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Abstract

Background: In cancer, mutations of DNA methylation modification genes have crucial roles for epigenetic
modifications genome-wide, which lead to the activation or suppression of important genes including tumor
suppressor genes. Mutations on the epigenetic modifiers could affect the enzyme activity, which would result in the
difference in genome-wide methylation profiles and, activation of downstream genes. Therefore, we investigated the
effect of mutations on DNA methylation modification genes such as DNMT1, DNMT3A, MBD1, MBD4, TET1, TET2 and
TET3 through a pan-cancer analysis.

Methods: First, we investigated the effect of mutations in DNA methylation modification genes on genome-wide
methylation profiles. We collected 3,644 samples that have both of mRNA and methylation data from 12 major cancer
types in The Cancer Genome Atlas (TCGA). The samples were divided into two groups according to the mutational
signature. Differentially methylated regions (DMR) that overlapped with the promoter region were selected using
minfi and differentially expressed genes (DEG) were identified using EBSeq. By integrating the DMR and DEG results,
we constructed a comprehensive DNA methylome profiles on a pan-cancer scale. Second, we investigated the effect
of DNA methylations in the promoter regions on downstream genes by comparing the two groups of samples in 11
cancer types. To investigate the effects of promoter methylation on downstream gene activations, we performed
clustering analysis of DEGs. Among the DEGs, we selected highly correlated gene set that had differentially
methylated promoter regions using graph based sub-network clustering methods.

Results: We chose an up-regulated DEGs cluster where had hypomethylated promoter in acute myeloid leukemia
(LAML) and another down-regulated DEGs cluster where had hypermethylated promoter in colon adenocarcinoma
(COAD). To rule out effects of gene regulation by transcription factor (TF), if differentially expressed TFs bound to the
promoter of DEGs, that DEGs did not included to the gene set that effected by DNA methylation modifiers.
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promoter DMR down-regulated DEGs in COAD.

Genome-wide landscape

Consequently, we identified 54 hypomethylated promoter DMR up-regulated DEGs in LAML and 45 hypermethylated

Conclusions: Our study on DNA methylation modification genes in mutated vs. non-mutated groups could provide
useful insight into the epigenetic regulation of DEGs in cancer.

Keywords: DNA methylation modifier, Sub-network clustering, DMR-DEG integration, Pan-cancer analysis,

Background

DNA mutation is one of the major causes of many dis-
eases, thus understanding impact of mutations in genes
is an important research problem. For example, muta-
tions in oncogenes and tumor suppressor genes have been
extensively studied over the years [1-3]. Some class of
genes, e.g., epigenetic genes, have roles in cancer prolifer-
ation by modifying the epigenetic status of a cell, then the
epigenetic status change affects gene expression regula-
tion then cancer phenotype. Epigenetic genes are divided
into three functional groups: epigenetic modulators, mod-
ifiers, and mediators [4]. Epigenetic modulators transmit
signals to epigenetic regulators. Upon receiving such sig-
nal, epigenetic modifiers modify the epigenetic status of
a genome. In response to the changes in the epigenome,
epigenetic mediators then could change their biological
roles. In addition, abnormal mutations in the epigenetic
genes can adversely affect this epigenetic system, causing
tumors.

Among epigenetic genes, DNA methylation related epi-
genetic modifiers, DNMT1, DNMT3A, MBD1, MBD4,
TET1, TET2, and TET3, have been studied related to can-
cer [5-16]. DNMT3A mutation was found at a high rate
of 22.1 percent of acute myeloid leukemia patients [17].
In our study, mutations in DNA methylation modifier
genes were found in about 13 percent (1,474/11,315) of
cancer patients from The Cancer Genome Atlas (TCGA)
projects [18].

In general, mutations on a gene can affect the function
of a gene, even loss or gain of a function. Many DNA
methylation modification genes are enzymes. Thus, muta-
tions on the epigenetic modifiers could affect the activity
of epigenetic modifiers, which would result in the differ-
ence in genome-wide methylation profiles and in turn,
activation of downstream genes. However, there is no sys-
tematic study on this important topic. In this paper, we
investigated the effect of mutations on DNA methylation
modification genes such as DNMT1, DNMT3A, MBDI,
MBD4, TET1, TET2, and TET3 through a pan-cancer
analysis. First, we investigated the effect of mutations in
DNA methylation modification genes on genome-wide
methylation profiles in 12 major cancer types in TCGA.

As a result, we found that genome-wide methyla-
tion landscapes were significantly different between two

sample groups with mutations and without mutations in
the DNA methylation modifier genes. Second, we inves-
tigated the effect of DNA methylations in the promoter
regions on downstream genes in 12 cancer types. To inves-
tigate the effect of mutations on gene expression further,
we chose an up-regulated gene cluster where differen-
tially expressed genes (DEGs) were mostly hypomethy-
lated promoter regions in acute myeloid leukemia and
another down-regulated gene cluster where DEGs had
mostly hypermethylated promoter regions in colon ade-
nocarcinoma.

