chloroform (3 mL). Then, ben-
zoyl–chloride (7 mmol) was added dropwise to the solution. The reaction mixture was 
stirred and heated at 80 °C. When TLC (1:2 EtOAc–hexane) showed complete consump-
tion of the starting compound (~2 h), the mixture was cooled down. The organic layer was 
washed with 2M aqueous hydrogen chloride solution (1 × 3 mL), cold, saturated sodium 
hydrogen carbonate solution (1 × 3 mL), water (1 × 3 mL), and then dried on anhydrous 
magnesium sulfate. The solvent was removed under reduced pressure, and the residue 
was purified by column chromatography (1:2 EtOAc–hexane) to give hept-1-enitols. 

4.6.1. (E)-3,4,5,6,7-Penta-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (11a) 
Prepared from (E)-3,4,5,7-tetra-O-benzoyl-1,2-dideoxy-1-phenyl-D-gluco-hept-1-eni-

tol 3a and (E)-3,4,6,7-tetra-O-benzoyl-1,2-dideoxy-1-phenyl-D-gluco-hept-1-enitol 4a (0.10 
g, 0.15 mmol) according to General procedure II. Purified by column chromatography (1:2 
EtOAc–hexane) to yield 104 mg (90%) of 11a as a white amorphous solid. Rf: 0.41 (1:2 
EtOAc–hexane); [α]D − 2 (c 0.50, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.24–7.84 (8H, m, 
aromatics), 7.66–7.17 (17H, m, aromatics), 6.80 (1H, d, J1,2 15.9 Hz, H-1), 6.40–6.29 (1H, m, 
H-2), 6.18 (1H, dd, J4,5 2.0 Hz, H-5), 6.12–6.04 (2H, m, H-3, H-4), 5.91 (1H, ddd, J6,7a 3.6, J6,7b 
5.9, J5,6 7.2 Hz, H-6), 4.82 (1H, dd, J7a,7b 12.3 Hz, H-7a), 4.55 (1H, dd, H-7b). 13C NMR (100 

4.5.3. (E)-3,4,6,7-Tetra-O-Acetyl-1,2-Dideoxy-1-Phenyl-D-galacto-Hept-1-Enitol (9)

Prepared from tosylhydrazone 6 (0.30 g, 0.56 mmol), phenylboronic acid (20 equiv.,
1.38 g, 11.35 mmol), and K3PO4 (10 equiv., 1.20 g, 5.68 mmol) according to General proce-
dure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 180 mg (75%) of
9 as a white amorphous solid. Rf: 0.10 (1:2 EtOAc–hexane); [α]D + 37 (c 0.40, CHCl3). 1H
NMR (400 MHz, CDCl3) δ 7.57–7.09 (5H, m, aromatics), 6.63 (1H, d, J1,2 15.8 Hz, H-1), 6.03
(1H, dd, J2,3 6.0 Hz, H-2), 5.88 (1H, dd, J3,4 1.9 Hz, H-3), 5.22 (1H, ddd, J6,7a 4.7, J6,7b 7.8 Hz,
H-6), 5.17 (1H, dd, J4,5 9.7 Hz, H-4), 4.43 (1H, dd, J7a,7b 11.7 Hz, H-7a), 4.17 (1H, dd, H-7b),
3.85 (1H, dd, J5,6 1.5 Hz, H-5), 3.53 (1H, bs, OH), 2.21, 2.07, 2.04, 2.01 (12H, 4s, 4 × CH3).
13C NMR (100 MHz, CDCl3) δ 171.5, 171.2, 170.7, 170.0 (4 × CO), 133.0 (C-1), 136.0–121.2
(aromatics), 123.4 (C-2), 72.5 (C-3), 71.6 (C-4), 69.0, (C-6), 67.9 (C-5), 63.4 (C-7), 21.1, 20.8,
20.7 (4 × CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 445.1469, found:
[M + Na]+ = 445.1467; C21H26O9 (422.16).
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sulfate. The solvent was removed under reduced pressure, and the residue was purified by
column chromatography (1:2 EtOAc–hexane) to give hept-1-enitols.

4.6.1. (E)-3,4,5,6,7-Penta-O-Benzoyl-1,2-Dideoxy-1-Phenyl-D-gluco-Hept-1-Enitol (11a)

Prepared from (E)-3,4,5,7-tetra-O-benzoyl-1,2-dideoxy-1-phenyl-D-gluco-hept-1-enitol
3a and (E)-3,4,6,7-tetra-O-benzoyl-1,2-dideoxy-1-phenyl-D-gluco-hept-1-enitol 4a (0.10 g,
0.15 mmol) according to General procedure II. Purified by column chromatography (1:2
EtOAc–hexane) to yield 104 mg (90%) of 11a as a white amorphous solid. Rf: 0.41 (1:2
EtOAc–hexane); [α]D − 2 (c 0.50, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 8.24–7.84 (8H,
m, aromatics), 7.66–7.17 (17H, m, aromatics), 6.80 (1H, d, J1,2 15.9 Hz, H-1), 6.40–6.29 (1H,
m, H-2), 6.18 (1H, dd, J4,5 2.0 Hz, H-5), 6.12–6.04 (2H, m, H-3, H-4), 5.91 (1H, ddd, J6,7a
3.6, J6,7b 5.9, J5,6 7.2 Hz, H-6), 4.82 (1H, dd, J7a,7b 12.3 Hz, H-7a), 4.55 (1H, dd, H-7b). 13C
NMR (100 MHz, CDCl3) δ 166.1, 165.7, 165.5, 165.4, 165.3 (5 × CO), 136.7 (C-1), 135.8–127.0
(aromatics), 122.0 (C-2), 73.8 (C-3), 71.8 (C-4), 69.9, 69.7 (C-5, C-6), 62.8 (C-7). HR-ESI-
MS positive mode (m/z): calc. for [M + Na]+ = 797.2357, found: [M + Na]+ = 797.2355;
C48H38O10 (774.25).
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4.6.2. (E)-3,4,5,6,7-Penta-O-Benzoyl-1-(4-Dibenzo[b,d]furanyl)-1,2-Dideoxy-D-gluco-Hept-
1-Enitol (11b)

Prepared from (E)-3,4,5,7-tetra-O-benzoyl-1-(4-dibenzo[b,d]furanyl)-1,2-dideoxy-D-
gluco-hept-1-enitol 3c and (E)-3,4,6,7-tetra-O-benzoyl-1-(4-dibenzo[b,d]furanyl)-1,2-dideoxy-
D-gluco-hept-1-enitol 4c (0.05 g, 0.06 mmol), according to General procedure II. Purified
by column chromatography (1:2 EtOAc–hexane) to yield 28 mg (55%) of 11b as a yellow
amorphous solid. Rf: 0.39 (1:2 EtOAc–hexane); [α]D − 1 (c 0.48, CH2Cl2). 1H NMR
(400 MHz, CDCl3) δ 8.44–6.81 (32H, m, aromatics), 7.08–7.04 (2H, m, H-1, H-2), 6.28 (1H,
dd, J4,5 2.0 Hz, H-5), 6.20–6.14 (2H, m, H-3, H-4), 5.92 (1H, ddd, J6,7a 3.8, J6,7b 5.8, J5,6 7.1 Hz,
H-6), 4.82 (1H, dd, J7a,7b 12.2 Hz, H-7a), 4.53 (1H, dd, H-7b). 13C NMR (100 MHz, CDCl3) δ
166.1, 165.7, 165.5, 165.4, 165.3 (5 × CO), 130.9 (C-1), 162.8–110.9 (aromatics), 125.8 (C-2),
74.0 (C-3), 71.8 (C-4), 69.9 (C-6), 69.6 (C-5), 62.8 (C-7). HR-ESI-MS positive mode (m/z):
calc. for [M + Na]+ = 887.2463, found: [M + Na]+ = 887.2460; C54H40O11 (864.26).
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4.6.3. (E)-3,4,5,6,7-Penta-O-Acetyl-1,2-Dideoxy-1-Phenyl-D-galacto-Hept-1-Enitol (12)

3,4,6,7-Tetra-O-acetyl-1,2-dideoxy-1-phenyl-D-galacto-hept-1-enitol (9, 0.12 g, 0.29 mmol)
was dissolved in dry pyridine (1 mL) and cooled to 0 ◦C. Then, acetic anhydride (1.5 equiv.,
0.04 mL, 0.04 g, 0.43 mmol) was added dropwise to the solution. The reaction mixture was
stirred for a day at room temperature and the pyridine was evaporated. The residue was
dissolved in dichloromethane and washed with water (1 × 2 mL), then dried on anhydrous
magnesium sulfate. The solution was concentrated under reduced pressure and traces of
pyridine were removed by repeated co-evaporations with toluene to yield 122 mg (91%) of
12 as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 115 (c 0.02, CH2Cl2). 1H
NMR (400 MHz, CDCl3) δ 7.57–7.06 (5H, m, aromatics), 6.58 (1H, dd, JAr,1 0.7, J1,2 15.9 Hz,
H-1), 5.97 (1H, dd, J2,3 6.1 Hz, H-2), 5.67–5.59 (1H, m, H-3), 5.45 (1H, dd, J5,6 1.8 Hz, H-5),
5.41–5.31 (1H, m, H-6), 5.37 (1H, dd, J3,4 2.5, J4,5 10.0 Hz, H-4), 4.29 (1H, dd, J6,7a 5.0, J7a,7b
11.6 Hz, H-7a), 3.88 (1H, dd, J6,7a 7.5 Hz, H-7b), 2.14, 2.10, 2.08, 2.04, 202 (15H, 5s, 5 × CH3).
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13C NMR (90 MHz, CDCl3) δ 170.5, 170.3, 170.1, 169.8 (5 × CO), 133.5 (C-1), 136.5–122.2
(aromatics), 122.9 (C-2), 71.1 (C-3), 69.5 (C-4), 68.1 (C-5), 68.0 (C-6), 62.3 (C-7), 21.0, 20.8,
20.7 (5 × CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 487.1575, found:
[M + Na]+ = 487.11577; C23H28O10 (464.17).
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mmol) was dissolved in dry pyridine (1 mL) and cooled to 0 °C. Then, acetic anhydride 
(1.5 equiv., 0.04 mL, 0.04 g, 0.43 mmol) was added dropwise to the solution. The reaction 
mixture was stirred for a day at room temperature and the pyridine was evaporated. The 
residue was dissolved in dichloromethane and washed with water (1 × 2 mL), then dried 
on anhydrous magnesium sulfate. The solution was concentrated under reduced pressure 
and traces of pyridine were removed by repeated co-evaporations with toluene to yield 
122 mg (91%) of 12 as a white amorphous solid. Rf: 0.36 (1:2 EtOAc–hexane); [α]D + 115 (c 
0.02, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.57–7.06 (5H, m, aromatics), 6.58 (1H, dd, JAr,1 
0.7, J1,2 15.9 Hz, H-1), 5.97 (1H, dd, J2,3 6.1 Hz, H-2), 5.67–5.59 (1H, m, H-3), 5.45 (1H, dd, J5,6 
1.8 Hz, H-5), 5.41–5.31 (1H, m, H-6), 5.37 (1H, dd, J3,4 2.5, J4,5 10.0 Hz, H-4), 4.29 (1H, dd, 
J6,7a 5.0, J7a,7b 11.6 Hz, H-7a), 3.88 (1H, dd, J6,7a 7.5 Hz, H-7b), 2.14, 2.10, 2.08, 2.04, 202 (15H, 
5s, 5 × CH3). 13C NMR (90 MHz, CDCl3) δ 170.5, 170.3, 170.1, 169.8 (5 × CO), 133.5 (C-1), 
136.5–122.2 (aromatics), 122.9 (C-2), 71.1 (C-3), 69.5 (C-4), 68.1 (C-5), 68.0 (C-6), 62.3 (C-7), 
21.0, 20.8, 20.7 (5 × CH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 487.1575, 
found: [M + Na]+ = 487.11577; C23H28O10 (464.17). 

 

  4.7. General Procedure III for the Synthesis of Anhydro-Aldose Tosylhydrazones (C-(2,3,4,6-Tetra-
O-Alkyl-β-D-Glycopyranosyl) Formaldehyde Tosylhydrazones) (17, 24)

Raney-nickel (1.5 g, an aqueous suspension, Merck) was added at room temperature to
a vigorously stirred solution of pyridine (6 mL), acetic acid (4 mL), and water (4 mL). Then,
sodium hypophosphite (0.75 g, 8.50 mmol), tosylhydrazine (0.37 g, 2.00 mmol), and nitrile
(16β [52] or 23) (1.00 mmol) were added to the mixture. When TLC (2:1 EtOAc–hexane) in-
dicated complete consumption of the starting compound, the insoluble material was filtered
off through a pad of celite and washed with dichloromethane (10 mL). The organic layer
of the filtrate was separated, washed with water (3 mL), 10% aqueous hydrogen chloride
solution (2 × 3 mL), cold, saturated sodium hydrogen carbonate solution (2 × 3 mL), water
(3 mL), and then dried on anhydrous magnesium sulfate. The solution was concentrated
under reduced pressure, and traces of pyridine were removed by repeated co-evaporations
with toluene. The residue was purified by silica gel column chromatography with eluents
indicated for the particular compounds to give anhydro-aldose tosylhydrazones 17 or 24.

2,6-Anhydro-3,4,5,7-Tetra-O-Methyl-D-glycero-D-gulo-Heptose Tosylhydrazone (C-(2,3,4,6-
Tetra-O-Methyl-β-D-Glucopyranosyl) Formaldehyde Tosylhydrazone) (17)

Prepared from cyanide 16β [52] (1.00 g, 4.08 mmol) according to General procedure
III. Purified by column chromatography (1:2 EtOAc–hexane) to yield 1.02 g (60%) two
unidentified isomers 17-1 and 17-2 in 1:3 ratio as a colourless oil.
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CH3), 21.6 (CH3-Ts). HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 417.1692, found: 
[M + H]+ = 417.1694; C18H28N2O7S (416.16). 

17-2 Rf: 0.10 (1:1 EtOAc–hexane). 1H NMR (360 MHz, CDCl3) δ 9.31 (1H, bs, NH), 7.83 
(2H, d, J 8.2 Hz, aromatics), 7.31 (2H, d, J 8.2 Hz, aromatics), 6.80 (1H, d, J1,2 4.6 Hz, H-1), 
4.02 (1H, dd, J2,3 10.3 Hz, H-2), 3.61–3.45 and 3.32–3.00 (6H, m, H-3–H-7b), 3.63, 3.52, 3.41, 
3.30 (4s, 12H, 4 × CH3), 2.41 (s, 3H, CH3-Ts). 13C NMR (90 MHz, CDCl3) δ 146.2 (C-1), 144.3–
127.5 (aromatics), 87.9, 81.2, 79.4, 78.4, 77.9 (C-2–C-6), 71.3 (C-7), 60.8, 60.4, 59.8, 59.2 (4 × 
CH3), 21.6 (CH3-Ts). HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 417.1692, found: 
[M + H]+ = 417.1694; C18H28N2O7S (416.16). 

