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Abstract: Microbial production of bioactive retinoids, including retinol and retinyl esters, has been
successfully reported. Previously, there are no reports on the microbial biosynthesis of retinoic
acid. Two genes (blhSR and raldhHS) encoding retinoic acid biosynthesis enzymes [β-carotene
15,15′-oxygenase (Blh) and retinaldehyde dehydrogenase2 (RALDH2)] were synthetically redesigned
for modular expression. Co-expression of the blhSR and raldhHS genes on the plasmid system in
an engineered β-carotene-producing Escherichia coli strain produced 0.59 ± 0.06 mg/L of retinoic
acid after flask cultivation. Deletion of the ybbO gene encoding a promiscuous aldehyde reductase
induced a 2.4-fold increase in retinoic acid production to 1.43± 0.06 mg/L. Engineering of the 5’-UTR
sequence of the blhSR and raldhHS genes enhanced retinoic acid production to 3.46 ± 0.16 mg/L. A
batch culture operated at 37 ◦C, pH 7.0, and 50% DO produced up to 8.20 ± 0.05 mg/L retinoic
acid in a bioreactor. As the construction and culture of retinoic acid–producing bacterial strains are
still at an early stage in the development, further optimization of the expression level of the retinoic
acid pathway genes, protein engineering of Blh and RALDH2, and culture optimization should
synergistically increase the current titer of retinoic acid in E. coli.

Keywords: retinoid; retinoic acid; metabolic engineering; retinaldehyde dehydrogenase; β-carotene
15,15′-oxygenase

1. Introduction

Retinoids (or vitamin A and its analogs) are essential components of visual function,
cell differentiation, and other cellular signaling pathways [1,2]. Retinoids are lipophilic
compounds with diverse structures, based on their end groups. They are composed of
three structural moieties: a β-ionone ring, an isoprenoid backbone, and a functional group
such as an alcohol (retinol), an aldehyde (retinal), a carboxylic acid (retinoic acid), or
an ester group (retinyl esters) [3]. In a biotechnological aspect, retinoids are used as a
dermatological agent against acne, psoriasis, skin aging, and other skin conditions [4].

Retinoic acid is one of the most important ingredients in cosmetic skincare prod-
ucts because it can protect against UV-radiation-induced skin damage in fibroblasts and
other skin cells [5]. Therefore, there is a high demand for retinoic acid in the cosmetic
and pharmaceutical industries [6]. In a biological system, retinoic acid is biosynthesized
from β-carotene in two reaction steps (Figure 1). β-carotene is symmetrically cleaved
by β-carotene 15,15′-oxygenase (Blh), generating retinaldehyde (also known as retinal),
which is then oxidized to retinoic acid by retinal dehydrogenase (Raldh). The retinoic acid
precursor β-carotene is synthesized by four biosynthetic pathway enzymes [7], known as
geranylgeranyl diphosphate synthase (CrtE), phytoene synthase (CrtB), phytoene desat-
urase (CrtI), and lycopene cyclase (CrtY) (Figure 1).

Most retinoic acids are commercially produced via chemical synthesis [8]. Microbial
production of RA has received attention as an alternative process for retinoic acid. Al-
though retinol and retinyl ester have been produced in microbial host strains, including

Microorganisms 2021, 9, 1520. https://doi.org/10.3390/microorganisms9071520 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-0444-2004
https://orcid.org/0000-0003-2014-6587
https://doi.org/10.3390/microorganisms9071520
https://doi.org/10.3390/microorganisms9071520
https://doi.org/10.3390/microorganisms9071520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9071520
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9071520?type=check_update&version=2


Microorganisms 2021, 9, 1520 2 of 12

Escherichia coli [9–11] and Saccharomyces cerevisiae [12], there are no reports on the microbial
biosynthesis of retinoic acid. As E. coli has been exploited as a microbial host system for
retinoid production, it can serve as a host for the redesign and reconstruction of the retinoic
acid pathway.
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Figure 1. Redesigned biosynthetic pathway of retinoic acid from β-carotene in recombinant
Escherichia coli. The genes involved in this redesigned pathway are dxs (encoding1-deoxy-D-xylulose-
5-phosphate synthase); dxr (1-deoxy-D-xylulose-5-phosphate reductoisomerase); idi (isopentenyl
diphosphate isomerase); ispA (farnesyl diphosphate synthase); crtE (geranylgeranyl diphosphate syn-
thase); crtB (phytoene synthase); crtI (phytoene desaturase); crtY (lycopene cyclase); blh (β-carotene
15,15′-oxygenase); and raldh (retinal dehydrogenase).