Methods

TCGA data of DNA methylome and transcriptome

To perform pan-cancer data analysis, we downloaded
data for 12 major cancer types from TCGA: bladder
cancer (BLCA), breast cancer (BRCA), colon adenocar-
cinoma (COAD), glioblastoma (GBM), head and neck
squamous carcinoma (HNSC), kidney renal carcinoma
(KIRC), acute myeloid leukemia (LAML), lung adeno-
carcinoma (LUAD), lung squamous carcinoma (LUSC),
ovarian cancer (OV), rectal adenocarcinoma (READ) and
uterine corpus endometrial carcinoma (UCEC). A total
of 3,644 samples that had both methylome and tran-
scriptome data were collected. Among 3,644 samples, 580
samples had at least one or more mutation in seven DNA
methylation modifier genes, and 432 mutations except
for synonymous mutation samples were finally identified.
Thus samples were divided into two groups, one with
mutations in DNA methylation modifiers (432 samples)
and the other group (3,212 samples). Among 12 can-
cer types, OV type had no mutation sample. Thus, we
analyzed 11 cancer types (Table 1).

DEG analysis

The mRNA-seq data labeled by “illuminahiseq rnaseqv2
RSEM genes normalized” were downloaded from the
firebrowse website (http://firebrowse.org/). A Bioconduc-
tor (version 3.8) EBSeq package [19] was used for the
DEG analysis of RNA data. For each cancer type, we
divided the samples into two groups into mutated ver-
sus non-mutated samples and performed DEG analy-
sis. Number of DEGs was counted with false discovery
rate (FDR) less than 0.05. Fold change values of gene
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Table 1 Number of samples per 12 major cancer type in TCGA
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Cancer type Total samples Synonymous mutation samples Non-synonymous mutation samples
TCGA-BRCA 784 14 47
TCGA-HNSC 521 19 4
TCGA-LUAD 455 14 66
TCGA-BLCA 408 24 70
TCGA-LUSC 369 16 55
TCGA-KIRC 319 3 17
TCGA-COAD 279 33 54
TCGA-UCEC 173 19 37
TCGA-LAML 170 0 33
TCGA-READ 93 3 8
TCGA-GBM 64 2 4
TCGA-OV 9 1 0
Total 3644 148 432

Each value represents the number of samples that have both methylome and transcriptome data and the number of samples that have mutations in seven DNA methylation

modifier genes

expression level were used in the following clustering
analysis.

DMR analysis

The methylation data labeled by "humanmethylation450
within bioassay data set function” were downloaded from
the firebrowse website. For the methylation data analysis,
the DMR was analyzed with a FDR of 0.05 using “bumper-
hunter” in the minfi package [20] of Bioconductor (version
3.8). For each cancer type, we divided the samples into
two groups into mutated versus non-mutated samples as
same as DEG analysis. The DMRs found were annotated
using “matchgene” to select the genes with DMR in the
promoter.

Random sample test

Random sampling was performed to compare the seven
DNA methylation modifier mutation samples of each can-
cer types. Random samples were selected with the same
size as the seven DNA methylation modifiers mutation
samples, and DEG and DMR analysis were performed
10,000 times using the selected and remaining samples.

Log ratio of average methylation levels in promoter regions
To compare the methylation levels of each promoter
region between the samples of which the seven DNA
methylation modifier genes were mutated and the other
samples, we firstly calculated the average of methy-
lation levels of each promoter region for the sam-
ples with mutation and the other samples, respectively.
After that, the log, ratio of the averaged methyla-
tion levels was calculated and the equation is shown
below:

Avg_mutij + pseudo

LR =1
j = 1082 Avg_non;; + pseudo

where j indicates each probe, i is the index of cancer,
Avg_mut; is the average of the methylation levels of probe
j for the samples with mutation in cancer i, Avg_non;; is the
average of the methylation levels of probe j for the sam-
ples without mutation in cancer i and LR;; is the log, ratio
of two average values of probe j in cancer i. Pseudo is the
value of 0.001 we added to the averages to avoid the error
caused by dividing by zero.

Gene expression correlation analysis

For transcriptome data, correlation values between genes
were calculated using Pearson’s correlation of “pearsonr”
of scipy for each cancer type. The final correlation value
between the final genes was calculated using the weight
value of PPI score of STRING database. These correlation
values are used the following clustering analysis.

Graph-based clustering

We used igraph package [21] of R to detect multilevel
community and perform sub-network clustering. For the
graph-based clustering, we used the fold-change value of
the gene and correlation values between genes. Before
clustering, we discard genes with fold-change less than 0.2
and edge of correlation with less than 0.5. After cluster-
ing, we perform the GO enrichment test and one-sample
t-test for each cluster.

Network visualization with cytoscape
Visualization of the sub-network cluster is shown using
Cytoscape (version 3.7.1).
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Promoter binding TF search by TRANSFAC
To search all TFs to bind the promoter sequence of DEG,
we used TRANSFAC.

Workflow

The analysis of the mutation data of seven DNA methy-
lation modifiers on the pan-cancer scale was performed
in three phases and the analysis workflow is shown in
a schematic diagram (Fig. 1). In this section, the anal-
ysis process is briefly explained to help understand the
analysis results. Detailed analysis methods are written in
the “Methods” section.