4.8. Characterization of Anhydro-Heptitols 18 
4.8.1. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-glycero-D-gulo-Heptitol 
(18a)  

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), phenylboronic acid 
(1.5 equiv., 0.02 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to Gen-
eral procedure I by column chromatography (1:2 EtOAc–hexane) to yield 18 mg amor-
phous solid containing 18a and 21 in 1.3:1 ratio. Rf: 0.50 (1:2 EtOAc–hexane). 1H NMR (400 
MHz, CDCl3) δ 8.34–6.74 (5H, m, aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 
3.53 (3H, s, CH3OC-5), 3.55–3.50 (2H, m, H-7a, H-7b), 3.36 (3H, s, CH3OC-7), 3.30 (1H, ddd, 
J1a,2 2.4, J1b,2 8.8, J2,3 8.9 Hz, H-2), 3.23–3.15 (2H, m, H-4, H-5), 3.12 (1H, ddd, J6,7a 2.0, J6,7b 4.0, 
J5,6 9.8 Hz, H-6), 3.07 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.90 (1H, pseudo t, J3,4 9.0 Hz, strongly 
coupled, H-3), 2.74 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 139.4–126.1 (aromatics), 
89.2 (C-4), 83.7 (C-3), 80.3 (C-2), 80.1 (C-5), 78.8 (C-6), 71.5 (C-7), 60.8 (CH3OC-4) 60.7 

17-1 Rf: 0.11 (1:1 EtOAc–hexane). 1H NMR (360 MHz, CDCl3) δ 7.92 (1H, bs, NH),
7.86–7.76 (2H, m, aromatics), 7.31 (2H, d, J 8.2 Hz, aromatics), 7.05 (1H, d, J1,2 6.0 Hz, H-1),
3.74 (1H, dd, J2,3 9.5 Hz, H-2), 3.61–3.45 and 3.32–3.00 (6H, m, H-3–H-7b), 3.63, 3.52, 3.35,
3.25 (12H, 4s, 4 × CH3), 2.41 (3H, s, CH3-Ts). 13C NMR (90 MHz, CDCl3) δ 146.7 (C-1),
144.3–127.5 (aromatics), 88.5, 82.7, 79.4, 78.6, 74.1 (C-2–C-6), 71.0 (C-7), 60.9, 60.7, 60.6, 59.3
(4 × CH3), 21.6 (CH3-Ts). HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 417.1692,
found: [M + H]+ = 417.1694; C18H28N2O7S (416.16).

17-2 Rf: 0.10 (1:1 EtOAc–hexane). 1H NMR (360 MHz, CDCl3) δ 9.31 (1H, bs, NH),
7.83 (2H, d, J 8.2 Hz, aromatics), 7.31 (2H, d, J 8.2 Hz, aromatics), 6.80 (1H, d, J1,2 4.6 Hz,
H-1), 4.02 (1H, dd, J2,3 10.3 Hz, H-2), 3.61–3.45 and 3.32–3.00 (6H, m, H-3–H-7b), 3.63, 3.52,
3.41, 3.30 (4s, 12H, 4 × CH3), 2.41 (s, 3H, CH3-Ts). 13C NMR (90 MHz, CDCl3) δ 146.2 (C-1),
144.3–127.5 (aromatics), 87.9, 81.2, 79.4, 78.4, 77.9 (C-2–C-6), 71.3 (C-7), 60.8, 60.4, 59.8, 59.2
(4 × CH3), 21.6 (CH3-Ts). HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 417.1692,
found: [M + H]+ = 417.1694; C18H28N2O7S (416.16).

4.8. Characterization of Anhydro-Heptitols 18
4.8.1. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-glycero-D-gulo-Heptitol (18a)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), phenylboronic acid
(1.5 equiv., 0.02 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General
procedure I by column chromatography (1:2 EtOAc–hexane) to yield 18 mg amorphous
solid containing 18a and 21 in 1.3:1 ratio. Rf: 0.50 (1:2 EtOAc–hexane). 1H NMR (400 MHz,
CDCl3) δ 8.34–6.74 (5H, m, aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.53
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(3H, s, CH3OC-5), 3.55–3.50 (2H, m, H-7a, H-7b), 3.36 (3H, s, CH3OC-7), 3.30 (1H, ddd,
J1a,2 2.4, J1b,2 8.8, J2,3 8.9 Hz, H-2), 3.23–3.15 (2H, m, H-4, H-5), 3.12 (1H, ddd, J6,7a 2.0, J6,7b
4.0, J5,6 9.8 Hz, H-6), 3.07 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.90 (1H, pseudo t, J3,4 9.0 Hz,
strongly coupled, H-3), 2.74 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 139.4–126.1
(aromatics), 89.2 (C-4), 83.7 (C-3), 80.3 (C-2), 80.1 (C-5), 78.8 (C-6), 71.5 (C-7), 60.8 (CH3OC-4)
60.7 (CH3OC-3), 60.4 (CH3OC-5), 59.5 (CH3OC-7), 37.9 (C-1). HR-ESI-MS positive mode
(m/z): calc. for [M + Na]+ = 333.1672, found: [M + Na]+ = 333.1672; C17H26O5 (310.39).
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glycero-D-gulo-Heptitol (18c)  

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), (4-trifluoromethly)phenyl-
boronic acid (1.5 equiv., 0.04 g, 0.39 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I. Purified by column chromatography (1:3 EtOAc–hexane) 
to yield 22 mg (45%) of 18c as a white amorphous solid. Rf: 0.50 (1:2 EtOAc–hexane); [α]D 
− 6 (c 0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.52 (2H, d, J 8.1 Hz, aromatics), 7.38 (2H, 
d, J 8.1 Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.54 (1H, dd, H-7a), 
3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, J7a,7b 11.1 Hz, H-7b), 3.36 (3H, s, CH3OC-7), 3.29 (1H, 
ddd, J1a,2 2.3, J1b,2 8.9, J2,3 9.2 Hz, H-2), 3.24–3.08 (3H, m, H-1a, H-4, H-5), 3.13 (1H, ddd, J6,7a 
2.0, J6,7b 3.9, J5,6 9.8 Hz, H-6), 2.88 (1H, pseudo t, J3,4 8.9 Hz, strongly coupled, H-3), 2.80 (1H, 
dd, J1a,1b 14.2 Hz, H-1b). 13C NMR (100 MHz, CDCl3) δ 143.7–124.1 (aromatics), 89.2 (C-4), 
83.6 (C-3), 80.0 (C-2), 79.8 (C-5), 78.8 (C-6), 71.4 (C-7), 60.8 (CH3OC-4), 60.8 (CH3OC-3), 60.5 
(CH3OC-5), 59.5 (CH3OC-7), 37.7 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + H]+ 
= 379.1727, found: [M + H]+ = 379.1727; C18H25F3O5 (378.17). 

 

  

4.8.2. 2,6-Anhydro-1-Deoxy-1-(4-Dibenzo[b,d]furanyl)-3,4,5,7-Tetra-O-Methyl-D-glycero-
D-gulo-Heptitol (18b)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), dibenzo[b,d]furan-
4-ylboronic acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol)
according to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield
4 mg (8%) of 18b as a white amorphous solid. Rf: 0.47 (1:2 EtOAc–hexane). 1H NMR
(500 MHz, CDCl3) δ 7.93 (1H, d, J 7.7 Hz, aromatic), 7.80 (1H, dd, J 1.1, 7.7 Hz, aromatic),
7.58 (1H, d, J 8.2 Hz, aromatic), 7.47–7.39 (2H, m, aromatics), 7.35–7.30 (1H, m, aromatic),
7.29–7.23 (1H, m, aromatics), 3.67 (3H, s, CH3OC-4), 3.62 (3H, s, CH3OC-3), 3.58 (1H, ddd,
J1a,2 2.9, J1b,2 8.9, J2,3 9.2 Hz, H-2), 3.54 (1H, dd, H-1a), 3.53 (3H, s, CH3OC-5), 3.48 (1H,
dd, H-7a), 3.46 (1H, dd, J7a,7b 11.2 Hz, H-7b), 3.28 (3H, s, CH3OC-7), 3.26 (1H, pseudo
t, J3,4 8.7 Hz, H-4), 3.21 (1H, pseudo t, J4,5 8.8 Hz, H-5), 3.14 (1H, ddd, J6,7a 2.5, J6,7b 3.4,
J5,6 9.5 Hz, H-6), 3.09 (1H, dd, J1a,1b 14.4 Hz, H-1b) 3.02 (1H, pseudo t, J3,4 8.9 Hz, H-3).
13C NMR (90 MHz, CDCl3) δ 129.4–110.9 (aromatics), 89.2 (C-4), 84.2 (C-3), 80.2 (C-5),
79.0, 78.9 (C-2, C-6), 71.5 (C-7), 60.9 (CH3OC-4), 60.8 (CH3OC-3), 60.5 (CH3OC-5), 59.5
(CH3OC-7), 32.0 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 423.1778,
found: [M + Na]+ = 423.1777; C23H28O6 (400.19).
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(400.19). 
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Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), (4-trifluoromethly)phenyl-
boronic acid (1.5 equiv., 0.04 g, 0.39 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
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to yield 22 mg (45%) of 18c as a white amorphous solid. Rf: 0.50 (1:2 EtOAc–hexane); [α]D 
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= 379.1727, found: [M + H]+ = 379.1727; C18H25F3O5 (378.17). 

 

  

4.8.3. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Trifluoromethylphenyl)-D-glycero-
D-gulo-Heptitol (18c)

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), (4-trifluoromethly)phenylboronic
acid (1.5 equiv., 0.04 g, 0.39 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I. Purified by column chromatography (1:3 EtOAc–hexane) to yield
22 mg (45%) of 18c as a white amorphous solid. Rf: 0.50 (1:2 EtOAc–hexane); [α]D − 6 (c
0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.52 (2H, d, J 8.1 Hz, aromatics), 7.38 (2H, d, J
8.1 Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.54 (1H, dd, H-7a), 3.53
(3H, s, CH3OC-5), 3.50 (1H, dd, J7a,7b 11.1 Hz, H-7b), 3.36 (3H, s, CH3OC-7), 3.29 (1H, ddd,
J1a,2 2.3, J1b,2 8.9, J2,3 9.2 Hz, H-2), 3.24–3.08 (3H, m, H-1a, H-4, H-5), 3.13 (1H, ddd, J6,7a 2.0,
J6,7b 3.9, J5,6 9.8 Hz, H-6), 2.88 (1H, pseudo t, J3,4 8.9 Hz, strongly coupled, H-3), 2.80 (1H,
dd, J1a,1b 14.2 Hz, H-1b). 13C NMR (100 MHz, CDCl3) δ 143.7–124.1 (aromatics), 89.2 (C-4),
83.6 (C-3), 80.0 (C-2), 79.8 (C-5), 78.8 (C-6), 71.4 (C-7), 60.8 (CH3OC-4), 60.8 (CH3OC-3),
60.5 (CH3OC-5), 59.5 (CH3OC-7), 37.7 (C-1). HR-ESI-MS positive mode (m/z): calc. for
[M + H]+ = 379.1727, found: [M + H]+ = 379.1727; C18H25F3O5 (378.17).
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δ 129.4–110.9 (aromatics), 89.2 (C-4), 84.2 (C-3), 80.2 (C-5), 79.0, 78.9 (C-2, C-6), 71.5 (C-7), 
60.9 (CH3OC-4), 60.8 (CH3OC-3), 60.5 (CH3OC-5), 59.5 (CH3OC-7), 32.0 (C-1). HR-ESI-MS 
positive mode (m/z): calc. for [M + Na]+ = 423.1778, found: [M + Na]+ = 423.1777; C23H28O6 
(400.19). 

 

4.8.3. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Trifluoromethylphenyl)-D- 
glycero-D-gulo-Heptitol (18c)  

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), (4-trifluoromethly)phenyl-
boronic acid (1.5 equiv., 0.04 g, 0.39 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I. Purified by column chromatography (1:3 EtOAc–hexane) 
to yield 22 mg (45%) of 18c as a white amorphous solid. Rf: 0.50 (1:2 EtOAc–hexane); [α]D 
− 6 (c 0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.52 (2H, d, J 8.1 Hz, aromatics), 7.38 (2H, 
d, J 8.1 Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.54 (1H, dd, H-7a), 
3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, J7a,7b 11.1 Hz, H-7b), 3.36 (3H, s, CH3OC-7), 3.29 (1H, 
ddd, J1a,2 2.3, J1b,2 8.9, J2,3 9.2 Hz, H-2), 3.24–3.08 (3H, m, H-1a, H-4, H-5), 3.13 (1H, ddd, J6,7a 
2.0, J6,7b 3.9, J5,6 9.8 Hz, H-6), 2.88 (1H, pseudo t, J3,4 8.9 Hz, strongly coupled, H-3), 2.80 (1H, 
dd, J1a,1b 14.2 Hz, H-1b). 13C NMR (100 MHz, CDCl3) δ 143.7–124.1 (aromatics), 89.2 (C-4), 
83.6 (C-3), 80.0 (C-2), 79.8 (C-5), 78.8 (C-6), 71.4 (C-7), 60.8 (CH3OC-4), 60.8 (CH3OC-3), 60.5 
(CH3OC-5), 59.5 (CH3OC-7), 37.7 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + H]+ 
= 379.1727, found: [M + H]+ = 379.1727; C18H25F3O5 (378.17). 

 

  4.8.4. 2,6-Anhydro-1-Deoxy-1-(4-Fluorophenyl)-3,4,5,7-Tetra-O-Methyl-D-glycero-D-gulo-
Heptitol (18d)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-fluorophenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 6 mg (14%)
of 18d as a white amorphous solid. Rf: 0.41 (1:2 EtOAc–hexane); [α]D + 0.5 (c 0.20, CH2Cl2).
1H NMR (400 MHz, CDCl3) δ 7.22 (2H, dd, J 5.6, 8.6 Hz, aromatics), 6.94 (2H, t, J 8.8 Hz,
aromatics), 3.65 (3H, s, CH3OC-4), 3.58 (3H, s, CH3OC-3), 3.54 (1H, dd, H-7a), 3.53 (3H, s,
CH3OC-5), 3.50 (1H, dd, J7a,7b 10.8 Hz, H-7b), 3.37 (3H, s, CH3OC-7), 3.24 (1H, ddd, J1a,2
2.1, J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.21–3.13 (2H, m, H-4, H-5), 3.12 (1H, ddd, J6,7a 1.9, J6,7b 3.6,
J5,6 8.7 Hz, H-6), 3.04 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 9.0 Hz, strongly
coupled, H-3), 2.71 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 131.4–109.0 (aromatics),
89.3 (C-4), 83.6 (C-3), 80.2, (C-2), 80.1 (C-5), 78.8 (C-6), 71.5 (C-7), 60.8 (CH3OC-3, CH3OC-4),
60.5 (CH3OC-5), 59.5 (CH3OC-7), 37.1 (C-1). HR-ESI-MS positive mode (m/z): calc. for
[M + H]+ = 329.1759, found: [M + Na]+ = 329.1759; C17H25FO5 (328.17).
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Heptitol (18d)  

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-fluorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
6 mg (14%) of 18d as a white amorphous solid. Rf: 0.41 (1:2 EtOAc–hexane); [α]D + 0.5 (c 
0.20, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.22 (2H, dd, J 5.6, 8.6 Hz, aromatics), 6.94 (2H, 
t, J 8.8 Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.58 (3H, s, CH3OC-3), 3.54 (1H, dd, H-7a), 
3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, J7a,7b 10.8 Hz, H-7b), 3.37 (3H, s, CH3OC-7), 3.24 (1H, 
ddd, J1a,2 2.1, J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.21–3.13 (2H, m, H-4, H-5), 3.12 (1H, ddd, J6,7a 1.9, 
J6,7b 3.6, J5,6 8.7 Hz, H-6), 3.04 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 9.0 Hz, 
strongly coupled, H-3), 2.71 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 131.4–109.0 (aro-
matics), 89.3 (C-4), 83.6 (C-3), 80.2, (C-2), 80.1 (C-5), 78.8 (C-6), 71.5 (C-7), 60.8 (CH3OC-3, 
CH3OC-4), 60.5 (CH3OC-5), 59.5 (CH3OC-7), 37.1 (C-1). HR-ESI-MS positive mode (m/z): 
calc. for [M + H]+ = 329.1759, found: [M + Na]+ = 329.1759; C17H25FO5 (328.17). 

 

4.8.5. 2,6-Anhydro-1-(3-Chlorophenyl)-1-Deoxy-3,4,5,7-Tetra-O-Methyl-D-glycero-D-gulo-
Heptitol (18e)  

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), 3-chorophenylboronic acid (1.5 
equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General 
procedure I. Purified by column chromatography (1:2 EtOAc–hexane) to yield 13 mg 
(29%) of 18e as a pale-yellow amorphous solid. Rf: 0.48 (1:2 EtOAc–hexane); [α]D − 3 (c 
0.24, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.32–7.24 (1H, m, aromatic), 7.23–7.08 (3H, m, 
aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.56 (1H, dd, J7a,7b 11.0 Hz, H-7a), 
3.53 (3H, s, CH3OC-5), 3.51 (1H, dd, H-7b), 3.37 (3H, s, CH3OC-7), 3.27 (1H, ddd, J1a,2 2.3, 
J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.23–3.14 (2H, m, H-4, H-5), 3.13 (1H, ddd, J6,7a 1.6, J6,7b 3.4, J5,6 8.6 
Hz, H-6), 3.04 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 8.8 Hz, H-3), 2.71 (1H, 
dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 141.3–126.0 (aromatics), 89.2 (C-4), 83.5 (C-3), 80.1 
(C-2), 79.9 (C-5), 78.8 (C-6), 71.5 (C-7), 60.9 (CH3OC-4), 60.8 (CH3OC-3), 60.5 (CH3OC-5), 
59.6 (CH3OC-7), 37.6 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + H]+ = 345.1463, 
found: [M + H]+ = 345.1460; C17H25ClO5 (344.14). 