In this study, the retinoic acid biosynthesis pathway was reconstructed by co-expressing
Blh from Salinibacter ruber and Raldh from the Hep3B cell line in a metabolically engineered
β-carotene-producing E. coli. Next, retinoic acid titer was enhanced by deleting a gene
encoding a promiscuous enzyme which reduced retinoic acid titer, engineering of the
5’-UTR sequence of the two retinoic acid pathway genes, and optimization of the culture
conditions of a retinoic acid–producing strain in a bioreactor.

2. Materials and Methods
2.1. Strains, Media, and Culture Conditions

All E. coli strains and plasmids used in this study are listed in Table 1. The E. coli Top
10 strain was used for gene cloning, and E. coli BL21(DE3) was used for protein expression.
The E. coli strains were grown in Luria-Bertani (LB) broth (10 g/L tryptone, 5 g/L yeast
extract, and 5 g/L NaCl) at 37 ◦C with shaking at 250 rpm. For retinoid production, the
E. coli MG1655 strain was grown in Terrific Broth (TB) medium (12 g/L of tryptone, 24 g/L
of yeast extract, 0.17 M KH2PO4, and 0.72 M K2HPO4) supplemented with 20 g/L of
glycerol on a rotary shaker at 30 ◦C and 250 rpm. The Hep3B cell line was a gift from
Professor Wook Kim (Ajou University, Suwon, Korea).
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Table 1. Strains and plasmids used in this study.

Strains and Plasmids Relevant Properties Source or
Reference

Strains

E. coli TOP10 F- mcrA ∆ϕ80lacZ∆M15 ∆lacX74 nupG recA1 araD139 ∆(ara-leu)7697
galE15 galK16 rpsL(StrR) endA1 Invitrogen

E. coli BL21(DE3) F–ompTgaldcmlonhsdSB(rB
–mB

–) λ(DE3 [lacIlacUV5-T7p07 ind1 sam7 nin5])
[malB+]K-12(λS) NEB

BETA-1 B120 ::idi ::ispA :: dxs :: dxr :: CrtEX2 :: Ptrc_YIB_PAG (atpI site) unpublished
BETA-1∆ybbO Deletion of ybbO in BETA-1 This study
BETA-1∆ybbO∆malT::37blh Integration of UTR37-blh in BETA-1∆ybbO This study
BETA-1∆ybbO∆malT:: Mraldh Integration of UTRM-raldh in BETA-1∆ybbO This study
BETA-1∆ybbO∆malT::37blh::Mraldh Integration of UTR37-blh and UTRM-raldh in BETA-1∆ybbO This study
Plasmids for pathway construction
pUCM Cloning vector modified from pUC19; constitutive lac promoter, Ap

pUCMr Cloning vector modified from pUCM; constitutive lac promoter and rop
gene, Ap (low copy plasmid) [11]

pSTVM2 Cloning vector modified from pSTV29; constitutive lac promoter, Cm
pUCMr-blh Constitutive expressed blh gene from S. ruber [11]
pUCMr12-blh Constitutive expressed blh gene from S. ruber with UTR12 sequence [11]
pUCMr37-blh Constitutive expressed blh gene from S. ruber with UTR37 sequence [11]
pUCMr46-blh Constitutive expressed blh gene from S. ruber with UTR46 sequence [11]
pUCMr-raldh Constitutive expressed raldh gene from Hep3B cell line This study
pUCMrH-raldh Constitutive expressed raldh gene from Hep3B cell line with UTRH sequence This study

pUCMrM-raldh Constitutive expressed raldh gene from Hep3B cell line with UTRM
sequence This study