PART 1: impact of mutations in DNA methylation modifiers
on genome-wide methylation landscape

First, we investigated the effect of mutations in DNA
methylation modifiers on genome-wide methylation
profiles.
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1-1. statistics on mutations in seven DNA methylation
modifiers

Before investigating the genome-wide effects of
seven DNA methylation modifiers, it was confirmed
the distribution of 7 methylation modifier muta-
tions in the mutation samples. Mutation frequencies
in DNA methylation modifiers were collected for
each cancer.

1-2. genome-wide methylation landscapes

To investigate the genome-wide effects of seven DNA
methylation modifiers, we analyzed the difference in
DNA methylation profiles in pan-cancer. To compare the
difference in methylation of samples that were divided
into DNA methylation modifiers mutation, mutated
and non-mutated samples (432 vs. 3,212 samples) in
terms of log, ratios (See “Methods” section for the
detail).

PART 1. Impact of mutations in DNA
methylation modifiers on genome-wide
methylation landscape
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1-3. statistics of the number of differentially methylated
regions (DMRs) between two groups

To confirm the effect of unbalanced samples and to eval-
uate whether these differences are significant or not, we
analyzed them statistically. We compared the number of
DMRs in samples with mutations in the DNA methylation
modifier with the number of DMRs in randomly selected
unbalanced samples. The analysis of DMR counts was
performed with randomly sampled the same size as the
number of mutation samples and repeated 10,000 times to
calculate the p-value.

PART 2: impact of mutations in DNA methylation modifiers
on genome-wide gene expression landscape

Since DNA methylation can have significant effect on
gene expression profiles, we compared gene expression
profiles between the mutated and the non-mutated sam-
ples. In this part, we only compared gene expression
profiles between two groups, without attempting to inves-
tigate the effect of DNA methylation on gene expression,
which was reported in Part 3.

2-1. statistics on gene expression profiles
DEG counts was collected from randomly chosen same
size samples, repeating 10,000 times to calculate p-values.

2-2. clustering analysis of transcriptome

To investigate biological functions of DEGs, we divided
DEGs into smaller gene sets based on network based
gene clustering analysis and then performed gene ontol-
ogy (GO) term enrichment test on each set of DEGs to
compare the difference in functions of genes between
the mutated and non-mutated groups. Before performing
sub-network clustering, correlation values between genes
were calculated. Pearson’s correlation value was calculated
for transcriptome data, and protein-protein interaction
(PPI) score from STRING [22] database was multiplied by
weight. Using the log, fold-change value obtained from
the DEG analysis, we removed genes that had opposite
interaction or the small change amount. Thus, we selected
a set of gene with over 0.15 of absolute value of log, fold
change of gene expression and over 0.5 positive correlated
genes network. We performed graph-based sub-network
clustering using iCluster (see “Methods” section) with
fold change of gene expression using pre-processed gene-
gene interaction score. To select meaningful clusters after
clustering, we performed one sample t-test with gene
expression levels and Fisher’s exact test using GO term
enrichment test. Clusters with p-value under 10™° was
selected.

PART 3: integrated analysis of DMR and DEG
Now, we tried to associate DEGs and DMRs between the
two groups as below.
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3-1. integration of gene expression and methylation
expression

To investigate the effect of DMRs on DEGs, we focused on
methylation difference in the promoter regions. First, we
selected gene clusters with significantly enriched DEGs
and DMRs using a Fisher’s exact test for each of gene
clusters. Then, gene sets were selected by considering
negative correlation between promoter methylation and
the corresponding gene expression.

3-2. transcription factor (TF) binding site search with
TRANSFAC

In addition to negative correlation between promoter
methylation and the corresponding gene expression, we
considered expression levels of TFs that could bind to
the promoter regions. Thus, we searched for all TF
binding sequences in the DEG promoter region using
TRANSFAC [23].

3-3. comparison without TF effect

Expression level of the TFs that had binding sites in the
promoter regions was considered to remove cases where
gene expression difference could result from TF expres-
sion difference. For example, if TF binding to the promoter
of up-regulated DEG is not up-regulated, the up-regulated
DEG can be determined by the effect of DMR regardless
of the effect of TE. Thus, both up-regulated DEG with
up-regulated TF and down-regulated DEG with down-
regulated TF were removed.

Results and discussions

Part 1 - statistic analysis of mutation effect of seven DNA
methylation modifier genes

To analyze the effects of seven DNA methylation mod-
ifier genes, we collected 3,644 TCGA methylome and
transcriptome data. First, the number of mutation sam-
ples in DNA methylation modifier genes was found to
be between 5% and 21% of the total sample for 11 major
cancer types (Table 2). Excluding OV without mutation
samples, 11 cancer types were analyzed.