 

4.8.6. 2,6-Anhydro-1-(4-Bromophenyl)-1-Deoxy-3,4,5,7-Tetra-O-Methyl-D-glycero-D-gulo-
Heptitol (18f) 

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-bromophenylboronic acid 
(1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to Gen-
eral procedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 11 mg 
(22%) of 18f as a white amorphous solid. Rf: 0.53 (1:2 EtOAc–hexane); [α]D − 6 (c 0.21, 
CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.38 (2H, d, J 8.4 Hz, aromatics), 7.14 (2H, d, J 8.4 
Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.58 (3H, s, CH3OC-3), 3.53 (3H, s, CH3OC-5), 3.53 
(1H, dd, H-7a), 3.49 (1H, dd, J7a,7b 10.8 Hz, H-7b), 3.37 (3H, s, CH3OC-7), 3.24 (1H, ddd, J1a,2 
2.2, J1b,2 8.9, J2,3 9.1 Hz, H-2), 3.21–3.13 (2H, m, H-4, H-5), 3.11 (1H, ddd, J6,7a 2.1, J6,7b 3.5, J5,6 
9.8 Hz, H-6), 3.02 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 9.0 Hz, strongly cou-
pled, H-3), 2.69 (1H, dd, H-1b). 13C NMR (100 MHz, CDCl3) δ 138.4–119.3 (aromatics), 89.2 
(C-4), 83.5 (C-3), 80.0 (C-2, C-5), 78.8 (C-6), 71.4 (C-7), 60.9 (CH3OC-4), 60.8 (CH3OC-3), 60.5 

4.8.5. 2,6-Anhydro-1-(3-Chlorophenyl)-1-Deoxy-3,4,5,7-Tetra-O-Methyl-D-glycero-D-gulo-
Heptitol (18e)

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), 3-chorophenylboronic acid
(1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General
procedure I. Purified by column chromatography (1:2 EtOAc–hexane) to yield 13 mg (29%)
of 18e as a pale-yellow amorphous solid. Rf: 0.48 (1:2 EtOAc–hexane); [α]D − 3 (c 0.24,
CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.32–7.24 (1H, m, aromatic), 7.23–7.08 (3H, m,
aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.56 (1H, dd, J7a,7b 11.0 Hz, H-7a),
3.53 (3H, s, CH3OC-5), 3.51 (1H, dd, H-7b), 3.37 (3H, s, CH3OC-7), 3.27 (1H, ddd, J1a,2 2.3,
J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.23–3.14 (2H, m, H-4, H-5), 3.13 (1H, ddd, J6,7a 1.6, J6,7b 3.4, J5,6
8.6 Hz, H-6), 3.04 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 8.8 Hz, H-3), 2.71 (1H,
dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 141.3–126.0 (aromatics), 89.2 (C-4), 83.5 (C-3), 80.1
(C-2), 79.9 (C-5), 78.8 (C-6), 71.5 (C-7), 60.9 (CH3OC-4), 60.8 (CH3OC-3), 60.5 (CH3OC-5),
59.6 (CH3OC-7), 37.6 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + H]+ = 345.1463,
found: [M + H]+ = 345.1460; C17H25ClO5 (344.14).
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Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-fluorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
6 mg (14%) of 18d as a white amorphous solid. Rf: 0.41 (1:2 EtOAc–hexane); [α]D + 0.5 (c 
0.20, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.22 (2H, dd, J 5.6, 8.6 Hz, aromatics), 6.94 (2H, 
t, J 8.8 Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.58 (3H, s, CH3OC-3), 3.54 (1H, dd, H-7a), 
3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, J7a,7b 10.8 Hz, H-7b), 3.37 (3H, s, CH3OC-7), 3.24 (1H, 
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J6,7b 3.6, J5,6 8.7 Hz, H-6), 3.04 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 9.0 Hz, 
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eral procedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 11 mg 
(22%) of 18f as a white amorphous solid. Rf: 0.53 (1:2 EtOAc–hexane); [α]D − 6 (c 0.21, 
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Heptitol (18f)

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-bromophenylboronic acid
(1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General
procedure I. Purified by column chromatography (1:4 EtOAc–hexane) to yield 11 mg (22%)
of 18f as a white amorphous solid. Rf: 0.53 (1:2 EtOAc–hexane); [α]D − 6 (c 0.21, CH2Cl2).
1H NMR (400 MHz, CDCl3) δ 7.38 (2H, d, J 8.4 Hz, aromatics), 7.14 (2H, d, J 8.4 Hz,
aromatics), 3.65 (3H, s, CH3OC-4), 3.58 (3H, s, CH3OC-3), 3.53 (3H, s, CH3OC-5), 3.53 (1H,
dd, H-7a), 3.49 (1H, dd, J7a,7b 10.8 Hz, H-7b), 3.37 (3H, s, CH3OC-7), 3.24 (1H, ddd, J1a,2
2.2, J1b,2 8.9, J2,3 9.1 Hz, H-2), 3.21–3.13 (2H, m, H-4, H-5), 3.11 (1H, ddd, J6,7a 2.1, J6,7b 3.5,
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J5,6 9.8 Hz, H-6), 3.02 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.87 (1H, pseudo t, J3,4 9.0 Hz, strongly
coupled, H-3), 2.69 (1H, dd, H-1b). 13C NMR (100 MHz, CDCl3) δ 138.4–119.3 (aromatics),
89.2 (C-4), 83.5 (C-3), 80.0 (C-2, C-5), 78.8 (C-6), 71.4 (C-7), 60.9 (CH3OC-4), 60.8 (CH3OC-3),
60.5 (CH3OC-5), 59.5 (CH3OC-7), 37.3 (C-1). HR-ESI-MS positive mode (m/z): calc. for
[M + H]+ = 389.0958, found: [M + H]+ = 389.0959; C17H25BrO5 (389.29).
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Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-nitrophenylboronic acid (1.5 
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Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methoxyphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
4 mg (9%) of 18h as a pale-yellow amorphous solid. Rf: 0.41 (1:2 EtOAc–hexane); [α]D + 5 
(c 0.57, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.19 (2H, d, J 8.6 Hz, aromatics), 6.81 (2H, d, 
J 8.7 Hz, aromatics), 3.79 (3H, s, OCH3), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.55 
(1H, dd, J7a,7b 10.9 Hz, H-7a), 3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, H-7b), 3.38 (3H, s, CH3OC-
7), 3.24 (1H, ddd, J1a,2 2.3, J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.21–3.14 (2H, m, H-4, H-5), 3.12 (1H, 
ddd, J6,7a 2.0, J6,7b 3.9, J5,6 9.8 Hz, H-6), 3.01 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.88 (1H, pseudo t, 
J3,4 9.0 Hz, strongly coupled, H-3), 2.69 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 162.4–
109.6 (aromatics), 89.3 (C-4), 83.7 (C-3), 80.5 (C-2), 80.1 (C-5), 78.8 (C-6), 71.6 (C-7), 60.8 
(CH3OC-3, CH3OC-4), 60.5 (CH3OC-5), 59.6 (CH3OC-7), 55.4 (OCH3), 37.0 (C-1). HR-ESI-
MS positive mode (m/z): calc. for [M + H]+ = 341.1959, found: [M + H]+ = 341.1957; C18H28O5 
(340.42). 

 

4.8.9. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-glycero-D-gulo-
Heptitol (18i) 

4.8.7.
2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Nitrophenyl)-D-glycero-D-gulo-Heptitol
(18g)

Prepared from tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-nitrophenylboronic acid
(1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to General
procedure I. Purified by column chromatography (1:2 EtOAc–hexane) to yield 21 mg (46%)
of 18g as a yellow amorphous solid. Rf: 0.26 (1:2 EtOAc–hexane); [α]D + 3 (c 0.22, CH2Cl2).
1H NMR (400 MHz, CDCl3) δ 8.13 (2H, d, J 8.7 Hz, aromatics), 7.43 (2H, d, J 8.7 Hz,
aromatics), 3.66 (3H, s, CH3OC-4), 3.60 (3H, s, CH3OC-3), 3.53 (3H, s, CH3OC-5), 3.53 (1H,
dd, H-7a), 3.49 (1H, dd, J7a,7b 10.8 Hz, H-7b), 3.37 (3H, s, CH3OC-7), 3.29 (1H, ddd, J1a,2 2.4,
J1b,2 9.0, J2,3 9.2 Hz, H-2), 3.23–3.14 (3H, m, H-1a, H-4, H-5), 3.12 (1H, ddd, J6,7a 1.3, J6,7b
3.1, J5,6 9.6 Hz, H-6), 2.89 (1H, pseudo t, J3,4 8.8 Hz, strongly coupled, H-3), 2.85 (1H, dd,
H-1b). 13C NMR (90 MHz, CDCl3) δ 147.6–121.1 (aromatics), 89.2 (C-4), 83.5 (C-3), 80.0
(C-2), 79.6 (C-5), 78.8 (C-6), 71.4 (C-7), 60.9 (CH3OC-3, CH3OC-4), 60.5 (CH3OC-5), 59.5
(CH3OC-7), 37.8 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + H]+ = 356.1704,
found: [M + H]+ = 356.1704; C17H25NO7 (355.16).
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4.8.9. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-glycero-D-gulo-
Heptitol (18i) 

4.8.8. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methoxyphenyl)-D-glycero-D-gulo-
Heptitol (18h)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methoxyphenylbor
onic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according
to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 4 mg
(9%) of 18h as a pale-yellow amorphous solid. Rf: 0.41 (1:2 EtOAc–hexane); [α]D + 5 (c
0.57, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.19 (2H, d, J 8.6 Hz, aromatics), 6.81 (2H,
d, J 8.7 Hz, aromatics), 3.79 (3H, s, OCH3), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3),
3.55 (1H, dd, J7a,7b 10.9 Hz, H-7a), 3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, H-7b), 3.38 (3H,
s, CH3OC-7), 3.24 (1H, ddd, J1a,2 2.3, J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.21–3.14 (2H, m, H-4,
H-5), 3.12 (1H, ddd, J6,7a 2.0, J6,7b 3.9, J5,6 9.8 Hz, H-6), 3.01 (1H, dd, J1a,1b 14.3 Hz, H-1a),
2.88 (1H, pseudo t, J3,4 9.0 Hz, strongly coupled, H-3), 2.69 (1H, dd, H-1b). 13C NMR
(90 MHz, CDCl3) δ 162.4–109.6 (aromatics), 89.3 (C-4), 83.7 (C-3), 80.5 (C-2), 80.1 (C-5),
78.8 (C-6), 71.6 (C-7), 60.8 (CH3OC-3, CH3OC-4), 60.5 (CH3OC-5), 59.6 (CH3OC-7), 55.4
(OCH3), 37.0 (C-1). HR-ESI-MS positive mode (m/z): calc. for [M + H]+ = 341.1959, found:
[M + H]+ = 341.1957; C18H28O5 (340.42).
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(1H, dd, J7a,7b 10.9 Hz, H-7a), 3.53 (3H, s, CH3OC-5), 3.50 (1H, dd, H-7b), 3.38 (3H, s, CH3OC-
7), 3.24 (1H, ddd, J1a,2 2.3, J1b,2 8.8, J2,3 9.1 Hz, H-2), 3.21–3.14 (2H, m, H-4, H-5), 3.12 (1H, 
ddd, J6,7a 2.0, J6,7b 3.9, J5,6 9.8 Hz, H-6), 3.01 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.88 (1H, pseudo t, 
J3,4 9.0 Hz, strongly coupled, H-3), 2.69 (1H, dd, H-1b). 13C NMR (90 MHz, CDCl3) δ 162.4–
109.6 (aromatics), 89.3 (C-4), 83.7 (C-3), 80.5 (C-2), 80.1 (C-5), 78.8 (C-6), 71.6 (C-7), 60.8 
(CH3OC-3, CH3OC-4), 60.5 (CH3OC-5), 59.6 (CH3OC-7), 55.4 (OCH3), 37.0 (C-1). HR-ESI-
MS positive mode (m/z): calc. for [M + H]+ = 341.1959, found: [M + H]+ = 341.1957; C18H28O5 
(340.42). 
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4.8.9. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-glycero-D-gulo-
Heptitol (18i)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methylphenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according
to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 11 mg
white amorphous solid containing 18i and 21 in 3:1 ratio. Rf: 0.48 (1:2 EtOAc–hexane);
[α]D + 0.5 (c 0.08, CH2Cl2). 1H NMR (400 MHz, CDCl3) δ 7.16 (2H, d, J 7.9 Hz, aromatics),
7.07 (2H, d, J 7.9 Hz, aromatics), 3.65 (3H, s, CH3OC-4), 3.59 (3H, s, CH3OC-3), 3.53 (3H, s,
CH3OC-5), 3.55–3.50 (2H, m, H-7a, H-7b), 3.37 (3H, s, CH3OC-7), 3.26 (1H, ddd, J1a,2 2.1, J1b,2
8.8, J2,3 9.1 Hz, H-2), 3.23–3.14 (2H, m, H-4, H-5), 3.11 (1H, ddd, J6,7a 1.9, J6,7b 3.6, J5,6 9.7 Hz,
H-6), 3.03 (1H, dd, J1a,1b 14.3 Hz, H-1a), 2.88 (1H, pseudo t, J3,4 9.0 Hz, strongly coupled,
H-3), 2.70 (1H, dd, H-1b), 2.31 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 136.2–128.6
(aromatics), 89.3 (C-4), 83.7 (C-3), 80.4 (C-2), 80.1 (C-5), 78.8 (C-6), 71.5 (C-7), 60.8 (CH3OC-3,
CH3OC-4), 60.5 (CH3OC-5), 59.6 (CH3OC-7), 37.5 (C-1), 21.2 (CH3). HR-ESI-MS positive
mode (m/z): calc. for [M + H]+ = 325.2010, found: [M + H]+ = 325.2008; C18H28O5 (324.42).
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4.9. Characterization of Heptenitols 19 and 20 
4.9.1. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-gluco-Hept-1-Enitol (19a) and 
(Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-gluco-Hept-1-Enitol (20a) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), phenylboronic acid 
(1.5 equiv., 0.02 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to Gen-
eral procedure I by column chromatography (1:2 EtOAc–hexane) to yield 29 mg white 
amorphous solid containing 19a and 20a in 9:1 ratio. Rf: 0.16 (1:2 EtOAc–hexane), [α]D + 28 
(c 0.16, CH2Cl2).  

 
 

19a: 1H NMR (500 MHz, CDCl3) δ 7.42 (2H, d, J 7.6 Hz, aromatics), 7.38–7.30 (2H, m, 
aromatics), 7.29–7.23 (1H, m, aromatic), 6.63 (1H, d, J1,2 16.0 Hz, H-1), 6.16 (1H, dd, J2,3 8.2 
Hz, H-2), 4.05 (1H, dd, J3,4 6.0 Hz, H-3), 3.96 (1H, ddd, J6,7a 3.9, J6,7b 5.5, J5,6 6.7 Hz, H-6), 3.60 
(3H, s, CH3OC-4), 3.59–3.50 (3H, m, H-4, H-7a, H-7b), 3.40 (6H, 2s, CH3OC-5, CH3OC-7), 
3.40–3.37 (1H, m, H-5), 3.37 (3H, s, CH3OC-3), 3.32 (1H, bs, OH). 13C NMR (125 MHz, 
CDCl3) δ 134.0 (C-1), 137.0–126.3 (aromatics), 126.7 (C-2), 83.8 (C-4), 83.4 (C-3), 79.8 (C-5), 
73.8 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.8 (CH3OC-3). 
HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 333.1672, found: [M + Na]+ = 
333.1679; C17H26O5 (310.39). 