pSTVM2-blh-raldh Constitutive expressed blh and raldh genes This study
pSTVM2-37blh Constitutive expressed UTR37-blh gene This study
pSTVM2-Mraldh Constitutive expressed UTRM- raldh gene This study
pSTVM2-12blh-raldh Constitutive expressed UTR12-blh gene and raldh gene This study
pSTVM2-37blh-raldh Constitutive expressed UTR37-blh gene and raldh gene This study
pSTVM2-46blh-raldh Constitutive expressed UTR46-blh gene and raldh gene This study
pSTVM2-blh-Hraldh Constitutive expressed blh gene and UTRH-raldh gene This study
pSTVM2-blh-Mraldh Constitutive expressed blh gene and UTRM-raldh gene This study
pSTVM2-37blh-Hraldh Constitutive expressed UTR37-blh gene and UTRH-raldh gene This study
pSTVM2-37blh-Mraldh Constitutive expressed UTR37-blh gene and UTRM-raldh gene This study
Plasmids for western botting This study
pET21α(+) Inducible expression vector, Ap Novagen
pET21-blh Induciblyl expressed 6×His-tagged blh gene in pET21α(+) This study
pET21-raldh Induciblyl expressed 6×His-tagged raldh gene in pET21α (+) This study
Plasmids for genome editing This study

pRed/ET Inducible expression Red/ET, Ap Gene
Bridge

pMP11 pKD46 with constitutively expressed Cas9,aTc gRNA targeting ColE1
origin [13]

pgRNA Constitutively expressed sgRNA [13]
pgRNA_malT Constitutively expressed sgRNA targeting malT This study

2.2. Plasmid Construction for the Expression of Retinoid Biosynthesis Pathway Enzymes

The blhSR gene encoding β-carotene 15,15′-oxygenase (BlhSR) from S. ruber, which
was previously cloned in the plasmid pUCMr-blh [11], was utilized, and the raldhHS
gene encoding retinaldehyde dehydrogenase 2 (RALDH2, GenBank accession number,
AB015226.1) from the Hep3B cell line was cloned into pUCMr to construct pUCMr-raldh
(Table 1). To construct the retinoic acid pathway, the two genes encoding BlhSR and
RALDH2 were redesigned as an individual expression module, and then assembled into
the plasmid pSTVM2, using the USER® cloning method, resulting in pSTVM2-blh-raldh.

To enhance the expression levels of the two genes in E. coli, the 5′-untranslated regions
(5′-UTRs) of the two genes were engineered by using 26-bp mRNA-stabilizing sequences,
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which were obtained by using UTR designer (http://sbi.postech.ac.kr/utr_designer, ac-
cessed on 7 May 2020). Three 5′-UTRs of blhSR (UTR12, UTR37, and UTR46), which were
investigated in our previous study [11], were utilized as pUCMr12-blh, pUCMr37-blh, and
pUCMr46-blh, respectively, in this study. In a similar way described in [11], two 5′-UTRs
of RALDH2 (named UTRH for high expression, and UTRM for moderate expression)
were predicted using UTR designer, and two plasmids (pUCMrH-raldh and pUCMrM-
raldh) were constructed. Next, the two genes with corresponding 5′-UTR sequences were
subcloned into pSTVM2, using Gibson assembly [3], resulting in pSTVM2-12blh-raldh,
pSTVM2-37blh-raldh, pSTVM2-46blh-raldh, pSTVM2-blh-Hraldh, pSTVM2-blh-Mraldh,
pSTVM2-37blh-Hraldh, and pSTVM2-37blh-Mraldh (Table 1).

2.3. Deletion of the ybbO Gene in the BETA-1 Strain

The ybbO gene, which encodes a putative oxidoreductase in the BETA-1 strain, was
deleted through one-step homologous recombination, using the pRed/ET-mediated re-
combination method (Gene Bridges, Heidelberg, Germany). A ybbO-deleting linear DNA
fragment consisting of a 50-bp left homology arm sequence, a FRT-Kmr-cassette, and a
50-bp right homology arm sequence was constructed by using the USER cloning kit (New
England Biobabs, Ipswich, MA, USA) with specific primers (Supplementary Materials
Table S1). The ybbO-deletion mutants were selected on LB agar plates containing 30 µg/mL
kanamycin, followed by the generation of a KmR marker-free strain, using an FLP recombi-
nase, which was inducibly expressed in the temperature-sensitive pCP20 helper plasmid.
The sequence of the deletion site in the BETA-1 strain was verified via Sanger sequencing
of the isolated gDNA. The resultant ybbO-deletion strain was named BETA-1∆ybbO.