The seven DNA methylation modifier genes that we
studied were DNMT1, DNMT3A, MBD1, MBD4, TET1,
TET2 and TET3. DNMT1 and DNMT3A function as
DNA methyl-transfer and TET1, TET2 and TET3 have
demethylation functions. Mutation statistics of the seven
modifiers are summarized in (Fig. 2). Cancer types of
BLCA, BRCA, COAD, LUAD, and LUSC were predom-
inantly mutated in the TET genes that have demethyla-
tion functions. In the case of LAML, DNMT3A muta-
tion samples were high, while remaining GBM, HNSC
and KIRC, the ratio was similar. In the case of GBM,
KIRC, and READ, the total mutation rate was less than
9%, and the number of mutations for each gene was
5 or less (Table 2). We should individually analyze to
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Table 2 Summary of mutation status of seven DNA methylation modifier genes in each cancer

Cancer type Total samples Mutated samples Non-mutated samples Mutation sample ratio Number of DMRs Number of DEGs
TCGA-BRCA 784 47 737 6% 20,390 99

TCGA-HNSC 521 41 480 8% 21,442 57

TCGA-LUAD 455 66 389 15% 7,886 288

TCGA-BLCA 408 70 338 17% 12,711 379

TCGA-LUSC 369 55 314 15% 45,441 415

TCGA-KIRC 319 17 302 5% 23,544 127
TCGA-COAD 279 54 225 19% 26,491 535

TCGA-UCEC 173 37 136 21% 44,743 1,494
TCGA-LAML 170 33 137 19% 28,215 439

TCGA-READ 93 8 85 9% 58,058 205

TCGA-GBM 64 4 60 6% 77,753 215

Each value represents the number of samples that have both methylome and transcriptome data, the number of samples that have mutations in seven DNA methylation
modifier genes, the number of samples that don't have mutations, ratio of the mutation samples per non-mutation samples, the number of DMRs and the number of DEGs

that were selected by 0.05 false discovery rate

find a functional difference for each methylation mod-
ifier genes because the methylation modifier functions
include methyl-transfer function and de-methylation that
are opposite functions. However, since the number of
samples is so small that it is very difficult to find a mean-
ingful analysis result by each gene analysis, we first ana-
lyzed the global impact on the methylation dysfunction
and then analyzed in depth. In addition, in the case of
GBM and READ, the number of samples was eight or four,
which makes it difficult to determine the representative
characteristics of mutant cancers.

Effect of mutations in seven DNA methylation modifier genes
on genome-wide methylation landscapes

We compared genome-wide methylation landscapes
between the mutated and the non-mutated groups.
Since comparison of genome-wide methylation land-
scapes between the two groups was difficult to interpret,
we compared promoter regions instead. Among the anno-
tated 450,000 CpG sites, we selected the 140,040 sites
as promoters when the sites are annotated as TSS200 or
TS1500; TSS200 is the region that covers zero to 200 bases
upstream of the transcription start site (TSS) and TSS1500

in TET1, TET2 and TET3 are dominant
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Fig. 2 The number of samples that each of the seven DNA methylation modifier genes is mutated. A sample with mutations in multiple DNA
methylation modification genes was counted redundantly as multiple genes. DNMT3A mutation is dominant in LAML samples. In COAD, mutations
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covers 200 to 1500 bases upstream of the TSS. For each
of nine cancer types, methylation differences in 140,040
promoter regions of CpG sites were examined separately.
We compared mutated and non-mutated samples of seven
DNA methylation modifier genes, and the methylation
values for each CpG site were expressed as log, ratio
values by comparing mean values. For the selected CpG
sites, the average of DNA methylation of the mutation
versus non-mutation samples was calculated as the log,
ratio and a heatmap was drawn by selecting 29,879 CpG
sites with the log, ratio value bigger than 1 or smaller
than -1. Hypermethylated promoter is shown in red and
hypomethylated promoter is shown in blue (Fig. 3). We
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measured the number of hyper-/hypo-methylated pro-
moters in each cancer and estimated odd ratios and
p-values of Fisher’s exact test. Each was calculated by
applying different cutoff criteria for log, fold changes
of hyper-/hypo-methylated promoters (Table 3). In the
heatmap results, COAD and UCEC have a large number of
hypermethylated promoters, while LAML, LUSC, HNSC,
BRCA, and BLCA have a large number of hypomethylated
promoter regions. COAD showed the highest positive
ratio and LAML had the most hypo-methylated promoter
even when the cut-off criterion was raised. The heatmap
results showed that there was a change in methylation
due to the mutation of seven DNA methylation modifier
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Fig. 3 Genome-wide landscape of promoter methylation. Differential methylation level of gene promoter regions are profiled for 9 cancer types:
bladder cancer (BLCA), breast cancer (BRCA), colon adenocarcinoma (COAD), head and neck squamous carcinoma (HNSC), kidney renal carcinoma
(KIRQ), acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD), lung squamous carcinoma (LUSC), and uterine corpus endometrial carcinoma
(UCEQ). 9,580 genes showed hyper-methylation (red) or hypo-methylation (blue) in the promoter regions for at least one cancer type. In the lower
panel, genes (i.e, column of the figure) are ordered according to the chromosomal position, and cancer types (i.e., row of the figures) are sorted by
lexicographic order. In the upper panel, genes and cancer types are clustered in terms of methylation profile similarity