20a: 1H NMR (500 MHz, CDCl3) δ 7.45–7.38 (2H, m, aromatics), 7.38–7.30 (2H, m, ar-
omatics), 7.29–7.23 (1H, m, aromatic), 6.77 (1H, d, J1,2 12.0 Hz, H-1), 5.58 (1H, dd, J2,3 10.0 
Hz, H-2), 4.59 (1H, dd, J3,4 4.6 Hz, H-3), 3.99–3.91 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.57–
3.49 (3H, m, H-4, H-7a, H-7b), 3.45 (1H, dd, J4,5 3.6, J5,6 6.4 Hz, H-5), 3.40 (3H, s, CH3OC-7), 
3.32 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR (125 MHz, 
CDCl3) δ 133.9 (C-1), 137.0–126.3 (aromatics), 129.5 (C-2), 84.1 (C-4), 79.6 (C-5), 76.8 (C-3), 
73.9 (C-7), 70.4 (C-6), 60.7 (CH3OC-4), 59.2 (CH3OC-7), 59.1 (CH3OC-5), 56.4 (CH3OC-3). 
HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 333.1672, found: [M + Na]+ = 
333.1669; C17H26O5 (310.39). 

4.9.2. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Trifluoromethylphenyl)-D-gluco-Hept-
1-Enitol (19c) 

4.9. Characterization of Heptenitols 19 and 20
4.9.1. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-gluco-Hept-1-Enitol (19a) and
(Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-gluco-Hept-1-Enitol (20a)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), phenylboronic
acid (1.5 equiv., 0.02 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 29 mg white
amorphous solid containing 19a and 20a in 9:1 ratio. Rf: 0.16 (1:2 EtOAc–hexane), [α]D + 28
(c 0.16, CH2Cl2).
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(Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-Phenyl-D-gluco-Hept-1-Enitol (20a) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), phenylboronic acid 
(1.5 equiv., 0.02 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to Gen-
eral procedure I by column chromatography (1:2 EtOAc–hexane) to yield 29 mg white 
amorphous solid containing 19a and 20a in 9:1 ratio. Rf: 0.16 (1:2 EtOAc–hexane), [α]D + 28 
(c 0.16, CH2Cl2).  

 
 

19a: 1H NMR (500 MHz, CDCl3) δ 7.42 (2H, d, J 7.6 Hz, aromatics), 7.38–7.30 (2H, m, 
aromatics), 7.29–7.23 (1H, m, aromatic), 6.63 (1H, d, J1,2 16.0 Hz, H-1), 6.16 (1H, dd, J2,3 8.2 
Hz, H-2), 4.05 (1H, dd, J3,4 6.0 Hz, H-3), 3.96 (1H, ddd, J6,7a 3.9, J6,7b 5.5, J5,6 6.7 Hz, H-6), 3.60 
(3H, s, CH3OC-4), 3.59–3.50 (3H, m, H-4, H-7a, H-7b), 3.40 (6H, 2s, CH3OC-5, CH3OC-7), 
3.40–3.37 (1H, m, H-5), 3.37 (3H, s, CH3OC-3), 3.32 (1H, bs, OH). 13C NMR (125 MHz, 
CDCl3) δ 134.0 (C-1), 137.0–126.3 (aromatics), 126.7 (C-2), 83.8 (C-4), 83.4 (C-3), 79.8 (C-5), 
73.8 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.8 (CH3OC-3). 
HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 333.1672, found: [M + Na]+ = 
333.1679; C17H26O5 (310.39). 

20a: 1H NMR (500 MHz, CDCl3) δ 7.45–7.38 (2H, m, aromatics), 7.38–7.30 (2H, m, ar-
omatics), 7.29–7.23 (1H, m, aromatic), 6.77 (1H, d, J1,2 12.0 Hz, H-1), 5.58 (1H, dd, J2,3 10.0 
Hz, H-2), 4.59 (1H, dd, J3,4 4.6 Hz, H-3), 3.99–3.91 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.57–
3.49 (3H, m, H-4, H-7a, H-7b), 3.45 (1H, dd, J4,5 3.6, J5,6 6.4 Hz, H-5), 3.40 (3H, s, CH3OC-7), 
3.32 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR (125 MHz, 
CDCl3) δ 133.9 (C-1), 137.0–126.3 (aromatics), 129.5 (C-2), 84.1 (C-4), 79.6 (C-5), 76.8 (C-3), 
73.9 (C-7), 70.4 (C-6), 60.7 (CH3OC-4), 59.2 (CH3OC-7), 59.1 (CH3OC-5), 56.4 (CH3OC-3). 
HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 333.1672, found: [M + Na]+ = 
333.1669; C17H26O5 (310.39). 

4.9.2. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Trifluoromethylphenyl)-D-gluco-Hept-
1-Enitol (19c) 

19a: 1H NMR (500 MHz, CDCl3) δ 7.42 (2H, d, J 7.6 Hz, aromatics), 7.38–7.30 (2H, m,
aromatics), 7.29–7.23 (1H, m, aromatic), 6.63 (1H, d, J1,2 16.0 Hz, H-1), 6.16 (1H, dd, J2,3
8.2 Hz, H-2), 4.05 (1H, dd, J3,4 6.0 Hz, H-3), 3.96 (1H, ddd, J6,7a 3.9, J6,7b 5.5, J5,6 6.7 Hz,
H-6), 3.60 (3H, s, CH3OC-4), 3.59–3.50 (3H, m, H-4, H-7a, H-7b), 3.40 (6H, 2s, CH3OC-5,
CH3OC-7), 3.40–3.37 (1H, m, H-5), 3.37 (3H, s, CH3OC-3), 3.32 (1H, bs, OH). 13C NMR
(125 MHz, CDCl3) δ 134.0 (C-1), 137.0–126.3 (aromatics), 126.7 (C-2), 83.8 (C-4), 83.4 (C-3),
79.8 (C-5), 73.8 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.8
(CH3OC-3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 333.1672, found:
[M + Na]+ = 333.1679; C17H26O5 (310.39).

20a: 1H NMR (500 MHz, CDCl3) δ 7.45–7.38 (2H, m, aromatics), 7.38–7.30 (2H, m,
aromatics), 7.29–7.23 (1H, m, aromatic), 6.77 (1H, d, J1,2 12.0 Hz, H-1), 5.58 (1H, dd, J2,3
10.0 Hz, H-2), 4.59 (1H, dd, J3,4 4.6 Hz, H-3), 3.99–3.91 (1H, m, H-6), 3.57 (3H, s, CH3OC-4),
3.57–3.49 (3H, m, H-4, H-7a, H-7b), 3.45 (1H, dd, J4,5 3.6, J5,6 6.4 Hz, H-5), 3.40 (3H, s,
CH3OC-7), 3.32 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR
(125 MHz, CDCl3) δ 133.9 (C-1), 137.0–126.3 (aromatics), 129.5 (C-2), 84.1 (C-4), 79.6 (C-5),
76.8 (C-3), 73.9 (C-7), 70.4 (C-6), 60.7 (CH3OC-4), 59.2 (CH3OC-7), 59.1 (CH3OC-5), 56.4
(CH3OC-3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 333.1672, found:
[M + Na]+ = 333.1669; C17H26O5 (310.39).
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4.9.2. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Trifluoromethylphenyl)-D-gluco-Hept-
1-Enitol (19c)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), (4-trifluoromethly)ph
enylboronic acid (1.5 equiv., 0.04 g, 0.39 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol)
according to General procedure I by column chromatography (1:3 EtOAc–hexane) to yield
11 mg white amorphous solid containing 19c and an unidentified impurity in 3:1 ratio.
Rf: 0.41 (1:2 EtOAc–hexane). 1H NMR (500 MHz, CDCl3) δ 8.40–7.40 (4H, m, aromatics),
6.68 (1H, d, J1,2 16.0 Hz, H-1), 6.29 (1H, dd, J2,3 7.7 Hz, H-2), 4.09 (1H, dd, J3,4 5.9 Hz,
H-3), 4.00–3.91 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.60–3.53 (3H, m, H-4, H-7a, H-7b),
3.41 (3H, s, CH3OC-5), 3.40 (3H, s, CH3OC-7), 3.39 (3H, s, CH3OC-3), 3.40–3.36 (1H, m,
H-5), 3.07 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) δ 132.1 (C-1), 140.0–120.5 (aromatics),
129.5 (C-2), 83.5 (C-4), 82.7 (C-3), 79.7 (C-5), 73.6 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.5
(CH3OC-7), 59.2 (CH3OC-5), 57.1 (CH3OC-3). HR-ESI-MS positive mode (m/z): calc. for
[M + Na]+ = 401.1546, found: [M + Na]+ = 401.1542; C18H25F3O5 (378.17).
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(19d) and (Z)-1,2-Dideoxy-(4-Fluorophenyl)-3,4,5,7-Tetra-O-Methyl-1-D-gluco-Hept-1-
Enitol (20d) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-fluorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
31 mg white amorphous solid containing 19d and 20d in 3:1 ratio. Rf: 0.11 (1:2 EtOAc–
hexane).  

 
 

19d: 1H NMR (400 MHz, CDCl3) δ 7.39 (2H, dd, J 5.4, 8.7 Hz, aromatics), 7.03 (2H, t, J 
8.7 Hz, aromatics), 6.60 (1H, d, J1,2 16.0 Hz, H-1), 6.09 (1H, dd, J2,3 8.1 Hz, H-2), 4.04 (1H, 
dd, J3,4 5.9 Hz, H-3), 4.00–3.91 (1H, m, H-6), 3.59 (3H, s, CH3OC-4), 3.59–3.49 (3H, m, H-4, 
H-7a, H-7b), 3.40 (6H, 2s, CH3OC-5, CH3OC-7), 3.38 (1H, dd, J4,5 3.1, J5,6 7.3 Hz, H-5), 3.36 
(3H, s, CH3OC-3), 3.03 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) δ 132.7 (C-1), 129.7–110.2 
(aromatics), 126.4 (C-2), 83.7 (C-4), 83.2 (C-3), 79.8 (C-5), 73.7 (C-7), 70.2 (C-6), 60.8 (CH3OC-
4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.9 (CH3OC-3). HR-ESI-MS positive mode (m/z): calc. 
for [M + Na]+ = 351.1578, found: [M + Na]+ = 351.1579; C17H25FO5 (328.17). 

20d: 1H NMR (500 MHz, CDCl3) δ 7.34 (2H, dd, J 5.5, 8.5 Hz, aromatics), 7.03 (2H, t, J 
8.7 Hz, aromatics), 6.72 (1H, d, J1,2 11.9 Hz, H-1), 5.66 (1H, dd, J2,3 10.1 Hz, H-2), 4.54 (1H, 
dd, J3,4 4.8 Hz, H-3), 3.98–3.91 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.57–3.50 (3H, m, H-4, 
H-7a, H-7b), 3.45 (1H, dd, J4,5 3.3, J5,6 6.6 Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.33 (3H, s, CH3OC-
5), 3.22 (3H, s, CH3OC-3), 3.17 (1H, bs, OH). 13C NMR (125 MHz, CDCl3) δ 132.7 (C-1), 
131.2–114.5 (aromatics), 129.4 (C-2), 84.1 (C-4), 79.6 (C-5), 76.8 (C-3), 73.9 (C-7), 70.4 (C-6), 
60.7 (CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.4 (CH3OC-3). HR-ESI-MS positive 
mode (m/z): calc. for [M + Na]+ = 351.1578, found: [M + Na]+ = 351.1579; C17H25FO5 (328.17). 

4.9.4. (E)-1-(3-Chlorophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol 
(19e) and (Z)-1-(3-Chlorophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-
Enitol (20e) 

4.9.3. (E)-1,2-Dideoxy-1-(4-Fluorophenyl)-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol
(19d) and (Z)-1,2-Dideoxy-(4-Fluorophenyl)-3,4,5,7-Tetra-O-Methyl-1-D-gluco-Hept-1-
Enitol (20d)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-fluorophenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 31 mg white
amorphous solid containing 19d and 20d in 3:1 ratio. Rf: 0.11 (1:2 EtOAc–hexane).
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Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), (4-trifluoro-
methly)phenylboronic acid (1.5 equiv., 0.04 g, 0.39 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 
mmol) according to General procedure I by column chromatography (1:3 EtOAc–hexane) 
to yield 11 mg white amorphous solid containing 19c and an unidentified impurity in 3:1 
ratio. Rf: 0.41 (1:2 EtOAc–hexane). 1H NMR (500 MHz, CDCl3) δ 8.40–7.40 (4H, m, aromat-
ics), 6.68 (1H, d, J1,2 16.0 Hz, H-1), 6.29 (1H, dd, J2,3 7.7 Hz, H-2), 4.09 (1H, dd, J3,4 5.9 Hz, H-
3), 4.00–3.91 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.60–3.53 (3H, m, H-4, H-7a, H-7b), 3.41 
(3H, s, CH3OC-5), 3.40 (3H, s, CH3OC-7), 3.39 (3H, s, CH3OC-3), 3.40–3.36 (1H, m, H-5), 
3.07 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) δ 132.1 (C-1), 140.0–120.5 (aromatics), 129.5 
(C-2), 83.5 (C-4), 82.7 (C-3), 79.7 (C-5), 73.6 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.5 (CH3OC-
7), 59.2 (CH3OC-5), 57.1 (CH3OC-3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 
401.1546, found: [M + Na]+ = 401.1542; C18H25F3O5 (378.17). 

 

4.9.3. (E)-1,2-Dideoxy-1-(4-Fluorophenyl)-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol 
(19d) and (Z)-1,2-Dideoxy-(4-Fluorophenyl)-3,4,5,7-Tetra-O-Methyl-1-D-gluco-Hept-1-
Enitol (20d) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-fluorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
31 mg white amorphous solid containing 19d and 20d in 3:1 ratio. Rf: 0.11 (1:2 EtOAc–
hexane).  

 
 

19d: 1H NMR (400 MHz, CDCl3) δ 7.39 (2H, dd, J 5.4, 8.7 Hz, aromatics), 7.03 (2H, t, J 
8.7 Hz, aromatics), 6.60 (1H, d, J1,2 16.0 Hz, H-1), 6.09 (1H, dd, J2,3 8.1 Hz, H-2), 4.04 (1H, 
dd, J3,4 5.9 Hz, H-3), 4.00–3.91 (1H, m, H-6), 3.59 (3H, s, CH3OC-4), 3.59–3.49 (3H, m, H-4, 
H-7a, H-7b), 3.40 (6H, 2s, CH3OC-5, CH3OC-7), 3.38 (1H, dd, J4,5 3.1, J5,6 7.3 Hz, H-5), 3.36 
(3H, s, CH3OC-3), 3.03 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) δ 132.7 (C-1), 129.7–110.2 
(aromatics), 126.4 (C-2), 83.7 (C-4), 83.2 (C-3), 79.8 (C-5), 73.7 (C-7), 70.2 (C-6), 60.8 (CH3OC-
4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.9 (CH3OC-3). HR-ESI-MS positive mode (m/z): calc. 
for [M + Na]+ = 351.1578, found: [M + Na]+ = 351.1579; C17H25FO5 (328.17). 

20d: 1H NMR (500 MHz, CDCl3) δ 7.34 (2H, dd, J 5.5, 8.5 Hz, aromatics), 7.03 (2H, t, J 
8.7 Hz, aromatics), 6.72 (1H, d, J1,2 11.9 Hz, H-1), 5.66 (1H, dd, J2,3 10.1 Hz, H-2), 4.54 (1H, 
dd, J3,4 4.8 Hz, H-3), 3.98–3.91 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.57–3.50 (3H, m, H-4, 
H-7a, H-7b), 3.45 (1H, dd, J4,5 3.3, J5,6 6.6 Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.33 (3H, s, CH3OC-
5), 3.22 (3H, s, CH3OC-3), 3.17 (1H, bs, OH). 13C NMR (125 MHz, CDCl3) δ 132.7 (C-1), 
131.2–114.5 (aromatics), 129.4 (C-2), 84.1 (C-4), 79.6 (C-5), 76.8 (C-3), 73.9 (C-7), 70.4 (C-6), 
60.7 (CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.4 (CH3OC-3). HR-ESI-MS positive 
mode (m/z): calc. for [M + Na]+ = 351.1578, found: [M + Na]+ = 351.1579; C17H25FO5 (328.17). 