2.4. Integrating Two Retinoic Acid Pathway Genes into the BETA-1∆ybbO Strain

The BETA-1∆ybbO∆malT::37blh strain expressing UTR37-blhSR on the genome was
constructed by integrating a synthetic module expressing UTR37-blhSR into a malT site in
BETA-1∆ybbO. Similarly, the BETA-1∆ybbO∆malT:: Mraldh strain was created through the
integration of a synthetic module expressing UTRM-raldh into the malT site in BETA-1∆ybbO.
BETA-1∆ybbO∆malT::37blh::Mraldh was constructed by integrating a synthetic module co-
expressing UTR37-blhSR and UTRM-raldh into the malT site in BETA-1∆ybbO. The abovemen-
tioned genome integrations were performed by using the CRISPR/Cas9 genome-editing sys-
tem. Linear DNA fragments containing 250-bp homology arm sequences were constructed
by using overlapping PCR with gene-specific primers (Supplementary Materials Table S1).
The guide RNA (gRNA) sequence was designed by using the CHOPCHOP program
(https://chopchop.cbu.uib.no/, accessed on 10 September 2020). The pgRNA_malT vector
was constructed via PCR-mediated amplification of the pgRNA plasmid backbone with
primers containing 20 bp of the gRNA sequence. Genome-editing strains were selected via
colony PCR. The full sequence of the edited site in BETA-1∆ybbO was verified through
Sanger sequencing of the isolated gDNA (Macrogen, Seoul, Korea).

2.5. Reverse-Transcription PCR (RT-PCR)

Total RNA was extracted from E. coli cells expressing the blhSR, UTR-12blh, UTR-
37blh, UTR-46blh, raldh, UTRM-raldh, or UTRM-raldh genes, which were grown in the
mid-exponential growth phase, using an easy-BLUE™ Total RNA Extraction Kit (Intron,
Seoul, Korea). For reverse transcription-polymerase chain reaction (RT-PCR) analysis,
cDNA was synthesized from the total RNA samples, using the ReverTra™Ace qPCR RT
Kit (Toyobo, Osaka, Japan). PCR products were then analyzed on a 1% (w/v) agarose
gel. The RT-PCR conditions were as follows: denaturation at 95 ◦C for 1 min; 30 cycles of
denaturation at 95 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 20 s.
The cysG gene encoding siroheme synthase was used as a reference gene. The primers used
for the RT-PCR are listed in Supplementary Materials Table S1.

http://sbi.postech.ac.kr/utr_designer
https://chopchop.cbu.uib.no/
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2.6. SDS-PAGE and Western Blot Analysis

To fuse the 6 × His amino acid sequence into the N-terminus of the BlhSR and
RALDH2 proteins, the blhSR and raldh genes were cloned into the pET21α(+) plasmid
to construct pET21-blhSR and pET21-raldh, respectively. E. coli BL21 (DE3) harboring
pET21α(+), pET21-blhSR, or pET21-raldh was grown to an OD600 of 0.6–0.8, then 1 mM
of isopropyl β-D-thiogalactopyranoside (IPTG) was added to the culture medium. Three
hours after induction, the cells were harvested, washed twice with 50 mM Tris-HCl buffer
(pH 6.8), and disrupted via sonication. The crude protein extracts were separated on a 12%
(w/v) SDS-PAGE gel. The gels were subsequently stained with Coomassie Brilliant Blue
to visualize the protein bands. For Western blot analysis, the separated protein bands on
the gels were transferred to a PVDF membrane, using Trans-Blot SD semi-dry (BioRad,
Hercules, MA, USA) for 1 h, at 25 V. The blot was blocked with Tris-buffered saline with
Tween20 (TBST) containing 5% (w/v) skim milk for 2 h and washed three times with TBST,
at 25 ◦C. SuperSinalTM West Pico PLUS Chemiluminescent substrate solution (Thermo
Fisher Scientific, Waltham, MA, USA) was added for the immunodetection of 6×His-tagged
BlhSR and RALDH2 on the membrane.

2.7. Bioreactor Fermentation

Batch fermentation was carried out in a 5 L BioFlo 320 bioreactor (Eppendorf, Ham-
burg, Germany) containing 1.5 L of TB medium (supplemented with 20 g/L glycerol and
50 ug/mL chloramphenicol) under different conditions: culture temperature (20, 30, and
37 ◦C), culture pH values (6.0, 6.5, and 7.0) and dissolved oxygen (DO) levels (>10%, 30%,
and 50%). The pH was maintained at a preset value through the automatic addition of 24%
(v/v) NH4OH and 2 N HCl. The DO level was controlled by increasing the agitation rate
from 200 to 600 rpm and by supplying air and pure O2 gas. Cell growth was monitored
at 600 nm (OD600), using a SpectraMax Plus384 spectrophotometer (Molecular Devices,
San Jose, CA, USA).