Lee et al. BMC Medical Genomics 2020, 13(Suppl 3):27 Page 8 of 14
Table 3 Number of hyper-/hypo- methylated promoter in each cancer
Cancer Hypermethylated promoter Hypormethylated promoter log2 odd ratio p-value

0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1
COAD 2,923 921 246 348 41 3 3.0702 44895 6.3575 0 1.15E-201 1.E-67
UCEC 2,886 1,329 565 1,343 441 129 1.1036 1.5914 2.1308 1.20E-89 4.52E-88 5.E-62
KIRC 1,747 458 100 1,235 226 38 0.5003 1.0190 1.3959 2.52E-16 5.03E-18 1.E-07
LAML 407 73 15 3,274 1,285 446 -3.0079 -4.1377 -4.8940 0 5.86E-258 2.E-107
LUSC 297 27 1 3,882 886 94 -3.7082 -5.0362 -6.5545 0 2.33E-208 4.E-27
HNSC 63 2 0 2,500 284 15 -5.3104 -7.1497 -infinity 0 1.95E-80 6.E-05
BRCA 310 18 1 1,496 201 27 -2.2707 -3.4811 -4.7548 3.10E-159 8.28E-40 2.E-07
BLCA 87 3 0 1,031 60 3 -3.5668 -4.3219 -infinity 1.21E-187 8.09E-15 2.E-01
LUAD 183 8 2 521 17 0 -1.5094 -1.0874 +infinity 3.97E-36 0.107299 5.E-01

genes, and detailed analysis was conducted to investigate
the CpG site of promoter region with methylation changes
in nine cancer types.

DMR analysis to investigate mutation effects of seven DNA
methylation modifiers.

Mutated samples of seven DNA methylation genes were
compared with non-mutated samples using bumper-
hunter of minfi package for DMR analysis. The sig-
nificance of the number of DMRs potentially caused by
the mutation of seven DNA methylation modifiers was
compared with the number of DMRs in random sam-
ples. Random sampling DMR analysis was performed by
repeatedly choosing samples of the same size for 10,000
times. P-value of the mutant sample was calculated from
the distribution of DEG and DMR values obtained from
10,000 repeated tests. In the result of DMR test, 8 can-
cer types of 11, as BRCA, HNSC, LUAD, BLCA, LUSC,
COAD, UCEC and LAML, showed significantly low p-
value (Aditional file 1: Figure S2). The other cancer type,
KIRC, READ and GBM, were not significant due to have
few mutation samples (See Fig. 2). Overall, it seemed
that mutations of seven DNA methylation modifier genes
affected genome-wide promoter methylation differences.

Part2 - genome-wide association analysis of mutation
effect of seven DNA methylation modifier genes
Sub-network clustering result in pan-cancer scale
We performed graph-based clustering of DEGs. First, we
used the network topology of STRING database and chose
edges between two genes only when expression values of
the two genes were highly correlated. Edges were weighted
by the STRING database confidence scores. After that, the
clustering was performed and the clusters were filtered
using t-test.

The selected clusters were visualized using Cytoscape
[24] (Fig. 4). Up-regulated DEG is displayed in a grad-
ual red color and down-regulated DEG is displayed in

a gradual blue color by the fold change value of gene
expressions. Promoter DMR information was integrated
into the DEG clusters and the case of DMR in the pro-
moter of the up- and down-regulated DEG was marked
in the cluster. DEGs with methylated promoter regions
were colored in pink for hypermethylation and sky blue
for hypomethylation.

Cluster selection for in-depth analysis

We performed Fisher’s exact test with the number of
DMR-DEGs (differentially expressed gene with differen-
tially methylated promoter region) in each cluster to select
statistically significant clusters.

A cluster in LAML was selected in which mutated
samples of DNMT3A were abundant and DEGs were
up-regulated. There were four clusters with up-regulated
genes with hypo-methylated promoter, and one cluster
containing genes with large log2 fold change of expres-
sion level was selected. In COAD clusters, TET1/2/3
genes were mutated with promoter hypermethylated, so
we selected a cluster that contained the largest number
of down-regulated DEGs. In the case of COAD, the most
significant cluster with the highest number of DMR-DEG
was selected. For the functional analysis of DEGs in the
clusters, we selected a cluster of up-regulated DEGs in
LAML and a cluster of down-regulated DEGs in COAD

(Fig. 5).

TF selection related with DMR-DEGs

Among the genes in the clusters of COAD and LAML,
we selected DEGs that the expression changes were not
associated with TFs. To investigate TF-DNA-methylation
interaction, we searched for all TF binding sties in the
promoter regions using TRANSFAC [23] database. In
COAD, there were 86 DMR-DEGs and we detected 170
TFs. In LAML, 75 DMR-DEGs were selected, and 179 TFs
were detected by TRANSFAC using a promoter sequence
of DEGs.
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Fig. 4 Graph-based clustering results. Up-regulated DEGs are colored in red, and down-regulated DEGs are colored in blue. The diamond borders of
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Part 3 - DMR-DEGs in-depth analysis

Selection of cancers for in-depth analysis.