4.9.4. (E)-1-(3-Chlorophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol 
(19e) and (Z)-1-(3-Chlorophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-
Enitol (20e) 

19d: 1H NMR (400 MHz, CDCl3) δ 7.39 (2H, dd, J 5.4, 8.7 Hz, aromatics), 7.03 (2H,
t, J 8.7 Hz, aromatics), 6.60 (1H, d, J1,2 16.0 Hz, H-1), 6.09 (1H, dd, J2,3 8.1 Hz, H-2), 4.04
(1H, dd, J3,4 5.9 Hz, H-3), 4.00–3.91 (1H, m, H-6), 3.59 (3H, s, CH3OC-4), 3.59–3.49 (3H,
m, H-4, H-7a, H-7b), 3.40 (6H, 2s, CH3OC-5, CH3OC-7), 3.38 (1H, dd, J4,5 3.1, J5,6 7.3 Hz,
H-5), 3.36 (3H, s, CH3OC-3), 3.03 (1H, bs, OH). 13C NMR (90 MHz, CDCl3) δ 132.7 (C-1),
129.7–110.2 (aromatics), 126.4 (C-2), 83.7 (C-4), 83.2 (C-3), 79.8 (C-5), 73.7 (C-7), 70.2 (C-6),
60.8 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.9 (CH3OC-3). HR-ESI-MS positive
mode (m/z): calc. for [M + Na]+ = 351.1578, found: [M + Na]+ = 351.1579; C17H25FO5
(328.17).

20d: 1H NMR (500 MHz, CDCl3) δ 7.34 (2H, dd, J 5.5, 8.5 Hz, aromatics), 7.03 (2H,
t, J 8.7 Hz, aromatics), 6.72 (1H, d, J1,2 11.9 Hz, H-1), 5.66 (1H, dd, J2,3 10.1 Hz, H-2), 4.54
(1H, dd, J3,4 4.8 Hz, H-3), 3.98–3.91 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.57–3.50 (3H,
m, H-4, H-7a, H-7b), 3.45 (1H, dd, J4,5 3.3, J5,6 6.6 Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.33
(3H, s, CH3OC-5), 3.22 (3H, s, CH3OC-3), 3.17 (1H, bs, OH). 13C NMR (125 MHz, CDCl3)
δ 132.7 (C-1), 131.2–114.5 (aromatics), 129.4 (C-2), 84.1 (C-4), 79.6 (C-5), 76.8 (C-3), 73.9
(C-7), 70.4 (C-6), 60.7 (CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.4 (CH3OC-3). HR-
ESI-MS positive mode (m/z): calc. for [M + Na]+ = 351.1578, found: [M + Na]+ = 351.1579;
C17H25FO5 (328.17).
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4.9.4. (E)-1-(3-Chlorophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol
(19e) and (Z)-1-(3-Chlorophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-
Enitol (20e)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 3-chorophenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 18 mg pale
yellow amorphous solid containing 19e and 20e in 9:1 ratio. Rf: 0.13 (1:2 EtOAc–hexane).
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Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 3-chorophenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
18 mg pale yellow amorphous solid containing 19e and 20e in 9:1 ratio. Rf: 0.13 (1:2 EtOAc–
hexane).  

 
 

19e: 1H NMR (400 MHz, CDCl3) δ 7.50–7.37 (1H, m, aromatic), 7.36–7.19 (3H, m, aro-
matics), 6.58 (1H, d, J1,2 16.0 Hz, H-1), 6.19 (1H, dd, J2,3 7.9 Hz, H-2), 4.06 (1H, dd, J3,4 6.2 
Hz, H-3), 4.01–3.90 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.59–3.44 (3H, m, H-4, H-7a, H-7b), 
3.40 (6H, 2s, CH3OC-5, CH3OC-7), 3.38 (1H, dd, J4,5 2.6, J5,6 7.4 Hz, H-5), 3.37 (3H, s, CH3OC-
3), 3.11 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.5 (C-1), 138.8–120.5 (aromatics), 
124.9 (C-2), 83.5 (C-4), 82.9 (C-3), 79.7 (C-5), 73.6 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.4 
(CH3OC-5), 59.2 (CH3OC-7), 57.0 (CH3OC-3). HR-ESI-MS positive mode (m/z): calc. for [M 
+ Na]+ = 367.1283, found: [M + Na]+ = 367.1282; C17H25ClO5 (344.14). 

20e: 1H NMR (400 MHz, CDCl3) δ 7.84–6.06 (5H, m, H-1, aromatics), 5.75 (1H, dd, J1,2 
11.9, J2,3 10.01 Hz, H-2), 4.52 (1H, dd, J3,4 4.3 Hz, H-3), 4.12–3.71 (1H, m, H-6), 3.57 (3H, s, 
CH3OC-4), 3.58–3.42 (4H, m, H-4, H-5, H-7a, H-7b), 3.40 (3H, s, CH3OC-7), 3.40–3.23 (3H, 
m, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.11 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.4 
(C-1), 138.8–120.5 (aromatics), 129.3 (C-2), 83.9 (C-4), 83.0 (C-5), 81.4 (C-3), 74.5 (C-7), 73.9 
(C-6), 60.4 (CH3OC-4), 59.3 (CH3OC-7), 59.1 (CH3OC-5), 57.0 (CH3OC-3). HR-ESI-MS posi-
tive mode (m/z): calc. for [M + Na]+ = 367.1283, found: [M + Na]+ = 367.1282; C17H25ClO5 
(344.14). 

4.9.5. (E)-1-(4-Bromophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol 
(19f) and (Z)-1-(4-Bromophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-
Enitol (20f) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-bromophenyl-
boronic acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
20 mg white amorphous solid containing 19f and 20f in 9:1 ratio. Rf: 0.10 (1:2 EtOAc–hex-
ane).  

 
 

19f: 1H NMR (400 MHz, CDCl3) δ 7.46 (2H, d, J 8.5 Hz, aromatics), 7.28 (2H, d, J 8.5 
Hz, aromatics), 6.57 (1H, d, J1,2 16.0 Hz, H-1), 6.18 (1H, dd, J2,3 7.9 Hz, H-2), 4.04 (1H, dd, 
J3,4 5.9 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.59 (3H, s, CH3OC-4), 3.58–3.50 (3H, m, H-4, H-7a, 
H-7b), 3.40 (3H, s, CH3OC-5), 3.39 (3H, s, CH3OC-7), 3.37 (3H, s, CH3OC-3), 3.37 (1H, dd, 
J4,5 2.8, J5,6 6.7 Hz, H-5), 3.00 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.4 (C-1), 136.1–
117.1 (aromatics), 127.6 (C-2), 83.6 (C-4), 83.0 (C-3), 79.7 (C-5), 73.7 (C-7), 70.2 (C-6), 60.7 
(CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 57.0 (CH3OC-3). HR-ESI-MS positive mode 
(m/z): calc. for [M + Na]+ = 411.0778, found: [M + Na]+ = 411.0777; C17H25BrO5 (389.29). 

19e: 1H NMR (400 MHz, CDCl3) δ 7.50–7.37 (1H, m, aromatic), 7.36–7.19 (3H, m,
aromatics), 6.58 (1H, d, J1,2 16.0 Hz, H-1), 6.19 (1H, dd, J2,3 7.9 Hz, H-2), 4.06 (1H, dd, J3,4
6.2 Hz, H-3), 4.01–3.90 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.59–3.44 (3H, m, H-4, H-7a,
H-7b), 3.40 (6H, 2s, CH3OC-5, CH3OC-7), 3.38 (1H, dd, J4,5 2.6, J5,6 7.4 Hz, H-5), 3.37 (3H,
s, CH3OC-3), 3.11 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.5 (C-1), 138.8–120.5
(aromatics), 124.9 (C-2), 83.5 (C-4), 82.9 (C-3), 79.7 (C-5), 73.6 (C-7), 70.2 (C-6), 60.8 (CH3OC-
4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 57.0 (CH3OC-3). HR-ESI-MS positive mode (m/z):
calc. for [M + Na]+ = 367.1283, found: [M + Na]+ = 367.1282; C17H25ClO5 (344.14).

20e: 1H NMR (400 MHz, CDCl3) δ 7.84–6.06 (5H, m, H-1, aromatics), 5.75 (1H, dd, J1,2
11.9, J2,3 10.01 Hz, H-2), 4.52 (1H, dd, J3,4 4.3 Hz, H-3), 4.12–3.71 (1H, m, H-6), 3.57 (3H, s,
CH3OC-4), 3.58–3.42 (4H, m, H-4, H-5, H-7a, H-7b), 3.40 (3H, s, CH3OC-7), 3.40–3.23 (3H, m,
CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.11 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.4 (C-
1), 138.8–120.5 (aromatics), 129.3 (C-2), 83.9 (C-4), 83.0 (C-5), 81.4 (C-3), 74.5 (C-7), 73.9 (C-6),
60.4 (CH3OC-4), 59.3 (CH3OC-7), 59.1 (CH3OC-5), 57.0 (CH3OC-3). HR-ESI-MS positive
mode (m/z): calc. for [M + Na]+ = 367.1283, found: [M + Na]+ = 367.1282; C17H25ClO5
(344.14).

4.9.5. (E)-1-(4-Bromophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol
(19f) and (Z)-1-(4-Bromophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-
Enitol (20f)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-bromophenylboronic
acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 20 mg white
amorphous solid containing 19f and 20f in 9:1 ratio. Rf: 0.10 (1:2 EtOAc–hexane).
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boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
18 mg pale yellow amorphous solid containing 19e and 20e in 9:1 ratio. Rf: 0.13 (1:2 EtOAc–
hexane).  

 
 

19e: 1H NMR (400 MHz, CDCl3) δ 7.50–7.37 (1H, m, aromatic), 7.36–7.19 (3H, m, aro-
matics), 6.58 (1H, d, J1,2 16.0 Hz, H-1), 6.19 (1H, dd, J2,3 7.9 Hz, H-2), 4.06 (1H, dd, J3,4 6.2 
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3), 3.11 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.5 (C-1), 138.8–120.5 (aromatics), 
124.9 (C-2), 83.5 (C-4), 82.9 (C-3), 79.7 (C-5), 73.6 (C-7), 70.2 (C-6), 60.8 (CH3OC-4), 59.4 
(CH3OC-5), 59.2 (CH3OC-7), 57.0 (CH3OC-3). HR-ESI-MS positive mode (m/z): calc. for [M 
+ Na]+ = 367.1283, found: [M + Na]+ = 367.1282; C17H25ClO5 (344.14). 

20e: 1H NMR (400 MHz, CDCl3) δ 7.84–6.06 (5H, m, H-1, aromatics), 5.75 (1H, dd, J1,2 
11.9, J2,3 10.01 Hz, H-2), 4.52 (1H, dd, J3,4 4.3 Hz, H-3), 4.12–3.71 (1H, m, H-6), 3.57 (3H, s, 
CH3OC-4), 3.58–3.42 (4H, m, H-4, H-5, H-7a, H-7b), 3.40 (3H, s, CH3OC-7), 3.40–3.23 (3H, 
m, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.11 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.4 
(C-1), 138.8–120.5 (aromatics), 129.3 (C-2), 83.9 (C-4), 83.0 (C-5), 81.4 (C-3), 74.5 (C-7), 73.9 
(C-6), 60.4 (CH3OC-4), 59.3 (CH3OC-7), 59.1 (CH3OC-5), 57.0 (CH3OC-3). HR-ESI-MS posi-
tive mode (m/z): calc. for [M + Na]+ = 367.1283, found: [M + Na]+ = 367.1282; C17H25ClO5 
(344.14). 

4.9.5. (E)-1-(4-Bromophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-Enitol 
(19f) and (Z)-1-(4-Bromophenyl)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-D-gluco-Hept-1-
Enitol (20f) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-bromophenyl-
boronic acid (1.5 equiv., 0.04 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:4 EtOAc–hexane) to yield 
20 mg white amorphous solid containing 19f and 20f in 9:1 ratio. Rf: 0.10 (1:2 EtOAc–hex-
ane).  

 
 

19f: 1H NMR (400 MHz, CDCl3) δ 7.46 (2H, d, J 8.5 Hz, aromatics), 7.28 (2H, d, J 8.5 
Hz, aromatics), 6.57 (1H, d, J1,2 16.0 Hz, H-1), 6.18 (1H, dd, J2,3 7.9 Hz, H-2), 4.04 (1H, dd, 
J3,4 5.9 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.59 (3H, s, CH3OC-4), 3.58–3.50 (3H, m, H-4, H-7a, 
H-7b), 3.40 (3H, s, CH3OC-5), 3.39 (3H, s, CH3OC-7), 3.37 (3H, s, CH3OC-3), 3.37 (1H, dd, 
J4,5 2.8, J5,6 6.7 Hz, H-5), 3.00 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.4 (C-1), 136.1–
117.1 (aromatics), 127.6 (C-2), 83.6 (C-4), 83.0 (C-3), 79.7 (C-5), 73.7 (C-7), 70.2 (C-6), 60.7 
(CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 57.0 (CH3OC-3). HR-ESI-MS positive mode 
(m/z): calc. for [M + Na]+ = 411.0778, found: [M + Na]+ = 411.0777; C17H25BrO5 (389.29). 

19f: 1H NMR (400 MHz, CDCl3) δ 7.46 (2H, d, J 8.5 Hz, aromatics), 7.28 (2H, d, J
8.5 Hz, aromatics), 6.57 (1H, d, J1,2 16.0 Hz, H-1), 6.18 (1H, dd, J2,3 7.9 Hz, H-2), 4.04 (1H,
dd, J3,4 5.9 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.59 (3H, s, CH3OC-4), 3.58–3.50 (3H, m, H-4,
H-7a, H-7b), 3.40 (3H, s, CH3OC-5), 3.39 (3H, s, CH3OC-7), 3.37 (3H, s, CH3OC-3), 3.37 (1H,
dd, J4,5 2.8, J5,6 6.7 Hz, H-5), 3.00 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.4 (C-1),
136.1–117.1 (aromatics), 127.6 (C-2), 83.6 (C-4), 83.0 (C-3), 79.7 (C-5), 73.7 (C-7), 70.2 (C-6),
60.7 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 57.0 (CH3OC-3). HR-ESI-MS positive
mode (m/z): calc. for [M + Na]+ = 411.0778, found: [M + Na]+ = 411.0777; C17H25BrO5
(389.29).

20f: 1H NMR (400 MHz, CDCl3) δ 7.47 (2H, d, J 8.4 Hz, aromatics), 7.25 (2H, d, J 8.4 Hz,
aromatics), 6.69 (1H, d, J1,2 11.9 Hz, H-1), 5.71 (1H, dd, J2,3 10.1 Hz, H-2), 4.53 (1H, dd, J3,4
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4.7 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.56–3.47 (3H, m, H-4, H-7a,
H-7b), 3.45 (1H, dd, J4,5 3.3, J5,6 6.5 Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.34 (3H, s, CH3OC-5),
3.21 (3H, s, CH3OC-3), 3.00 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.6 (C-1), 136.1–
117.1 (aromatics), 130.2 (C-2), 84.0 (C-4), 79.5 (C-5), 76.8 (C-3), 73.8 (C-7), 70.4 (C-6), 60.7
(CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.4 (CH3OC-3). HR-ESI-MS positive mode
(m/z): calc. for [M + Na]+ = 411.0778, found: [M + Na]+ = 411.0777; C17H25BrO5 (389.29).