2.8. Extraction of Retinoids

Retinoid-producing cells were harvested and extracted with 15 mL of acetone until all
visible colors were extracted. To the acetone extract, 15 mL of 5 N NaCl solution was added,
and then the pH of the mixed solution was adjusted to 2.0 by adding 85% phosphoric acid
(Sigma-Aldrich, Saint Louis, MO, USA). Next, an equal volume of hexane was added to
the acidified mixed solution and mixed well. After centrifugation for 5 min at 3800 rpm,
the upper solvent layer, which contained the retinoids, was collected and dehydrated
over anhydrous sodium sulfate. The solution was then completely dried in a Genevac
EZ2 centrifugal evaporator (SP Industries, Warminster, PA, USA). The dried residue was
resuspended in 1 mL acetone and stored at −20 ◦C, in the dark, until analysis.

2.9. Extract Analysis Using HPLC and Mass Spectrometry (MS)

A 5 µL aliquot of the organic extract was injected into an Agilent 1260 high-performance
liquid chromatography (HPLC) system (Agilent Technologies, Santa Clara, CA, USA)
equipped with a photodiode array detector (Agilent Technologies) and a Poroshell 120 EC-
C18 column (2.1 × 50 mm, 2.7 µm; Agilent Technologies). The column temperature was
maintained at 23 ◦C, while the flow rate was maintained at 0.4 mL/min. Two mobile-phase
systems were used for gradient elution: mobile phase A (methanol, acetonitrile, and acetic
acid, 70.0:30.0:0.1, v/v) and mobile phase B (acetonitrile, methanol, water, isopropanol,
and acetic acid, 60.0:20.0:19.0:5.0:0.1, v/v). The linear gradient was generated as follows:
minutes 0–5, 100% B; minutes 5–6, 100% B to 100% A; minutes 6–28, 100% A; minutes
28–29, 100% A to 100% B; and minutes 29–35, 100% B. The mass fragmentation spectrum of
retinoic acid was monitored in positive mode on an LC–MS 6150 quadrupole system (Agi-
lent Technologies) equipped with an atmospheric-pressure chemical ionization interface.
The MS conditions used were described in our previous study [11].
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3. Results
3.1. Expression of Retinoic Acid Pathway Enzymes

As a precursor-producing strain, the E. coli BETA-1 strain (unpublished) was used to
construct the retinoic acid pathway. The BETA-1 strain has an engineered expression system
for both the isopentenyl diphosphate and β-carotene biosynthetic pathways. Heterologous
expression of two key retinoic acid pathway genes (blhSR from S. ruber and raldhHS from the
Hep3B cell line) was investigated in two E. coli strains. When the blhSR and raldhHS genes
were induced through the 6×His tagging system [pET21α(+) plasmid] in E. coli BL21 (DE3),
one band corresponding to each gene was detected during immunoblotting (Figure 2A).
The expected protein size (34.7 kDa of blhSR and 56.8 kDa of raldhHS) and one band of each
gene indicated that blhSR and raldhHS were expressed without protein degradation in the
heterologous host E. coli. In addition, the mRNA transcription of each gene in the mid-log
(at 36 h culture) and stationary growth (at 48 h culture) phases of the BETA-1 strain was
confirmed via RT-PCR analysis (Figure 2B).
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Figure 2. Western blot analysis and mRNA transcription of blhSR and raldhHS genes. (A) Western blot
analysis of the protein expression of blhSR (left) and raldhHS (right) in the E. coli BL21 (DE3) strain.
Lane 1 in each panel indicates the total extracted proteins from BL21 (DE3)/pET21α(+) while lane
2 indicates the total extracted proteins from BL21 (DE3)/pET21-blhSR (left), and BL21 (DE3)/pET21-
raldh (right). (B) Total RNA was isolated from the E. coli BETA-1 strain in the (1) mid-log and
(2) stationary growth phases, and then the transcript levels of blhSR and raldhHS were analyzed via
RT-PCR. The cysG gene was used as the reference gene.