For the in-depth analysis to investigate the effect of muta-
tions in DNA methylation modifiers, we first selected
cancers based on the mutation profiles Fig. 2. In COAD,
the number of the samples of which the demethylation-
related genes, TET1, TET2 and TET3, were mutated
was bigger than that of the samples with mutations
in the methylation-related genes. On the contrary, in
LAML, mutations in the methylation-related genes, e.g.,
DNMTS3A, were dominant. We also looked genome-wide
promoter methylation landscape to see relations between
the mutations in the methylation-related genes and the
methylation status of the promoters of the genes. As
shown in Fig. 3, we were able to observe that there
was a distinct signature of promoter hypermethylation in
COAD (Fig. 5). On the contrary, in LAML, the promoters
were hypomethylated rather than hypermethylated. GBM

also showed the promoter hypomethylation but the num-
ber of samples with mutations was too small to analyze the
effect of mutations (Fig. 2). Thus, we selected COAD and
LAML for further analyses.

Selection of DMR-DEG possibly without TF-mediated
regulation.

Before associating DMR-DEG, we excluded the DMR-
DEGs that the expression changes were possibly affected
by TFs. Among selected TFs that had binding sites in
the promoter regions (see cluster selection in PART 2),
if expression levels of TFs were different significantly
between the mutated and non-mutated sample groups,
TF expression difference could affect expression levels
of downstream genes, thus we remove genes whose pro-
moter regions had binding sites of such TFs. We set 0.2
and -0.2 as cutoff values for log, fold change to determine
if a gene or a TF is up-regulated or down-regulated. When



Lee et al. BMC Medical Genomics 2020, 13(Suppl 3):27

Page 10 of 14

LAML

o Hyper-methylation

Hypo-methylation

log2 Fold Change
< -0.5 0 05 <

S

Down-regulated Up-regulated

Fig. 5 Selected sub-network clusters in LAML and COAD. Up-regulated genes were colored in red, and down-regulated genes were colored in blue
according to the expression fold change level. DEGs without a differentially methylated promoter is shown in translucent gray. The borders of the
genes are colored in pink or sky blue when the promoters of the genes are either hypermethylated or hypomethylated, respectively

\ \ S

e

N

®

a gene is up-regulated and a TF targeting the gene is up-
regulated, the DEG was removed. Likewise, when a gene is
down-regulated and a TF targeting the gene is also down-
regulated, the DEG was removed. Finally, 54 DMR-DEGs
in LAML and 45 DMR-DEGs in COAD were selected and
studied for functional effects (Table 4).

54 up-regulated DEGs related with hypo-DMR in LAML

54 up-regulated DEGs with hypomethylated promoters
were selected in LAML. To investigate the biological
function of these genes, we searched the literature to
find relevance of these genes to LAML. For 54 DEGs
in LAML, we searched with the terms “methylation”
or “acute myeloid leukemia” CACNA2D1, CBFA2TS3,

CD226, EPHA3, GATA1, GFI1B, IL7, NMU, PTPRR,
SLIT3 and ST6GAL2 genes are related with disorder of
methylation in LAML. CACNA2D1 (Voltage-dependent
calcium channel subunit alpha-2/delta-1) encodes a
member of the alpha-2/delta subunit family, a pro-
tein in the voltage-dependent calcium channel complex.
CACNAZ2D1 has DMR in oxytocin signaling pathway in
LAML [25].

CBFA2T3 is known to operate via a fusion gene mecha-
nism with INADL and TM2D1 in AML [26].

CD226 (Cluster of Differentiation 226, DNAM-1
(DNAX Accessory Molecule-1)) is a 65 kDa glycoprotein
expressed on the surface of natural killer cells, platelets,
monocytes and a subset of T cells. TIGIT binding with
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Table 4 List of 54 DMR-DEGs in LAML and 45 DMR-DEGs in COAD
DMR-DEGs

ACSBG1, ARHGAP6, ATP13A4, C7, CACNA2DT,
CBFA2T3, CCDC80, CD226, CD28, CILP, COL12AT,
COL1TAT, COL1A2, DBX2, EPHA3, FBNT, FBN3, FERMT2,
FN3K, GATA1, GATA5, GDPD1, GFI1B, GP9, HBG2,
HPSE2, IL7, KIF5A, LBP, LRRC8E, MAL, MBOAT2,
MINPP1, NCS1, NEOT1, NID2, NLGN1, NMU, PAPPA,
PF4V1, PKLR, PRELP, PRICKLE2, PTPRR, RNF182,
SLC35D3, SLC44A2, SLIT3, ST6GAL2, ST6GALNACT,
TUBBT, VWF, ZFPM2, ZNF563