4.9.6. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methoxyphenyl)-D-gluco-Hept-1-Enitol
(19h) and (Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methoxyphenyl)-D-gluco-Hept-1-
Enitol (20h)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methoxyphenylbor
onic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according
to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 24 mg pale
yellow amorphous solid containing 19h and 20h in 23:1 ratio. Rf: 0.13 (1:2 EtOAc–hexane).
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20f: 1H NMR (400 MHz, CDCl3) δ 7.47 (2H, d, J 8.4 Hz, aromatics), 7.25 (2H, d, J 8.4 
Hz, aromatics), 6.69 (1H, d, J1,2 11.9 Hz, H-1), 5.71 (1H, dd, J2,3 10.1 Hz, H-2), 4.53 (1H, dd, 
J3,4 4.7 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.57 (3H, s, CH3OC-4), 3.56–3.47 (3H, m, H-4, H-7a, 
H-7b), 3.45 (1H, dd, J4,5 3.3, J5,6 6.5 Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.34 (3H, s, CH3OC-5), 
3.21 (3H, s, CH3OC-3), 3.00 (1H, bs, OH). 13C NMR (100 MHz, CDCl3) δ 132.6 (C-1), 136.1–
117.1 (aromatics), 130.2 (C-2), 84.0 (C-4), 79.5 (C-5), 76.8 (C-3), 73.8 (C-7), 70.4 (C-6), 60.7 
(CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.4 (CH3OC-3). HR-ESI-MS positive mode 
(m/z): calc. for [M + Na]+ = 411.0778, found: [M + Na]+ = 411.0777; C17H25BrO5 (389.29). 

4.9.6. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methoxyphenyl)-D-gluco-Hept-1- 
Enitol (19h) and (Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methoxyphenyl)-D-gluco-
Hept-1-Enitol (20h) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methoxyphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
24 mg pale yellow amorphous solid containing 19h and 20h in 23:1 ratio. Rf: 0.13 (1:2 
EtOAc–hexane).  

 
 

19h: 1H NMR (400 MHz, CDCl3) δ 7.36 (2H, d, J 8.7 Hz, aromatics), 6.88 (2H, d, J 8.7 
Hz, aromatics), 6.57 (1H, d, J1,2 16.0 Hz, H-1), 6.01 (1H, dd, J2,3 8.3 Hz, H-2), 4.02 (1H, dd, 
J3,4 6.0 Hz, H-3), 3.98–3.91 (1H, m, H-6), 3.82 (3H, s, OCH3), 3.60 (3H, s, CH3OC-4), 3.59–
3.53 (2H, m, H-7a, H-7b), 3.54–3.49 (1H, m, H-4), 3.40 (3H, s, CH3OC-5), 3.39 (3H, s, CH3OC-
7), 3.38 (1H, dd, J4,5 2.9, J5,6 6.9 Hz, H-5), 3.35 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR 
(100 MHz, CDCl3) δ 133.6 (C-1), 159.9–112.7 (aromatics), 124.3 (C-2), 83.9 (C-4), 83.6 (C-3), 
79.8 (C-5), 73.8 (C-7), 70.3 (C-6), 60.8 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.7 
(CH3OC-3), 55.5 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 363.1778, 
found: [M + Na]+ = 363.1779; C18H28O5 (340.42). 

20h: 1H NMR (400 MHz, CDCl3) δ 7.32 (2H, d, J 8.7 Hz, aromatics), 6.88 (2H, d, J 8.7 
Hz, aromatics), 6.69 (1H, d, J1,2 12.0 Hz, H-1), 5.56 (1H, dd, J2,3 10.0 Hz, H-2), 4.63 (1H, dd, 
J3,4 4.7 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.82 (3H, s, OCH3), 3.58 (3H, s, CH3OC-4), 3.57–
3.49 (3H, m, H-4, H-7a, H-7b), 3.46 (1H, dd, J4,5 3.3, J5,6 6.6 Hz, H-5), 3.40 (3H, s, CH3OC-7), 
3.33 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR (100 MHz, 
CDCl3) δ 133.3 (C-1), 161.0–112.7 (aromatics), 130.4 (C-2), 84.2 (C-4), 79.6 (C-5), 77.0 (C-3), 
73.9 (C-7), 70.4 (C-6), 60.7 (CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.3 (CH3OC-3), 
55.4 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 363.1778, found: [M + 
Na]+ = 363.1776; C18H28O5 (340.42). 

4.9.7. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-gluco-Hept-1-Enitol 
(19i) and (Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-gluco-Hept-1-
Enitol (20i) 

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methylphenyl-
boronic acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) ac-
cording to General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 
24 mg pale white amorphous solid containing 19i and 20i in 8:1 ratio. Rf: 0.13 (1:2 EtOAc–
hexane), [α]D + 28 (c 0.36, CH2Cl2).  

19h: 1H NMR (400 MHz, CDCl3) δ 7.36 (2H, d, J 8.7 Hz, aromatics), 6.88 (2H, d, J
8.7 Hz, aromatics), 6.57 (1H, d, J1,2 16.0 Hz, H-1), 6.01 (1H, dd, J2,3 8.3 Hz, H-2), 4.02 (1H, dd,
J3,4 6.0 Hz, H-3), 3.98–3.91 (1H, m, H-6), 3.82 (3H, s, OCH3), 3.60 (3H, s, CH3OC-4), 3.59–3.53
(2H, m, H-7a, H-7b), 3.54–3.49 (1H, m, H-4), 3.40 (3H, s, CH3OC-5), 3.39 (3H, s, CH3OC-7),
3.38 (1H, dd, J4,5 2.9, J5,6 6.9 Hz, H-5), 3.35 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR
(100 MHz, CDCl3) δ 133.6 (C-1), 159.9–112.7 (aromatics), 124.3 (C-2), 83.9 (C-4), 83.6 (C-3),
79.8 (C-5), 73.8 (C-7), 70.3 (C-6), 60.8 (CH3OC-4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.7
(CH3OC-3), 55.5 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 363.1778,
found: [M + Na]+ = 363.1779; C18H28O5 (340.42).

20h: 1H NMR (400 MHz, CDCl3) δ 7.32 (2H, d, J 8.7 Hz, aromatics), 6.88 (2H, d, J
8.7 Hz, aromatics), 6.69 (1H, d, J1,2 12.0 Hz, H-1), 5.56 (1H, dd, J2,3 10.0 Hz, H-2), 4.63 (1H,
dd, J3,4 4.7 Hz, H-3), 3.99–3.90 (1H, m, H-6), 3.82 (3H, s, OCH3), 3.58 (3H, s, CH3OC-4),
3.57–3.49 (3H, m, H-4, H-7a, H-7b), 3.46 (1H, dd, J4,5 3.3, J5,6 6.6 Hz, H-5), 3.40 (3H, s,
CH3OC-7), 3.33 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.02 (1H, bs, OH). 13C NMR
(100 MHz, CDCl3) δ 133.3 (C-1), 161.0–112.7 (aromatics), 130.4 (C-2), 84.2 (C-4), 79.6 (C-5),
77.0 (C-3), 73.9 (C-7), 70.4 (C-6), 60.7 (CH3OC-4), 59.3 (CH3OC-7), 59.0 (CH3OC-5), 56.3
(CH3OC-3), 55.4 (OCH3). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 363.1778,
found: [M + Na]+ = 363.1776; C18H28O5 (340.42).

4.9.7. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-gluco-Hept-1-Enitol
(19i) and (Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methyl-1-(4-Methylphenyl)-D-gluco-Hept-1-
Enitol (20i)

Isolated from a reaction of tosylhydrazone 17 (0.05 g, 0.13 mmol), 4-methylphenylboronic
acid (1.5 equiv., 0.03 g, 0.19 mmol), and K3PO4 (3 equiv., 0.08 g, 0.39 mmol) according to
General procedure I by column chromatography (1:2 EtOAc–hexane) to yield 24 mg pale
white amorphous solid containing 19i and 20i in 8:1 ratio. Rf: 0.13 (1:2 EtOAc–hexane),
[α]D + 28 (c 0.36, CH2Cl2).
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19i: 1H NMR (400 MHz, CDCl3) δ 7.32 (2H, d, J 8.1 Hz, aromatics),7.15 (2H, d, J 7.9 
Hz, aromatics), 6.60 (1H, d, J1,2 16.0 Hz, H-1), 6.10 (1H, dd, J2,3 8.3 Hz, H-2), 4.03 (1H, dd, 
J3,4 6.0 Hz, H-3), 3.98–3.90 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.58–3.49 (3H, m, H-4, H-7a, 
H-7b), 3.39 (6H, 2s, CH3OC-5, CH3OC-7), 3.39–3.36 (1H, m, H-5), 3.35 (3H, s, CH3OC-3), 3.03 
(1H, bs, OH), 2.35 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 134.0 (C-1), 138.3–125.3 (ar-
omatics), 125.5 (C-2), 83.8 (C-4), 83.6 (C-3), 79.8 (C-5), 73.8 (C-7), 70.2 (C-6), 60.8 (CH3OC-
4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.7 (CH3OC-3), 21.3 (CH3). HR-ESI-MS positive mode 
(m/z): calc. for [M + Na]+ = 347.1829, found: [M + Na]+ = 347.1828; C18H28O5 (324.42). 

20i: 1H NMR (400 MHz, CDCl3) δ 7.28–7.23 (4H, m, aromatics), 6.73 (1H, d, J1,2 12.1 
Hz, H-1), 5.62 (1H, dd, J2,3 10.0 Hz, H-2), 4.61 (1H, dd, J3,4 4.6 Hz, H-3), 3.98–3.90 (1H, m, 
H-6), 3.57 (3H, s, CH3OC-4), 3.58–3.49 (3H, m, H-4, H-7a, H-7b), 3.46 (1H, dd, J4,5 3.4, J5,6 6.5 
Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.33 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.03 (1H, bs, 
OH), 2.36 (3H, s, CH3). 13C NMR δ 133.7 (C-1), 138.2–125.3 (aromatics), 128.7 (C-2), 84.1 (C-
4), 79.6 (C-5), 76.7 (C-3), 73.9 (C-7), 70.5 (C-6), 60.7 (CH3OC-4), 59.2 (CH3OC-7), 59.1 
(CH3OC-5), 56.4 (CH3OC-3), 21.3 (CH3). HR-ESI-MS positive mode (m/z): calc. for [M + 
Na]+ = 347.1829, found: [M + Na]+ = 347.1828; C18H28O5 (324.42). 

4.10. 2,6-Anhydro-3,4,5,7-Tetra-O-Methoxymethyl-D-glycero-L-manno-Heptononitrile (2,3,4,6-
Tetra-O-Methoxymethyl-β-D-Galactopyranosyl Cyanide) (23) 

β-D-Galactopyranosyl cyanide 22 (0.10 g, 0.53 mmol) was suspended in dichloro-
methane (7 mL). The suspension was stirred under nitrogen atmosphere and cooled to 0 
°C, and then N-diisopropylethylamine (6.4 equiv. / OH, 2.3 mL, 1.75 g, 13.55 mmol) was 
added, followed by careful addition of chloromethyl methyl ether (10 equiv. / OH, 1.6 mL, 
1.70 g, 21.13 mmol), dropwise. The reaction mixture was stirred in the dark at room tem-
perature. When TLC (1:1 EtOAc–hexane) indicated complete consumption of the starting 
compound (3 day), the mixture was cooled to 0 °C. Saturated aqueous NH4Cl solution (1 
mL) was added to the reaction mixture. The organic layer was separated, washed with 
water (1 mL), then the aquous phase was washed with dichloromethane (3 × 3 mL). The 
combined organic phase was washed with water (1 mL) and dried on anhydrous magne-
sium sulfate. The solution was concentrated under reduced pressure and purified by col-
umn chromatography (1:1 EtOAc–hexane) to yield 163 mg (84%) of 23 as a colourless oil. 
Rf: 0.45 (1:1 EtOAc–hexane); [α]D − 40 (c 0.29, CHCl3). 1H NMR (400 MHz, DMSO-d6) δ 4.86 
(1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.7 Hz, CH2), 4.72 (1H, d, J 6.6 Hz, CH2), 4.71 (1H, d, J 
6.6 Hz, CH2), 4.65–4.58 (3H, m, H-2, CH2), 4.57 (2H, s, 2 × CH2), 4.00 (1H, dd, J5,6 0.6 Hz, H-
5), 3.91 (1H, pseudo t, J2,3 9.8, J3,4 9.6 Hz, H-3), 3.85 (1H, ddd, J6,7a 5.9, J6,7b 5.9 Hz, H-6), 3.76 
(1H, dd, J4,5 2.7 Hz, H-4), 3.58 (1H, dd, J7a,7b 11.0 Hz, H-7a), 3.56 (1H, dd, H-7b), 3.37, 3.32, 
3.31, 3.26 (12H, 4s, 4 × CH3). 13C NMR (100 MHz, DMSO-d6) δ 117.5 (C-1 = CN), 97.0, 95.9, 
94.6 (4 × CH2), 77.7, 77.2, 72.3, 72.2, 66.6 (C-2–C-6), 66.2 (C-7), 56.1, 55.4, 55.3, 54.8 (4 × CH3). 
HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 366.1759, found: [M + H]+ = 366.1761; 
C15H27NO9 (365.17). 
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19i: 1H NMR (400 MHz, CDCl3) δ 7.32 (2H, d, J 8.1 Hz, aromatics),7.15 (2H, d, J 7.9 Hz,
aromatics), 6.60 (1H, d, J1,2 16.0 Hz, H-1), 6.10 (1H, dd, J2,3 8.3 Hz, H-2), 4.03 (1H, dd, J3,4
6.0 Hz, H-3), 3.98–3.90 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.58–3.49 (3H, m, H-4, H-7a,
H-7b), 3.39 (6H, 2s, CH3OC-5, CH3OC-7), 3.39–3.36 (1H, m, H-5), 3.35 (3H, s, CH3OC-3),
3.03 (1H, bs, OH), 2.35 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 134.0 (C-1), 138.3–125.3
(aromatics), 125.5 (C-2), 83.8 (C-4), 83.6 (C-3), 79.8 (C-5), 73.8 (C-7), 70.2 (C-6), 60.8 (CH3OC-
4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.7 (CH3OC-3), 21.3 (CH3). HR-ESI-MS positive mode
(m/z): calc. for [M + Na]+ = 347.1829, found: [M + Na]+ = 347.1828; C18H28O5 (324.42).

20i: 1H NMR (400 MHz, CDCl3) δ 7.28–7.23 (4H, m, aromatics), 6.73 (1H, d, J1,2 12.1 Hz,
H-1), 5.62 (1H, dd, J2,3 10.0 Hz, H-2), 4.61 (1H, dd, J3,4 4.6 Hz, H-3), 3.98–3.90 (1H, m, H-
6), 3.57 (3H, s, CH3OC-4), 3.58–3.49 (3H, m, H-4, H-7a, H-7b), 3.46 (1H, dd, J4,5 3.4, J5,6
6.5 Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.33 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.03
(1H, bs, OH), 2.36 (3H, s, CH3). 13C NMR δ 133.7 (C-1), 138.2–125.3 (aromatics), 128.7 (C-2),
84.1 (C-4), 79.6 (C-5), 76.7 (C-3), 73.9 (C-7), 70.5 (C-6), 60.7 (CH3OC-4), 59.2 (CH3OC-7),
59.1 (CH3OC-5), 56.4 (CH3OC-3), 21.3 (CH3). HR-ESI-MS positive mode (m/z): calc. for
[M + Na]+ = 347.1829, found: [M + Na]+ = 347.1828; C18H28O5 (324.42).