3.2. Construction of Retinoic Acid Biosynthetic Pathway in the E. coli BETA-1 Strain

To reconstruct the retinoic acid pathway in the BETA-1 strain, the blhSR and raldhHS
genes were made modular and assembled into the plasmid pSTVM2, constructing pSTVM2-
blh-radlh (Table 1). After the strain BETA-1/pSTVM2-blh-radlh (Figure 3A) was con-
structed, the acetone extract of the BETA-1/pSTVM2-blh-radlh grown in 100 mL flasks
was analyzed together with the extracts of two control strains (BETA-1/pSTVM2 and
BETA-1/pSTVM2-blh), using HPLC. One new peak (peak 1 in Figure 3B) in the extract of
BETA-1/pSTVM2-blh-radlh was detected at the same retention time as that of the retinoic
acid standard, within the same UV/Vis spectrum (Figure 3C). LC–MS analysis revealed
that peak 1 in the extract of the BETA-1/pSTVM2-blh-radlh extract corresponded to a
similar molecular fragment pattern and the same parent ion of m/z 301.2 [M + H]+ as
that of a retinoic acid standard (Figure 3D). Collectively, the blhSR and raldhHS genes were
functionally expressed in the BETA-1/pSTVM-blh-raldh strain, generating retinoic acid
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(0.52 ± 0.10 mg/L) from β-carotene. Notably, the presence of retinol (peak 2) and reti-
nal (peak 3) in the extract of BETA-1/pSTVM2-blh was the same as that in our previous
study [11].
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3.3. Enhanced Retinoic Acid Production through Deletion of the ybbO Gene in the BETA-1 Strain

It has been reported that endogenous aldehyde reductases, such as ybbO in E. coli,
showed unexpected activity similar to retinol reductase, an enzyme that converts retinal to
retinol [9]. Therefore, the production of retinoic acid in BETA-1/pSTVM2-blh-radlh might
be enhanced by limiting the conversion of retinal to retinol by suppressing endogenous
aldehyde reductase activity. As a proof of this hypothesis, the ybbO gene was deleted in the
genome of the BETA-1 strain, creating the BETA-1∆ybbO strain (named as RA1, Figure 4A).
Quantitative analysis of acetone extracts of the strain RA1/pSTVM2-blh-radlh and the
control strain BETA-1/pSTVM2-blh-radlh revealed that the RA1/pSTVM2-blh-radlh strain
produced 1.43 ± 0.06 mg/L of retinoic acid, which was 2.4 times higher than what the
BETA-1/pSTVM2-blh-radlh strain produced (0.59± 0.06 mg/L). No presence of retinal and
retinol was observed in both strains, indicating that retinal was completely converted into
retinoic acid. The increased titer of retinoic acid in the RA1/pSTVM2-blh-radlh strain can
be explained by the fact that more retinal could be transformed into retinoic acid (Figure 1)
in that strain. This is supported by the experiment of the two blh-expressing strains, where
higher retinal (0.47 ± 0.1 mg/L) and lower retinol (0.25 ± 0.05 mg/L) titers were measured
in the RA1/pSTVM2-blh strain in comparison with titers of retinal (0.14 ± 0.06 mg/L) and
retinol (0.37 ± 0.06 mg/L) in the control BETA-1/pSTVM2-blh strain.
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3.4. Transcription Control Engineering of blhSR and raldhHS Genes for Improving Retinoic
Acid Production

As a strategy for enhancing retinoic acid production, the mRNA-stabilizing region
(mRS) engineering approach [11] was adopted to increase the expression of blhSR and raldhHS.
Three previously studied synthetic sequences (UTR12, UTR37, and UTR46) [11] for regulat-
ing the expression of the blhSR gene were assembled with raldhHS into pSTVM2, constructing
three retinoic acid–producing synthetic mRS-blh-raldh expression vectors: pSTVM2-12blh-
raldh, pSTVM2-37blh-raldh, and pSTVM2-46blh-raldh. Quantitative analysis of the four
strains (RA1/pSTVM2-12blh-raldh, RA1/pSTVM2-37blh-raldh, RA1/pSTVM2-46blh-raldh,
and RA1/pSTVM2-blh-raldh as a control) revealed that the RA1/pSTVM2-37blh-raldh
strain produced the highest amount of retinoic acid (2.63 ± 0.14 mg/L) among them. Simi-
lar to the design of mRS for blhSR, two mRS synthetic sequences (UTRH and UTRM for high
and moderate expression, respectively) for raldhHS, were designed and assembled with
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UTR37-blh or blh into pSTVM2, resulting in two synthetic mRS-blh-mRS-raldh expression
vectors (pSTVM2-37blh-Hraldh and pSTVM2-37blh-Mraldh) and two synthetic blh-mRS-
raldh expression vectors (pSTVM2-blh-Hraldh and pSTVM2-blh-Mraldh). Quantitative
analysis of the four strains (RA1/pSTVM2-37blh-Hraldh, RA1/pSTVM2-37blh-Mraldh,
pSTVM2-blh-Hraldh, and pSTVM2-blh-Mraldh) revealed that the RA1/pSTVM2-37blh-
Mraldh strain produced the highest amount of retinoic acid (3.46 ± 0.16 mg/L), which was
2.4 times higher than 1.43 ± 0.07 mg/L in the non-mRS-engineered RA1/pSTVM2-blh-
raldh, 2.0 times higher than 1.71 ± 0.10 g/L in the mRS-raldh engineered RA1/pSTVM2-
blh-Mraldh, and 1.3 times higher than 2.63 ± 0.14 mg/L in the mRS-blh engineered
RA1/pSTVM2-37blh-raldh.