Selected cluster

Cluster of LAML

Cluster of COAD ~ ADNP, AKAP11, ARLT1, ASB9, ASXL1, ATP9A, BBS5,
C8orf33, CASK, CDK18, DNAJC15, FCHSD1, GTF2IRD1,
HDACS, HUNK; IFT52, IQSEC2, IYD, LYPLA1, MOSPD3,
MPP1, MRPS33, MTIF3, NIT2, PIPOX, PRSS8, REPS2,
RPL24, RPLP1, RPS7, SHH, SLC25A14, SPIN3, SPNST,
TARBP1, TP53RK, TTPA, UCHL3, WDR35, ZNF12,

ZNF251, ZNF514, ZNF517, ZNRF2, ZXDB

CD226 is up-regulated on CD8(+) T cells in LAML [27].
EPHAS3 (ephrin type-A receptor 3) has been implicated in
mediating developmental events, particularly in the ner-
vous system. Receptors in the EPH subfamily typically
have a single kinase domain and an extracellular region
containing a Cys-rich domain and 2 fibronectin type III
repeats. EphA3 was methylated in leukemia patients [28].
GATA1 (GATA-binding factor 1) regulates the expression
of an ensemble of genes that mediate the development of
red blood cells and platelets. Its critical roles in red blood
cell formation include promoting the maturation of pre-
cursor cells. GATA-1 binds to the PU.1 gene and inhibits
expression in LAML [29]. IL7 (Interleukin 7) stimulates
proliferation of all cells in the lymphoid lineage (B cells,
T cells and NK cells). IL-7 has abnormal methylation in
peripheral blood of LAML patients [30]. GFI1B (Growth
factor independent 1b, Zinc finger protein Gfi-1b) are
highly expressed in LAML [31].

Table 5 Enriched GO terms of 54 DMR-DEGs in LAML
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NMU induced specifically acute promyelocytic
leukemia in Sprague-Dawley rats [32]. PTPRR has been
recently identified as a fusion partner of the ETV6 gene
in AML patients bearing an inv(12)(p13q13) and leads to
GM-CFS-independent STAT3 activation [33].

SLIT3 (Slit homolog 3 protein) is a ligand-receptor
SLIT-ROBO family. Low expression of SLIT and high
expression of ROBO1 and ROBO2 suggests their partici-
pation in LAML pathogenesis [34].

ST6GAL2 was detected with unique DMR gene for
AML subtype [35].

SLC44A2 is related with LAML. SLC44A2 (Choline
transporter-like protein 2) is located in a pathway control-
ling DNA damage and repair, and affects the survival in
LAML [36].

In GO-term enrichment test with “blood coagulation’,
“cell adhesion’, “platelet activation’, “extracellular matrix
organization’, “cellular response to transforming growth
factor beta stimulus’, “response to stimulus’, “collagen

multicellular organismal process’,

” o«
” o«

» o«

fibril organization’,
“response to endogenous stimulus’, “skin morphogenesis”
and “cell activation” (Table 5).

45 Down-regulated DEGs related with hyper-DMR in COAD
45 down-regulated DEGs with hypermethylated promot-
ers were selected in COAD. To investigate the biological
function of these genes, we searched the literature to find
relevance of these genes to COAD. For 45 DEGs selected
in the cluster of COAD, we searched the literature with the
terms “methylation” or “Colon adenocarcinoma” HDACS,
HUNK, PRSS8, RPS7 and UCHL3 genes are related with
disorder of methylation in COAD.

HDACS, one of the histone deacetylase (HDAC)
family of transcriptional co-repressors, has emerged
as important regulators of colon cell maturation
and transformation [37]. Abnormal changes in DNA
methylation level of HUNK were found in tumor

GO-term ID term description gene count FDR
GO:0007596 blood coagulation 9 of 288 0.0002
GO:0007155 cell adhesion 13 0of 843 0.0002
GO:0030168 platelet activation 6 of 120 0.00039
G0:0030198 extracellular matrix organization 8 of 296 0.00045
GO:0071560 cellular response to transforming growth factor beta stimulus 5of 140 0.0075
GO:0050896 response to stimulus 350f 7824 0.0269
GO:0030199 collagen fibril organization 30f39 0.0269
G0:0032501 multicellular organismal process 31 of 6507 0.0272
G0:0009719 response to endogenous stimulus 12 of 1353 0.0298
GO:0043589 skin morphogenesis 20f9 0.0416
GO:0001775 cell activation 10 of 1024 0.0446
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tissues of patients [38]. PRSS8 acts as a tumor sup-
pressor by inhibiting Sphk1/S1P/Stat3/Akt signaling
pathway [39].

RPS7 (40S ribosomal protein S7) is a component of the
40S subunit. In eukaryotes, ribosomes, the organelles that
catalyze protein synthesis, consist of a small 40S subunit
and a large 60S subunit. Aberrant promoter hypermethy-
lation of RPS7 inhibits colorectal cancer growth [40].

UCHL3, a member of the ubiquitin C-terminal hydro-
lase family, has a similar activity to UCHL1 and is ubiq-
uitously expressed in various tissues. Methylation of the
UCHLS3 promoter CpG island was completely unmethy-
lated in the colorectal cancer [41].

