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Abstract: Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary
to identify the proper measures for preventing soil contamination at both operating and abandoned
mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs
and to create soil contamination maps using geostatistical methods. However, they generally depend
only on inductively coupled plasma atomic emission spectrometry (ICP–AES) analysis data, therefore
such studies are limited by insufficient input data owing to the disadvantages of ICP–AES analysis
such as its costly operation and lengthy period required for analysis. To overcome this limitation,
this study used both ICP–AES and portable X-ray fluorescence (PXRF) analysis data, with relatively
low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine
in Korea and compared the prediction performances of four different approaches: the application
of ordinary kriging to ICP–AES analysis data, PXRF analysis data, both ICP–AES and transformed
PXRF analysis data by considering the correlation between the ICP–AES and PXRF analysis data,
and co-kriging to both the ICP–AES (primary variable) and PXRF analysis data (secondary variable).
Their results were compared using an independent validation data set. The results obtained in this
case study showed that the application of ordinary kriging to both ICP–AES and transformed PXRF
analysis data is the most accurate approach when considers the spatial distribution of copper and
lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore,
when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed
approach that incorporates the advantageous aspects of both ICP–AES and PXRF analysis data.

Keywords: portable X-ray fluorescence; inductively coupled plasma atomic emission spectrometry;
ordinary kriging; co-kriging; soil contamination map

1. Introduction

Mining is a global industry that can be hazardous to public health and safety, and can cause
damage to the surrounding environment, including land, soil, water, and forests [1]. Among the
various environmental impacts of mining, contamination of soil is significant because mine waste
produced by metal-mining activities generally contains higher content of potentially toxic trace
elements (PTEs) than that in regular industrial waste. These substances can become widely dispersed
throughout mining areas unless proper measures for isolation or treatment are taken [2,3]. Elevated
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concentrations of PTEs in soil do not only impact the soil quality, but due to their persistent nature
and long biological half-lives, can accumulate in the food chain and can eventually influence human
health [4]. Therefore, the type, content and spatial variation of PTEs in soil should be regularly
investigated at both operating and abandoned mining areas to identify the proper measures necessary
for preventing soil contamination [5,6].

Inductively coupled plasma atomic emission spectrometry (ICP–AES) is one of the precise and
representative instruments to investigate the type and content of PTEs in soil [7]. Because the ICP–AES
instrument provides a high degree of accuracy with regard to chemical element analysis [8], it has
been widely used to investigate the soil quality in mining areas. However, the ICP–AES analysis has
several disadvantages such as its costly operation and lengthy period required for analysis owing to
the complex preprocessing process of soil drying, crushing, sieving, and acid digestion for alteration
from a solid to liquid-phase state [9]. Therefore, the type and content of PTEs in soil can be investigated
only at certain sampling points due to cost and time constraints.

To compensate for such disadvantages, an on-site analysis method employing a portable X-ray
fluorescence (PXRF) instrument has been specified in the U.S. Environmental Protection Agency’s
(EPA’s) method 6200 for investigating the type and content of PTEs in soil [7]. Higueras et al. [10]
reported that the PXRF analysis is cost-effective for environmental studies. Moreover, the period
required for element analysis can be reduced significantly since the PXRF analysis does not necessitate
the complex preprocessing process of soil sample [11,12]. Therefore, using the PXRF instrument, the
type and content of PTEs in soil can be investigated at much more sampling points compared with the
ICP–AES instrument within same cost and time constraints. However, the PXRF analysis has relatively
low accuracy compared to ICP–AES analysis [12].

Regardless of the equipment used for analysis of the type and content of PTEs in soil, it is
generally difficult to understand the spatial variation of PTEs for an entire mining area because the
soil quality is investigated at more or less sparse sampling points. Geostatistical methods provide a
valuable tool to study the spatial variation and to generate soil contamination maps [13–15]. They
take into account spatial autocorrelation of data to create mathematical models of spatial correlation
structures commonly expressed by semi-variograms [16]. The interpolation technique of the variable at
unsampled locations, known as kriging, provides the “best”, unbiased, linear estimate of a regionalized
variable in an unsampled location, where 'best' is defined in a least-squares sense [15].

Many studies have been conducted worldwide to explore the spatial variation of PTEs and to
generate soil contamination maps at local and regional scales using geostatistical methods [17–22].
They usually depend only on ICP–AES analysis data, therefore such studies are limited by insufficient
input data owing to the disadvantages of ICP–AES analysis. Although several attempts have been
made to use PXRF analysis data as input data for exploring the spatial variation of PTEs using
geostatistical methods [6,9,10,12], the relatively low accuracy of PXRF analysis data still makes it
difficult to generate soil contamination maps of high quality. Until recently, few studies have attempted
to use both ICP–AES and PXRF analysis data to compensate for any disadvantages and to investigate
the spatial variation of PTEs by generating soil contamination maps. The approach that incorporates
the advantageous aspects of both ICP–AES and PXRF analysis data may be an efficient option for
exploring the spatial variation of PTEs using geostatistical methods when the amount of ICP–AES
analysis data is insufficient or the accuracy of PXRF analysis data is relatively low. To assess its
feasibility, it is necessary to compare the approaches that use either ICP–AES or PXRF analysis data
with those that use both of them for creating soil contamination maps.

Against this background, the aim of this study was to compare the prediction performances
of four different approaches for mapping copper and lead concentrations at a section of the Busan
abandoned mine in Korea using element analysis data from ICP–AES and PXRF instruments. The four
approaches include: (1) the application of ordinary kriging to ICP–AES analysis data; (2) PXRF analysis
data; (3) both ICP–AES and transformed PXRF analysis data by considering the correlation between
the ICP–AES and PXRF analysis data; and (4) co-kriging to both ICP–AES (primary variable) and PXRF
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analysis data (secondary variable). Approaches 1 and 2 use either ICP–AES or PXRF analysis data,
and 3 and 4 use both of them for generating soil contamination maps. Their results were compared
using an independent validation data set.