4.10. 2,6-Anhydro-3,4,5,7-Tetra-O-Methoxymethyl-D-glycero-L-manno-Heptononitrile (2,3,4,6-
Tetra-O-Methoxymethyl-β-D-Galactopyranosyl Cyanide) (23)

β-D-Galactopyranosyl cyanide 22 (0.10 g, 0.53 mmol) was suspended in dichloromethane
(7 mL). The suspension was stirred under nitrogen atmosphere and cooled to 0 ◦C, and
then N-diisopropylethylamine (6.4 equiv. / OH, 2.3 mL, 1.75 g, 13.55 mmol) was added,
followed by careful addition of chloromethyl methyl ether (10 equiv. / OH, 1.6 mL,
1.70 g, 21.13 mmol), dropwise. The reaction mixture was stirred in the dark at room
temperature. When TLC (1:1 EtOAc–hexane) indicated complete consumption of the
starting compound (3 day), the mixture was cooled to 0 ◦C. Saturated aqueous NH4Cl
solution (1 mL) was added to the reaction mixture. The organic layer was separated,
washed with water (1 mL), then the aquous phase was washed with dichloromethane
(3 × 3 mL). The combined organic phase was washed with water (1 mL) and dried on
anhydrous magnesium sulfate. The solution was concentrated under reduced pressure and
purified by column chromatography (1:1 EtOAc–hexane) to yield 163 mg (84%) of 23 as a
colourless oil. Rf: 0.45 (1:1 EtOAc–hexane); [α]D − 40 (c 0.29, CHCl3). 1H NMR (400 MHz,
DMSO-d6) δ 4.86 (1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.7 Hz, CH2), 4.72 (1H, d, J 6.6 Hz,
CH2), 4.71 (1H, d, J 6.6 Hz, CH2), 4.65–4.58 (3H, m, H-2, CH2), 4.57 (2H, s, 2 × CH2), 4.00
(1H, dd, J5,6 0.6 Hz, H-5), 3.91 (1H, pseudo t, J2,3 9.8, J3,4 9.6 Hz, H-3), 3.85 (1H, ddd, J6,7a 5.9,
J6,7b 5.9 Hz, H-6), 3.76 (1H, dd, J4,5 2.7 Hz, H-4), 3.58 (1H, dd, J7a,7b 11.0 Hz, H-7a), 3.56 (1H,
dd, H-7b), 3.37, 3.32, 3.31, 3.26 (12H, 4s, 4 × CH3). 13C NMR (100 MHz, DMSO-d6) δ 117.5
(C-1 = CN), 97.0, 95.9, 94.6 (4 × CH2), 77.7, 77.2, 72.3, 72.2, 66.6 (C-2–C-6), 66.2 (C-7), 56.1,
55.4, 55.3, 54.8 (4 × CH3). HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 366.1759,
found: [M + H]+ = 366.1761; C15H27NO9 (365.17).
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19i: 1H NMR (400 MHz, CDCl3) δ 7.32 (2H, d, J 8.1 Hz, aromatics),7.15 (2H, d, J 7.9 
Hz, aromatics), 6.60 (1H, d, J1,2 16.0 Hz, H-1), 6.10 (1H, dd, J2,3 8.3 Hz, H-2), 4.03 (1H, dd, 
J3,4 6.0 Hz, H-3), 3.98–3.90 (1H, m, H-6), 3.60 (3H, s, CH3OC-4), 3.58–3.49 (3H, m, H-4, H-7a, 
H-7b), 3.39 (6H, 2s, CH3OC-5, CH3OC-7), 3.39–3.36 (1H, m, H-5), 3.35 (3H, s, CH3OC-3), 3.03 
(1H, bs, OH), 2.35 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 134.0 (C-1), 138.3–125.3 (ar-
omatics), 125.5 (C-2), 83.8 (C-4), 83.6 (C-3), 79.8 (C-5), 73.8 (C-7), 70.2 (C-6), 60.8 (CH3OC-
4), 59.4 (CH3OC-5), 59.2 (CH3OC-7), 56.7 (CH3OC-3), 21.3 (CH3). HR-ESI-MS positive mode 
(m/z): calc. for [M + Na]+ = 347.1829, found: [M + Na]+ = 347.1828; C18H28O5 (324.42). 

20i: 1H NMR (400 MHz, CDCl3) δ 7.28–7.23 (4H, m, aromatics), 6.73 (1H, d, J1,2 12.1 
Hz, H-1), 5.62 (1H, dd, J2,3 10.0 Hz, H-2), 4.61 (1H, dd, J3,4 4.6 Hz, H-3), 3.98–3.90 (1H, m, 
H-6), 3.57 (3H, s, CH3OC-4), 3.58–3.49 (3H, m, H-4, H-7a, H-7b), 3.46 (1H, dd, J4,5 3.4, J5,6 6.5 
Hz, H-5), 3.40 (3H, s, CH3OC-7), 3.33 (3H, s, CH3OC-5), 3.23 (3H, s, CH3OC-3), 3.03 (1H, bs, 
OH), 2.36 (3H, s, CH3). 13C NMR δ 133.7 (C-1), 138.2–125.3 (aromatics), 128.7 (C-2), 84.1 (C-
4), 79.6 (C-5), 76.7 (C-3), 73.9 (C-7), 70.5 (C-6), 60.7 (CH3OC-4), 59.2 (CH3OC-7), 59.1 
(CH3OC-5), 56.4 (CH3OC-3), 21.3 (CH3). HR-ESI-MS positive mode (m/z): calc. for [M + 
Na]+ = 347.1829, found: [M + Na]+ = 347.1828; C18H28O5 (324.42). 

4.10. 2,6-Anhydro-3,4,5,7-Tetra-O-Methoxymethyl-D-glycero-L-manno-Heptononitrile (2,3,4,6-
Tetra-O-Methoxymethyl-β-D-Galactopyranosyl Cyanide) (23) 

β-D-Galactopyranosyl cyanide 22 (0.10 g, 0.53 mmol) was suspended in dichloro-
methane (7 mL). The suspension was stirred under nitrogen atmosphere and cooled to 0 
°C, and then N-diisopropylethylamine (6.4 equiv. / OH, 2.3 mL, 1.75 g, 13.55 mmol) was 
added, followed by careful addition of chloromethyl methyl ether (10 equiv. / OH, 1.6 mL, 
1.70 g, 21.13 mmol), dropwise. The reaction mixture was stirred in the dark at room tem-
perature. When TLC (1:1 EtOAc–hexane) indicated complete consumption of the starting 
compound (3 day), the mixture was cooled to 0 °C. Saturated aqueous NH4Cl solution (1 
mL) was added to the reaction mixture. The organic layer was separated, washed with 
water (1 mL), then the aquous phase was washed with dichloromethane (3 × 3 mL). The 
combined organic phase was washed with water (1 mL) and dried on anhydrous magne-
sium sulfate. The solution was concentrated under reduced pressure and purified by col-
umn chromatography (1:1 EtOAc–hexane) to yield 163 mg (84%) of 23 as a colourless oil. 
Rf: 0.45 (1:1 EtOAc–hexane); [α]D − 40 (c 0.29, CHCl3). 1H NMR (400 MHz, DMSO-d6) δ 4.86 
(1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.7 Hz, CH2), 4.72 (1H, d, J 6.6 Hz, CH2), 4.71 (1H, d, J 
6.6 Hz, CH2), 4.65–4.58 (3H, m, H-2, CH2), 4.57 (2H, s, 2 × CH2), 4.00 (1H, dd, J5,6 0.6 Hz, H-
5), 3.91 (1H, pseudo t, J2,3 9.8, J3,4 9.6 Hz, H-3), 3.85 (1H, ddd, J6,7a 5.9, J6,7b 5.9 Hz, H-6), 3.76 
(1H, dd, J4,5 2.7 Hz, H-4), 3.58 (1H, dd, J7a,7b 11.0 Hz, H-7a), 3.56 (1H, dd, H-7b), 3.37, 3.32, 
3.31, 3.26 (12H, 4s, 4 × CH3). 13C NMR (100 MHz, DMSO-d6) δ 117.5 (C-1 = CN), 97.0, 95.9, 
94.6 (4 × CH2), 77.7, 77.2, 72.3, 72.2, 66.6 (C-2–C-6), 66.2 (C-7), 56.1, 55.4, 55.3, 54.8 (4 × CH3). 
HR-ESI-MS positive mode (m/z): calcd. for [M + H]+ = 366.1759, found: [M + H]+ = 366.1761; 
C15H27NO9 (365.17). 

 

  
4.11. 2,6-Anhydro-3,4,5,7-Tetra-O-Methoxymethyl-D-glycero-L-manno-Heptose Tosylhydrazone
(C-(2,3,4,6-Tetra-O-Methoxymethyl-β-D-Galactopyranosyl) Formaldehyde Tosylhydrazone) (24)

Prepared from cyanide 23 (0.10 g, 0.27 mmol) according to General procedure III.
Purified by column chromatography (2:1 EtOAc–hexane) to get two unidentified isomers
24-1 and 24-2.
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24-1 yellow oil, 19 mg (13%); Rf: 0.33 (2:1 EtOAc–hexane). 1H NMR (360 MHz, CDCl3) 

δ 9.50 (1H, s, NH), 7.84–7.75 (2H, m, aromatics), 7.33–7.22 (2H, m, aromatics), 4.89 (1H, d, 
J 6.8 Hz, CH2), 4.85 (1H, d, J 6.5 Hz, CH2), 4.79 (1H, d, J 6.8 Hz, CH2), 4.73–4.59 (4H, m, 
CH2), 4.57 (1H, d, J 6.5 Hz, CH2), 4.03 (1H, dd, J4,5 2.4, J5,6 0.6 Hz, H-5), 4.03–3.99 (1H, m, H-
2 or H-4), 3.98 (1H, pseudo t, J2,3 9.9, J3,4 9.9 Hz, H-3), 3.78–3.65 (4H, m, H-2 or H-4, H-6, H-
7a, H-7b), 3.41, 3.39, 3.21 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). HR-ESI-MS positive mode 
(m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; C22H36N2O11S (536.20). 

24-2 yellow oil, 96 mg (65%); Rf: 0.19 (2:1 EtOAc–hexane).1H NMR (360 MHz, CDCl3) 
δ 8.25 (1H, s, NH), 7.86–7.73 (2H, m, aromatics), 7.35–7.23 (2H, m, aromatics), 7.05 (1H, d, 
J1,2 4.4 Hz, H-1), 4.87 (1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.6 Hz, CH2), 4.72–4.67 (2H, m, 
CH2), 4.65 (1H, d, J 6.7 Hz, CH2), 4.60 (2H, s, CH2), 4.42 (1H, d, J 6.7 Hz, CH2), 4.02 (1H, dd, 
J4,5 2.6, J5,6 0.6 Hz, H-5), 3.88–3.78 (2H, m) and 3.75–3.55 (4H, m) and 3.46–3.19 (1H, m): (H-
2, H-3, H-4, H-6, H-7a, H-7b), 3.39, 3.32, 3.05 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). 13C 
NMR (90 MHz, CDCl3) δ 146.6 (C-1), 144.8–127.4 (aromatics), 98.2, 97.6, 96.9, 95.7 (4 × CH2), 
79.1, 78.8, 77.3, 74.6, 72.9 (C-2–C-6), 66.9 (C-7), 56.2, 55.9, 55.6 (4 × CH3-Ts). HR-ESI-MS 
positive mode (m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; 
C22H36N2O11S (536.20). 

4.12. Characterization of Anhydro-Heptitol 25 and Heptenitols 26 and 27 
4.12.1. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-glycero-D-gulo-
Heptitol (25) 

Isolated from a reaction of tosylhydrazone 24 (0.10 g, 0.19 mmol), phenylboronic acid 
(1.5 equiv., 0.03 g, 0.28 mmol), and K3PO4 (3 equiv., 0.12 g, 0.56 mmol) according to Gen-
eral procedure I by column chromatography (1:6 EtOAc–hexane) to yield 7 mg white 
amorphous solid containing 25 and 28 in 2.6:1 ratio. Rf: 0.35 (1:2 EtOAc–hexane). 1H NMR 
(400 MHz, CDCl3) δ 7.32–7.16 (5H, m, aromatics), 4.98 (1H, d, J 6.5 Hz, CH3OCH2OC-3), 
4.92 (1H, d, J 6.8 Hz, CH3OCH2OC-5), 4.83 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.76 (H, d, J 
6.5 Hz, CH3OCH2OC-3), 4.70 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.69 (1H, d, J 7.0 Hz, 
CH3OCH2OC-5), 4.55 (1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.50 (1H, d, J 6.5 Hz, CH3OCH2OC-
7), 4.05 (1H, dd, J4,5 2.0, J5,6 0.6 Hz, H-5), 3.76–3.67 (2H, m, H-3, H-4), 3.67 (1H, dd, J6,7a 6.3, 
J7a,7b 10.2 Hz, H-7a), 3.58 (1H, dd, J6,7b 6.5 Hz, H-7b), 3.48 (3H, s, CH3OCH2OC-3), 3.50–3.44 
(1H, m, H-6), 3.43 (3H, s CH3OCH2OC-4), 3.42 (3H, s CH3OCH2OC-5), 3.42–3.39 (1H, m, H-
2), 3.27 (3H, s, CH3OCH2OC-7), 3.23 (1H, dd, J1a,1b 14.2, J1a,2 1.5 Hz, H-1a), 2.77 (1H, dd, J1b,2 
10.0 Hz, H-1b). 13C NMR (100 MHz, CDCl3) δ 139.7–125.1 (aromatics), 98.9 (CH3OCH2OC-
3), 97.5 (CH3OCH2OC-5), 96.9 (CH3OCH2OC-7), 95.4 (CH3OCH2OC-4), 80.9 (C-2), 80.2 (C-
4), 77.5 (C-3), 77.2 (C-6), 72.9 (C-5), 66.7 (C-7), 56.7 (CH3OCH2OC-3), 56.1 (CH3OCH2OC-5), 
56.0 (CH3OCH2OC-4), 55.5 (CH3OCH2OC-7), 38.1 (C-1). HR-ESI-MS positive mode (m/z): 
calc. for [M + Na]+ = 453.2095, found: [M + Na]+ = 453.2093; C21H34O9 (430.49). 
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24-1 yellow oil, 19 mg (13%); Rf: 0.33 (2:1 EtOAc–hexane). 1H NMR (360 MHz, CDCl3)
δ 9.50 (1H, s, NH), 7.84–7.75 (2H, m, aromatics), 7.33–7.22 (2H, m, aromatics), 4.89 (1H, d, J
6.8 Hz, CH2), 4.85 (1H, d, J 6.5 Hz, CH2), 4.79 (1H, d, J 6.8 Hz, CH2), 4.73–4.59 (4H, m, CH2),
4.57 (1H, d, J 6.5 Hz, CH2), 4.03 (1H, dd, J4,5 2.4, J5,6 0.6 Hz, H-5), 4.03–3.99 (1H, m, H-2 or
H-4), 3.98 (1H, pseudo t, J2,3 9.9, J3,4 9.9 Hz, H-3), 3.78–3.65 (4H, m, H-2 or H-4, H-6, H-7a,
H-7b), 3.41, 3.39, 3.21 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). HR-ESI-MS positive mode
(m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; C22H36N2O11S (536.20).

24-2 yellow oil, 96 mg (65%); Rf: 0.19 (2:1 EtOAc–hexane).1H NMR (360 MHz, CDCl3) δ
8.25 (1H, s, NH), 7.86–7.73 (2H, m, aromatics), 7.35–7.23 (2H, m, aromatics), 7.05 (1H, d, J1,2
4.4 Hz, H-1), 4.87 (1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.6 Hz, CH2), 4.72–4.67 (2H, m, CH2),
4.65 (1H, d, J 6.7 Hz, CH2), 4.60 (2H, s, CH2), 4.42 (1H, d, J 6.7 Hz, CH2), 4.02 (1H, dd, J4,5 2.6,
J5,6 0.6 Hz, H-5), 3.88–3.78 (2H, m) and 3.75–3.55 (4H, m) and 3.46–3.19 (1H, m): (H-2, H-3,
H-4, H-6, H-7a, H-7b), 3.39, 3.32, 3.05 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). 13C NMR
(90 MHz, CDCl3) δ 146.6 (C-1), 144.8–127.4 (aromatics), 98.2, 97.6, 96.9, 95.7 (4 × CH2), 79.1,
78.8, 77.3, 74.6, 72.9 (C-2–C-6), 66.9 (C-7), 56.2, 55.9, 55.6 (4 × CH3-Ts). HR-ESI-MS positive
mode (m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; C22H36N2O11S
(536.20).