ADNP, ASB9 and NIT2 genes are related with COAD.
ADNTP is a repressor of WNT signaling in colon cancer
[42]. Low ASB9 expression have higher malignant poten-
tial, such as cell invasiveness and liver metastasis resulting
in a poor prognosis for human colorectal cancer [43].

NIT2 (Nitrilase Family Member 2) has a omega-
amidase activity to remove potentially toxic
intermediates by converting alpha-ketoglutaramate and
alpha-ketosuccinamate to biologically useful alpha-
ketoglutarate and oxaloacetate. Downregulation of NIT2
inhibits COAD cell proliferation and induces cell cycle
arrest [44].

SHH and WDR35 genes are related with abnormal
methylation in cancer. The increased and constitutive
SHH expression is implicated in gastric carcinogenesis,
and that promoter methylation may be an important
regulatory mechanism of SHH expression [45]. WDR35
has functions in cell signaling and apoptosis. The methy-
lation levels of WDR35 was consistent with an inverse
relationship with the mRNA expression levels in a large
number of ALL cells [46].

In GO-term enrichment test with “Biological Process”
category, the 45 genes in COAD were found to be related
with “cytoplasmic translation’, “ peptide biosynthetic
process’, “SRP-dependent cotranslational protein target-
ing to membrane’, “cotranslational protein targeting to

Table 6 Enriched GO terms of 45 DMR-DEGs in COAD
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membrane’, “protein targeting to ER’, “translation’, “viral
gene expression’;, “nuclear-transcribed mRNA catabolic
process, nonsense-mediated decay” and “viral transcrip-

tion” (Table 6).

Conclusions

High-dimensional feature space data analysis using
sub-network clustering

Determining DEGs affected by methylation changes is a
research problem of dealing with high dimensional fea-
ture spaces that need s to combine gene expression levels
and methylation expression levels. Our approach to deal-
ing with this challenging problem was to use a network
based approach.

Clustering genes by combining protein-protein inter-
action scores and gene correlation values were effec-
tive in identifying DEGs clusters that could be affected
by DNA methylation modifiers. In addition, we consid-
ered TF-DNA interference by DNA methylations in the
promoter regions to focus more on the effect of muta-
tions in DNA methylation modifiers only. Many of the
genes that were identified by our approach have been
shown to be related to cancer development in the liter-
ature regarding the effects of methylation. Some genes
that were determined in this study are also likely to be
related to cancer expression by methylation, which could
be good testable hypotheses for additional biological
experiments.

Biological meaning and functions of the identified
DMR-DEGs

Recently, the effects of epigenetic changes in phenotypic
changes including disease developments have been inves-
tigated extensively. However, the effects of mutations in
epigenetic modifiers have not been well studied so far.
To investigate how epigenetic changes are acquired, it
is very important to investigate biological mechanisms
that could cause epigenetic changes. In this context, we
investigated the effects of mutations in DNA methylation

GO-term ID term description gene count FDR
GO:0002181 cytoplasmic translation 30of 55 0.0002
GO:0043043 peptide biosynthetic process 40f 175 0.0006
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 30f90 0.001
GO:0006613 cotranslational protein targeting to membrane 30f9%4 0.0012
GO:0045047 protein targeting to ER 30f98 0.0013
GO:0006412 translation 40f 233 0.0018
GO:0019080 viral gene expression 3of 111 0.0019
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 30f 113 0.002
G0:0019083 viral transcription 30of 114 0.0021




Lee et al. BMC Medical Genomics 2020, 13(Suppl 3):27

modifier genes on the transcriptomic profiles in samples
of mutated vs. non-mutated DNA methylation modifiers
in the pan-cancer scale. We identified 54 DEGs affected by
seven DNA methylation gene mutations in LAML patient
samples and 61 DEGs in COAD patients. Gene expres-
sion levels of these genes increased (DEGs of LAML)
or decreased (DEGs of COAD) without potential effects
of TFs that could bind to the promoter regions of the
genes. In other words, differences in methylation sta-
tus in the promoter regions of the genes could be the
main reason why these genes were expressed differen-
tially. 28 of 33 mutant samples in LAML had mutations in
DNMT3A, and 34 of the 54 samples in COAD had muta-
tions in TET2. Mutations in DNMT3A could result in
hypomethylation in the promoter regions due to abnormal
methyl transfer, resulting in increased gene expression.
Mutations in TET2 could result in hypermethylation in
the promoter regions of genes due to abnormalities in
demethylation function. In the clusters of LAML, 10 of
54 DMR-DEGs, that has highest number of DMR, were
known to be associated with LAML in the literature. 7
of the 10 genes were associated with abnormal methy-
lation with LAML in the literature. In case of COAD,
8 of 45 DMR-DEGs were associated with COAD and 4
genes among the 8 genes were associated with abnor-
mal methylation in COAD in the literature. In this study,
we reported that these genes are likely to be related
to the development of cancer due to changes in DNA
methylation. However, functional impact and biological
interpretation of our findings are yet to be confirmed
although we provided GO term enrichment analysis and
related papers in the literature. As we have more samples
available, our approach could contribute to elucidating
testable hypotheses on the roles of mutations in DNA
methylation modifiers.
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