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Letter to the Editor

We agree with Jin et al. (2013) that astrocytes accumu-
late extracellular K+. They discuss how differences in 
(a) resting extracellular space (ECS) volume, (b) diffu-
sion-limited water/K+ transport, and (c) ECS contrac-
tion during K+ reuptake may differently affect astrocytic 
K+ uptake in wild-type animals and in mice with aqua-
porin-4 (Aqp4) knockout. The first of these factors is 
well studied, and it is logical that a certain extracellular 
K+ concentration ([K+]e) increase in a larger volume 
takes longer to clear, prolonging neuroexcitation. But 
what causes the increase?

Recently, Iliff et al. (2012) proposed that (a) cerebro-
spinal fluid enters the brain parenchyma along para- 
arterial routes; (b) interstitial fluid (ISF) from the ECS 
with its waste products is cleared from the brain along 
para-venous routes; and (c) convective (bulk) flow- 
mediated ISF flow between these influx and clearance 
routes is facilitated by astrocytic AQP4–dependent water 
fluxes. They showed that Aqp4 gene deletion slowed 
bulk flow–dependent solute clearance by 70% and sug-
gested that during inhibition of bulk flow–dependent 
clearance, ECS dilation could be a compensatory mech-
anism to facilitate diffusional clearance of extracellu-
lar solutes, particularly of those with larger molecular 
weights, which is dependent on the ECS dimensions 
(Syková and Nicholson, 2008). The increased ECS might 
be created by the smaller effect of Aqp4 deletion on 
the arterial side than on the venous side of the system, 
indicated by lower arterial-side density of immunohis-
tochemically determined AQP4 expression in the ad-
joining astrocytic endfeet (Iliff et al., 2012). Water 
permeability is not zero in astrocytes from Aqp4-deficient 
mice (Solenov et al., 2004), and the larger hydrostatic 
gradient on the arterial side may provide sufficient arte-
rial water exit with less AQP4 dependence.

According to the second proposal by Jin et al. (2013), 
diffusion of K+ and non-K+ solutes in astrocyte cyto-
plasm should establish an osmotic driving force for 
transport of H2O and K+ into the cells, leading to sig-
nificant uptake of K+ in astrocytes. Such a mechanism 
is not consistent with the demonstration that cellular 
K+ uptake from brain ECS in the adult mammalian 
brain cortex except at very highly elevated [K+]e is al-
most entirely Na+,K+-ATPase dependent, indicated by 
its virtually complete inhibition by ouabain alkaloids 

Correspondence to Liang Peng: hkkid08@yahoo.com

(Xiong and Stringer, 2000; D’Ambrosio et al., 2002; 
MacAulay and Zeuthen, 2012), reasonably specific in-
hibitors of the Na+,K+-ATPase. Computer simulations 
have similarly shown that K+ channel activity at rest and 
during low frequency firing does not contribute to  
astrocytic K+ uptake, because the Nernst potassium 
equilibrium potential, EK, normally is more negative 
than the membrane potential (Somjen et al., 2008; Soe 
et al., 2009). However, at highly elevated [K+]e, chan-
nel activity aided transporter-mediated K+ clearance 
to some degree (an astrocytic effect), an observation 
confirmed in a comparison between wild-type and 
Kir4.1/ mice (Chever et al., 2010). D’Ambrosio et al. 
(2002) also showed that the only major effect of K+ 
channel blockade normally is an increase in the post-
stimulatory undershoot in [K+]e. A similar effect was 
reported by Chever et al. (2010) in Kir4.1/ mice.

Na+,K+-ATPase expression is pronounced in both neu-
rons and astrocytes (Peng et al., 1997; Li et al., 2013). 
After most normally occurring physiological neuronal 
activities, [K+]e increases by ≤5 mM from its normal level 
of 3–5 mM, and this increase is handled by the Na+,K+-
ATPase alone, both in the brain in vivo (MacAulay and 
Zeuthen, 2012) and in cultured astrocytes (Xu et al., 
2013). Its action involves no direct association between 
transport of ions (combined Na+ efflux and K+ influx in 
a 3:2 ratio [Thomas, 1972]) and H2O. It will therefore 
not create an osmotic driving force into astrocytes.  
A second mechanism, which operates at higher [K+]e, 
additionally enrolls NKCC1, which in the adult central 
nervous system is restricted to astrocytes (Deisz et al., 
2011), and transports Na+, K+, 2 Cl, and water together 
(Epstein and Silva, 1985; Hamann et al., 2005, 2010). It 
is stimulated by vasopressin, and Aqp4 knockout has 
no effect in cultured mouse astrocytes on vasopressin-
stimulated, NKCC1-mediated increase in swelling, con-
firming that NKCC1-mediated uptake of H2O occurs via 
the cotransporter itself and is AQP independent (Peng 
et al., 2012). In contrast, hypotonicity-induced swelling 
depended on AQP, confirming an AQP dependence 
found by Soe et al. (2009). These two forms for swelling 
are accordingly mechanistically different, as also shown 
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basis for the computations in the Jin paper, Binder  
et al. (2006) and Padmawar et al. (2005), used such  
intense stimulation, whereas the third experimental 
study, Strohschein et al. (2011), did not, creating smaller 
increases in [K+]e. This study, performed in brain slices, 
found no changes between wild-type and Aqp4/ ani-
mals at [K+]e above 4 mM; a small decrease in the K+ 
clearance rate in these mice below 4 mM might be  
explainable by a reported increase in gap junction cou-
pling, as channel-mediated exit of astrocytically accu
mulated K+ might counteract normalization of [K+]e. 
The two studies that used much more intense stimula-
tion, Binder et al. (2006) and Padmawar et al. (2005), 
found a reduction in K+ uptake in Aqp4/ mice. This 
probably reflects the ability of channel-mediated K+ 
transport to assist transporter-mediated K+ clearance 
(Somjen et al., 2008; Chever et al., 2010), specifically at 
these high K+ concentrations, and cooperativity between 
Kir4.1 and AQP, as reported by Padmawar et al. (2005) 
and Soe et al. (2009).

In conclusion, except at highly elevated [K+]e, effects 
of Aqp4 deletion on K+ dynamics seem to be coinciden-
tal rather than caused by dependence of astrocytic K+ 
uptake on AQP4 activity. This is because AQP4 does not 
interact with the K+ transporters, the Na+,K+-ATPase, 
and NKCC1, which have the dominant effect on cellu-
lar, including astrocytic, K+ uptake. Only at highly ele-
vated [K+]e, where K+ channel function can assist K+ 
uptake by the transporters, is AQP4 able to enhance the 
channel-mediated activity.

Edward N. Pugh Jr. served as editor.
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