4.12. Characterization of Anhydro-Heptitol 25 and Heptenitols 26 and 27
4.12.1.
2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-glycero-D-gulo-Heptitol
(25)

Isolated from a reaction of tosylhydrazone 24 (0.10 g, 0.19 mmol), phenylboronic
acid (1.5 equiv., 0.03 g, 0.28 mmol), and K3PO4 (3 equiv., 0.12 g, 0.56 mmol) according to
General procedure I by column chromatography (1:6 EtOAc–hexane) to yield 7 mg white
amorphous solid containing 25 and 28 in 2.6:1 ratio. Rf: 0.35 (1:2 EtOAc–hexane). 1H NMR
(400 MHz, CDCl3) δ 7.32–7.16 (5H, m, aromatics), 4.98 (1H, d, J 6.5 Hz, CH3OCH2OC-3), 4.92
(1H, d, J 6.8 Hz, CH3OCH2OC-5), 4.83 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.76 (H, d, J 6.5 Hz,
CH3OCH2OC-3), 4.70 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.69 (1H, d, J 7.0 Hz, CH3OCH2OC-
5), 4.55 (1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.50 (1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.05 (1H,
dd, J4,5 2.0, J5,6 0.6 Hz, H-5), 3.76–3.67 (2H, m, H-3, H-4), 3.67 (1H, dd, J6,7a 6.3, J7a,7b 10.2 Hz,
H-7a), 3.58 (1H, dd, J6,7b 6.5 Hz, H-7b), 3.48 (3H, s, CH3OCH2OC-3), 3.50–3.44 (1H, m, H-6),
3.43 (3H, s CH3OCH2OC-4), 3.42 (3H, s CH3OCH2OC-5), 3.42–3.39 (1H, m, H-2), 3.27 (3H,
s, CH3OCH2OC-7), 3.23 (1H, dd, J1a,1b 14.2, J1a,2 1.5 Hz, H-1a), 2.77 (1H, dd, J1b,2 10.0 Hz,
H-1b). 13C NMR (100 MHz, CDCl3) δ 139.7–125.1 (aromatics), 98.9 (CH3OCH2OC-3), 97.5
(CH3OCH2OC-5), 96.9 (CH3OCH2OC-7), 95.4 (CH3OCH2OC-4), 80.9 (C-2), 80.2 (C-4), 77.5
(C-3), 77.2 (C-6), 72.9 (C-5), 66.7 (C-7), 56.7 (CH3OCH2OC-3), 56.1 (CH3OCH2OC-5), 56.0
(CH3OCH2OC-4), 55.5 (CH3OCH2OC-7), 38.1 (C-1). HR-ESI-MS positive mode (m/z): calc.
for [M + Na]+ = 453.2095, found: [M + Na]+ = 453.2093; C21H34O9 (430.49).
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24-1 yellow oil, 19 mg (13%); Rf: 0.33 (2:1 EtOAc–hexane). 1H NMR (360 MHz, CDCl3) 
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δ 8.25 (1H, s, NH), 7.86–7.73 (2H, m, aromatics), 7.35–7.23 (2H, m, aromatics), 7.05 (1H, d, 
J1,2 4.4 Hz, H-1), 4.87 (1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.6 Hz, CH2), 4.72–4.67 (2H, m, 
CH2), 4.65 (1H, d, J 6.7 Hz, CH2), 4.60 (2H, s, CH2), 4.42 (1H, d, J 6.7 Hz, CH2), 4.02 (1H, dd, 
J4,5 2.6, J5,6 0.6 Hz, H-5), 3.88–3.78 (2H, m) and 3.75–3.55 (4H, m) and 3.46–3.19 (1H, m): (H-
2, H-3, H-4, H-6, H-7a, H-7b), 3.39, 3.32, 3.05 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). 13C 
NMR (90 MHz, CDCl3) δ 146.6 (C-1), 144.8–127.4 (aromatics), 98.2, 97.6, 96.9, 95.7 (4 × CH2), 
79.1, 78.8, 77.3, 74.6, 72.9 (C-2–C-6), 66.9 (C-7), 56.2, 55.9, 55.6 (4 × CH3-Ts). HR-ESI-MS 
positive mode (m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; 
C22H36N2O11S (536.20). 

4.12. Characterization of Anhydro-Heptitol 25 and Heptenitols 26 and 27 
4.12.1. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-glycero-D-gulo-
Heptitol (25) 

Isolated from a reaction of tosylhydrazone 24 (0.10 g, 0.19 mmol), phenylboronic acid 
(1.5 equiv., 0.03 g, 0.28 mmol), and K3PO4 (3 equiv., 0.12 g, 0.56 mmol) according to Gen-
eral procedure I by column chromatography (1:6 EtOAc–hexane) to yield 7 mg white 
amorphous solid containing 25 and 28 in 2.6:1 ratio. Rf: 0.35 (1:2 EtOAc–hexane). 1H NMR 
(400 MHz, CDCl3) δ 7.32–7.16 (5H, m, aromatics), 4.98 (1H, d, J 6.5 Hz, CH3OCH2OC-3), 
4.92 (1H, d, J 6.8 Hz, CH3OCH2OC-5), 4.83 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.76 (H, d, J 
6.5 Hz, CH3OCH2OC-3), 4.70 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.69 (1H, d, J 7.0 Hz, 
CH3OCH2OC-5), 4.55 (1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.50 (1H, d, J 6.5 Hz, CH3OCH2OC-
7), 4.05 (1H, dd, J4,5 2.0, J5,6 0.6 Hz, H-5), 3.76–3.67 (2H, m, H-3, H-4), 3.67 (1H, dd, J6,7a 6.3, 
J7a,7b 10.2 Hz, H-7a), 3.58 (1H, dd, J6,7b 6.5 Hz, H-7b), 3.48 (3H, s, CH3OCH2OC-3), 3.50–3.44 
(1H, m, H-6), 3.43 (3H, s CH3OCH2OC-4), 3.42 (3H, s CH3OCH2OC-5), 3.42–3.39 (1H, m, H-
2), 3.27 (3H, s, CH3OCH2OC-7), 3.23 (1H, dd, J1a,1b 14.2, J1a,2 1.5 Hz, H-1a), 2.77 (1H, dd, J1b,2 
10.0 Hz, H-1b). 13C NMR (100 MHz, CDCl3) δ 139.7–125.1 (aromatics), 98.9 (CH3OCH2OC-
3), 97.5 (CH3OCH2OC-5), 96.9 (CH3OCH2OC-7), 95.4 (CH3OCH2OC-4), 80.9 (C-2), 80.2 (C-
4), 77.5 (C-3), 77.2 (C-6), 72.9 (C-5), 66.7 (C-7), 56.7 (CH3OCH2OC-3), 56.1 (CH3OCH2OC-5), 
56.0 (CH3OCH2OC-4), 55.5 (CH3OCH2OC-7), 38.1 (C-1). HR-ESI-MS positive mode (m/z): 
calc. for [M + Na]+ = 453.2095, found: [M + Na]+ = 453.2093; C21H34O9 (430.49). 

 

4.12.2. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-gluco-Hept-1-Enitol (26)
and (Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-gluco-Hept-1-Enitol (27)

Isolated from a reaction of tosylhydrazone 24 (0.10 g, 0.19 mmol), phenylboronic
acid (1.5 equiv., 0.03 g, 0.28 mmol), and K3PO4 (3 equiv., 0.12 g, 0.56 mmol) according to
General procedure I by column chromatography (1:6 EtOAc–hexane) to yield 19 mg white
amorphous solid containing 26 and 27 in 100:1 ratio. Rf: 0.29 (1:2 EtOAc–hexane), [α]D + 1
(c 0.30, CH2Cl2).
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2 or H-4), 3.98 (1H, pseudo t, J2,3 9.9, J3,4 9.9 Hz, H-3), 3.78–3.65 (4H, m, H-2 or H-4, H-6, H-

7a, H-7b), 3.41, 3.39, 3.21 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). HR-ESI-MS positive mode 

(m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; C22H36N2O11S (536.20). 

24-2 yellow oil, 96 mg (65%); Rf: 0.19 (2:1 EtOAc–hexane).1H NMR (360 MHz, CDCl3) 

δ 8.25 (1H, s, NH), 7.86–7.73 (2H, m, aromatics), 7.35–7.23 (2H, m, aromatics), 7.05 (1H, d, 

J1,2 4.4 Hz, H-1), 4.87 (1H, d, J 6.7 Hz, CH2), 4.77 (1H, d, J 6.6 Hz, CH2), 4.72–4.67 (2H, m, 

CH2), 4.65 (1H, d, J 6.7 Hz, CH2), 4.60 (2H, s, CH2), 4.42 (1H, d, J 6.7 Hz, CH2), 4.02 (1H, dd, 

J4,5 2.6, J5,6 0.6 Hz, H-5), 3.88–3.78 (2H, m) and 3.75–3.55 (4H, m) and 3.46–3.19 (1H, m): (H-

2, H-3, H-4, H-6, H-7a, H-7b), 3.39, 3.32, 3.05 (12H, 4s, 4 × CH3), 2.42 (3H, s, CH3-Ts). 13C 

NMR (90 MHz, CDCl3) δ 146.6 (C-1), 144.8–127.4 (aromatics), 98.2, 97.6, 96.9, 95.7 (4 × CH2), 

79.1, 78.8, 77.3, 74.6, 72.9 (C-2–C-6), 66.9 (C-7), 56.2, 55.9, 55.6 (4 × CH3-Ts). HR-ESI-MS 

positive mode (m/z): calcd. for [M + H]+ = 537.2113, found: [M + H]+ = 537.2111; 

C22H36N2O11S (536.20). 

4.12. Characterization of Anhydro-Heptitol 25 and Heptenitols 26 and 27 

4.12.1. 2,6-Anhydro-1-Deoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-glycero-D-gulo-

heptitol (25) 

Isolated from a reaction of tosylhydrazone 24 (0.10 g, 0.19 mmol), phenylboronic acid 

(1.5 equiv., 0.03 g, 0.28 mmol), and K3PO4 (3 equiv., 0.12 g, 0.56 mmol) according to Gen-

eral procedure I by column chromatography (1:6 EtOAc–hexane) to yield 7 mg white 

amorphous solid containing 25 and 28 in 2.6:1 ratio. Rf: 0.35 (1:2 EtOAc–hexane). 1H NMR 

(400 MHz, CDCl3) δ 7.32–7.16 (5H, m, aromatics), 4.98 (1H, d, J 6.5 Hz, CH3OCH2OC-3), 

4.92 (1H, d, J 6.8 Hz, CH3OCH2OC-5), 4.83 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.76 (H, d, J 

6.5 Hz, CH3OCH2OC-3), 4.70 (1H, d, J 6.8 Hz, CH3OCH2OC-4), 4.69 (1H, d, J 7.0 Hz, 

CH3OCH2OC-5), 4.55 (1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.50 (1H, d, J 6.5 Hz, CH3OCH2OC-

7), 4.05 (1H, dd, J4,5 2.0, J5,6 0.6 Hz, H-5), 3.76–3.67 (2H, m, H-3, H-4), 3.67 (1H, dd, J6,7a 6.3, 

J7a,7b 10.2 Hz, H-7a), 3.58 (1H, dd, J6,7b 6.5 Hz, H-7b), 3.48 (3H, s, CH3OCH2OC-3), 3.50–3.44 

(1H, m, H-6), 3.43 (3H, s CH3OCH2OC-4), 3.42 (3H, s CH3OCH2OC-5), 3.42–3.39 (1H, m, H-

2), 3.27 (3H, s, CH3OCH2OC-7), 3.23 (1H, dd, J1a,1b 14.2, J1a,2 1.5 Hz, H-1a), 2.77 (1H, dd, J1b,2 

10.0 Hz, H-1b). 13C NMR (100 MHz, CDCl3) δ 139.7–125.1 (aromatics), 98.9 (CH3OCH2OC-

3), 97.5 (CH3OCH2OC-5), 96.9 (CH3OCH2OC-7), 95.4 (CH3OCH2OC-4), 80.9 (C-2), 80.2 (C-

4), 77.5 (C-3), 77.2 (C-6), 72.9 (C-5), 66.7 (C-7), 56.7 (CH3OCH2OC-3), 56.1 (CH3OCH2OC-5), 

56.0 (CH3OCH2OC-4), 55.5 (CH3OCH2OC-7), 38.1 (C-1). HR-ESI-MS positive mode (m/z): 

calc. for [M + Na]+ = 453.2095, found: [M + Na]+ = 453.2093; C21H34O9 (430.49). 

 

4.12.2. (E)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-gluco-Hept-1-Enitol 

(26) and (Z)-1,2-Dideoxy-3,4,5,7-Tetra-O-Methoxymethyl-1-Phenyl-D-gluco-Hept-1-Enitol 

(27) 

Isolated from a reaction of tosylhydrazone 24 (0.10 g, 0.19 mmol), phenylboronic acid 

(1.5 equiv., 0.03 g, 0.28 mmol), and K3PO4 (3 equiv., 0.12 g, 0.56 mmol) according to Gen-

eral procedure I by column chromatography (1:6 EtOAc–hexane) to yield 19 mg white 

amorphous solid containing 26 and 27 in 100:1 ratio. Rf: 0.29 (1:2 EtOAc–hexane), [α]D + 1 

(c 0.30, CH2Cl2).  

  

26: 1H NMR (500 MHz, CDCl3) δ 7.39 (2H, d, J 8.7 Hz, aromatics), 7.35–7.29 (2H, m,
aromatics), 7.29–7.23 (1H, m, aromatic), 6.65 (1H, d, J1,2 16.0 Hz, H-1), 6.15 (1H, dd, J2,3
8.1 Hz, H-2), 4.86 (1H, d, J 6.6 Hz, CH3OCH2OC-4), 4.84 (2H, d, J 6.7 Hz, CH3OCH2OC-4,
CH3OCH2OC-5), 4.78 (1H, d, J 6.7 Hz, CH3OCH2OC-3), 4.71 (1H, d, J 6.8 Hz, CH3OCH2OC-
5), 4.64 (1H, d, J 6.7 Hz, CH3OCH2OC-3), 4.62 (1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.60
(1H, d, J 6.5 Hz, CH3OCH2OC-7), 4.47 (1H, dd, J3,4 5.4 Hz, H-3), 4.20–4.12 (1H, m, H-6),
4.00 (1H, pseudo t, J4,5 4.6 Hz, H-4), 3.89 (1H, dd, J5,6 2.1 Hz, H-5), 3.66 (1H, dd, J6,7a
6.4, J7a,7b 10.3 Hz, H-7a), 3.64 (1H, dd, J6,7b 6.1 Hz, H-7b), 3.49 (1H, dd, J6,OH 3.9 Hz,
OH), 3.46 (3H, s CH3OCH2OC-4), 3.44 (3H, s, CH3OCH2OC-5), 3.41 (3H, s, CH3OCH2OC-
3), 3.31 (3H, s, CH3OCH2OC-7). 13C NMR (125 MHz, CDCl3) δ 134.6 (C-1), 136.4–125.5
(aromatics), 125.9 (C-2), 98.5 (CH3OCH2OC-4), 97.5 (CH3OCH2OC-5), 96.9 (CH3OCH2OC-
7), 94.3 (CH3OCH2OC-3), 81.3 (C-4), 77.2 (C-3), 76.9 (C-5), 69.8 (C-6), 69.1 (C-7), 56.4
(CH3OCH2OC-4, CH3OCH2OC-5), 56.0 (CH3OCH2OC-3), 55.4 (CH3OCH2OC-7). HR-ESI-
MS positive mode (m/z): calc. for [M + Na]+ = 453.2095, found: [M + Na]+ = 453.2099;
C21H34O9 (430.49).

27: 1H NMR (500 MHz, CDCl3) δ 7.43–7.36 (2H, m, aromatics), 7.35–7.29 (2H, m,
aromatics), 7.29–7.23 (1H, m, aromatic), 6.75 (1H, d, J1,2 11.4 Hz, H-1), 5.70 (1H, dd, J2,3
9.9 Hz, H-2), 4.93–4.22 (11H, m, H-3, H-4, H-5, 4 × CH3OCH2), 4.20–4.12 (1H, m, H-
6), 3.96–3.83 (2H, m, H-7a, H-7b), 3.44, 3.35, 3.34 (12H, 4s, 4 × CH3OCH2). 13C NMR
(125 MHz, CDCl3) δ 133.9 (C-1), 136.4–125.5 (aromatics), 129.2 (C-2), 98.9, 97.6, 97.0, 94.6
(4 × CH3OCH2), 81.6 (C-4), 76.9 (C-5), 71.7 (C-3), 69.5 (C-6), 65.7 (C-7), 56.6, 56.5, 55.9, 55.7
(4 × CH3OCH2). HR-ESI-MS positive mode (m/z): calc. for [M + Na]+ = 453.2095, found:
[M + Na]+ = 453.2099; C21H34O9 (430.49).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27061795/s1, The NMR spectral analysis.
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