3.5. Construction and Expression of Retinoic Acid Biosynthetic Pathway Genes on the Genome of
RA1 Strain

To integrate the retinoic acid pathway genes in the RA1 strain, two synthetic modules
expressing each individual gene in UTR37-blh and UTRM-raldh and a synthetic module
co-expressing two genes in UTR37-blh and UTRM-raldh were integrated into the malT site
of the RA1 strain, using the CRISPR/Cas9 system (Figure 4A). The three genome-edited
strains were BETA-1∆ybbO∆malT::37blh (RA3), BETA-1∆ybbO∆malT::Mraldh (RA6), and
BETA-1∆ybbO∆malT::37blh::Mraldh (RA9). To compare retinoic acid production in the
three strains, the genome-edited RA3 strain was transformed with pSTVM2-Mraldh and
pSTVM2-37blh-Mraldh, resulting in the RA3/pSTVM2-Mraldh (RA4) and RA3/pSTVM2-
37blh-Mraldh (RA5) strains, respectively. Similarly, two strains, RA7 (RA6/pSTVM2-37blh)
and RA8 (RA6/pSTVM2-37blh-Mraldh), were constructed from the genome-edited RA6
strain, and the RA10 (RA9/pSTVM2-37blh-Mraldh) strain was created from the genome-
edited RA9 strain by transforming with the corresponding plasmids. When the retinoic acid
titer was compared between the RA2 strain, where UTR37-blh and UTRM-raldh were ex-
pressed on a multi-copy plasmid system, and the RA9 strain, where UTR37-blh and UTRM-
raldh were expressed on the genome system, the retinoic acid titer (0.32 ± 0.05 mg/L) of
RA9 strain was approximately 7 times less than 3.24 ± 0.05 mg/L of retinoic acid in the
RA2 strain (Figure 4B). The difference of retinoic acid titer in the RA2 and RA9 strains may
be due to the different expression levels of UTR37-blh and UTRM-raldh genes in RA2 and
RA9. The mRNA levels of UTR37-blh and UTRM-raldh in RA2 were about two-fold higher
than that in RA9 (Figure 4C). The highest amount of retinoic acid at 3.80 ± 0.11 mg/L was
produced in the RA10 strain grown in flask culture.

3.6. Bioreactor Study of Retinoic Acid–Producing Strains

To investigate the effect of culture conditions on retinoic acid production, the RA10
strain was grown in a bioreactor containing TB medium under different culture conditions
(temperature, pH, and DO levels). When the RA10 strain was grown at temperatures of 20,
30, and 37 ◦C, at pH 7.0, and a DO of 30%, retinoic acid production was 3.92 ± 1.25 mg/L,
7.35 ± 0.28 mg/L, and 7.82 ± 0.35 mg/L, respectively. The final cell concentration at both
30 and 37 ◦C was similar but decreased by approximately 45% at 20 ◦C (Figure 5A). When
the RA10 strain was grown at pH values of 6.0, 6.5, and 7.0 at 37 ◦C and a DO of 30%,
retinoic acid production was 4.80 ± 1.32 mg/L, 6.30 ± 0.68 mg/L, and 7.82 ± 0.35 mg/L,
respectively. The final cell concentrations were similar at all pH values (Figure 5B). When
the RA10 strain was grown at a DO of 10%, 30%, and 50% at pH 7.0 and 37 ◦C, retinoic acid
production was 2.10 ± 0.49 mg/L, 7.70 ± 0.18 mg/L, and 8.20 ± 0.05 mg/L, respectively.
The final cell concentrations at both 50% and 30% DO were similar, but significantly
reduced to 25% at 10% DO (Figure 5C). The decreased cell growth at 10% DO may be due
to the high accumulation of acetic acid in the medium caused by the activated fermentative
metabolism, triggering lower oxygen availability. Under all tested conditions, 20 g/L
glycerol was completely consumed, and acetic acid was produced up to 5.10 ± 0.21 g/L
(Figure 5B,C). Based on a retinoic acid titer (mg-retinoic acid/L) and a conversion yield
(mg-retinoic acid/g-glycerol), 37 ◦C, pH 7.0, and 50% DO were optimum conditions to
produce retinoic acid in the RA10 strain.
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4. Discussion

The production of retinoids, including retinol and retinyl ester, from microbes has
been successfully reported. To date, there are no reports on the microbial biosynthesis
of retinoic acid. Recently, one study reported that retinoic acid could be produced from
retinol in an in vitro system utilizing a bacterial aldehyde dehydrogenase [14]. Therefore,
to construct a platform microbial strain for retinoic acid production, two genes (blhSR
and raldhHS) encoding retinoic acid biosynthesis pathway enzymes, β-carotene 15,15′-
oxygenase (Blh) [11] and retinaldehyde dehydrogenase 2 (RALDH2), were synthetically
redesigned to be modularly expressed [15]. Co-expression of the blhSR and raldhHS genes
on the plasmid system in the BETA-1 strain produced 0.59 ± 0.06 mg/L of retinoic acid
in flask cultivation (Figure 3). Notably, it has been thought that mammalian RALDHs
did not show retinal activity in microbial hosts [14]. However, the raldhHS gene encoding
mammalian RALDH2 from the Hep3B cell line was functionally transcribed (analyzed
via RT-PCR) and translated (analyzed through Western blot) in a microbial host, E. coli
(Figure 2). Retinoic acid was produced from retinal that was generated from β-carotene by
Blh in the BETA-1 strain.

To increase the retinoic acid titer, three approaches were used: (1) deletion of the ybbO
gene encoding a promiscuous aldehyde reductase, (2) engineering of the 5′-UTR sequence
of the blhSR and raldhHS genes, and (3) optimization of culture conditions of retinoic acid–
producing strains in a bioreactor. A 2.4-fold enhancement in retinoic acid production,
from 0.59 ± 0.06 mg/L to 1.43 ± 0.06 mg/L, was observed after the deletion of the ybbO
gene, which decreased retinoic acid titer through the reduction of retinal to retinol. The
gene deletion effect was confirmed by observing a higher production (0.47 ± 0.1 mg/L)
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of the retinoic acid precursor retinal in the BETA-1∆ybbO strain expressing only Blh than
that (0.14 ± 0.06 mg/L) of the BETA-1 strain expressing only Blh. Therefore, limiting
the activity of promiscuous aldehyde reductases is crucial for the production of retinoic
acid in heterologous microbial strains. Engineering of the 5′-UTR sequence to increase
the expression level of pathway enzymes, especially in heterologous hosts, has been
successfully exploited in E. coli [11,16,17] and yeasts [18]. Further, 5′-UTR engineering was
successfully applied to the blhSR and raldhHS genes of the retinoic acid biosynthesis pathway,
consequently increasing the retinoic acid yield from 1.43 ± 0.06 mg/L to 3.46 ± 0.16 mg/L
in flask cultivation. Finally, optimized culture conditions (37 ◦C, pH 7.0, and 50% DO)
enhanced retinoic acid production of up to 8.20 ± 0.05 mg/L in a bioreactor (Figure 5).

Even though the retinoic acid pathway genes were co-expressed on the genome of
the BETA-1∆ybbO strain, the retinoic acid titer was 10 times less (0.32 ± 0.05 mg/L) than
that obtained via co-expression on a plasmid in the BETA-1∆ybbO strain (Figure 4). This
suggests that the optimization of the expression levels of retinoic acid pathway genes is
crucial, and thus should be regarded as a target for the increased production of retinoic
acid. In addition, as a precursor, β-carotene accumulated without being converted into
retinal, so the protein engineering of Blh is needed to have higher activity on β-carotene.
Finally, as the construction and culture of retinoic acid–producing strains is at an early
stage in the development of the microbial processes for retinoic acid production, further
optimization of the fermentation operations (such as fed-batch cultivation), media, and
intensive strain improvement should increase the current titer of retinoic acid in E. coli.
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