2. Materials and Methods

2.1. Study Area and Soil Sampling

This study selected part of the Busan mine located at Saha-gu, Busan, South Korea, as a target area
(Figure 1). Currently abandoned, the Busan mine was in operation until 1986 and produced 2246 tons
of iron. About 4000 m3 of mine waste rocks and tailings piled around the pit heads have not undergone
proper environmental treatment (Figure 1); high concentrations of copper and lead were found near
the waste rock pile and pit heads [23]. Furthermore, it is estimated that the soil contamination due to
mine waste rocks and tailings has been dispersed downslope by surface erosion.
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Figure 1. Study area: (a) Boundary of target mapping area (128˝59156.43311–129˝0’4.726” E,
35˝6’42.377”–35˝6’48.218” N) and the locations of contamination sources and soil sampling for the
ICP–AES and PXRF analyses. The extent of the soil sampling area is larger than that of the target
mapping; (b,c) Photographs of closed pit heads and mine waste rocks on the slope, respectively.

By using a PXRF instrument (Innov-X DELTA handheld XRF analyzer, Olympus, Japan), on-site
analysis for copper and lead contents was conducted at 100 points. This PXRF instrument is equipped
with an Au anode as the excitation source and a silicon drift detector, and operates at 40 kV and 0.1 mA.
The sampling points and topography of the study area are shown in Figure 1. Surface soils down
to 10 cm in depth were sampled by using a hand auger at the points. Each soil sample included a
composite of nine subsamples taken within a 5 mˆ 5 m area. The soil samples were then disaggregated
and sieved to <2 mm in the field. The prepared soil samples were analyzed as loose powders by PXRF,
using a sample cup fitted with a 6 µm thick polyester film. The procedure for quantification was
conducted by software embedded in the PXRF instrument.

It is noteworthy that the results of element analysis by the PXRF instrument can vary depending
on the water content in the soil [8,9]. Tolner et al. [9] determined that the metallic element content
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detected will be about 1%–3%, 23%–30%, and 30%–39% lower when the water content is 10%, 15%,
and 20%, respectively, than that in completely dried soil. Therefore, in this study, the water content in
each soil sample was measured using a portable soil moisture meter (PMS-714, Lutron, Taiwan), and
element analysis by the PXRF instrument was then conducted when the soil sample had a water content
of less than 10%. The detection limits and measurement errors of PXRF instrument are also dependent
on analysis time; longer analysis times generally provide lower detection limits and measurement
errors [9]. In this study, the PXRF analysis was conducted once per sample for 2 min because the
measurement error showed a tendency to decrease to less than 30% and to less than 20% when the
measurements last 1 min and 2 min, respectively [9].

In addition, soil samples were collected at 23 points to analyze copper and lead contents by using
an ICP–AES instrument (VISTA-PRO, Varian, CA, USA). The soil samples consisted of 12 samples
collected at the points in which the PXRF analysis was previously conducted and 11 samples collected
at random points for validating the prediction performances of four different approaches for mapping
copper and lead concentrations (Figure 1). The preprocessing of 23 soil samples was conducted in the
laboratory. After air-drying at 25 ˝C for five days, the soil samples were disaggregated and sieved
to <2 mm and then ground to a fine powder (<2 µm). The samples were then digested into 0.1 N of
HCl solution, with 10 g of soil in 50 mL of the solution, according to the Korean standard method
for the chemical analysis of soils. The solutions were analyzed by using the ICP–AES instrument for
two elements including copper and lead. The quantification of each element analyzed by ICP–AES
was performed using a calibration curve. In addition, the pH and electrical conductivity (EC) of soil
samples were measured in the laboratory.

2.2. Geostatistical Methods

In Geostatistics each measured value, z(xi), at location xi (x is the location coordinates vector
and i = 1, . . . , N indicates the sampling points) is interpreted as a particular realization of a random
variable Z(xi). The set of dependent random variables {Z(xi), i = 1, . . . , N} constitutes a random
function Z(x) [14,16].

The experimental variogram γ(h) is an important tool in Geostatistics that measures the variability
between two data pair values [z(xi), z(xi + h)] of the same variable z(xi) separated by a lag vector h. It
is a function of the lag h, a vector in distance and direction, of the two data pair values, and can be
calculated as follows.

γ phq “
1

2N

N
ÿ

i“1

rz pxiq ´ zpxi ` hqs2 (1)

where N is the number of data pairs for a given class of distance and direction. A function, known as
the theoretical variogram model, is fitted to the experimental variogram to allow one to analytically
estimate the variogram for any distance h. The function should be conditionally negative definite
to ensure that the kriging variances are positive [13]. The best fitting function can be selected by
cross-validation which checks the compatibility between the data and the model. The variogram
model can be extended to multiple variables. If we considered N regionalized variables, there are N
direct and N(N + 1)/2 cross variograms required. These direct and cross variograms should share some
features and cannot be considered independently [24]. Interested readers should refer to textbooks
such as [13,15,25].

The most typical interpolation method used in Geostatistics is kriging [18]. Kriging is a technique
in which an unknown value with a weighted linear combination of already known surrounding values
is predicted.

z˚ “

N
ÿ

i“1

λizi (2)

where z* is the kriging predicted value at the prediction point, zi is a data value of the vicinity, for
which the location and value are already known, λi is the weight of each data, and N is the total
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number of data used for the kriging prediction. According to a method determining weight, several
types of kriging can be classified: simple kriging, ordinary kriging, universal kriging and kriging with
external drift [26].

Ordinary kriging is the most common geostatistical estimator [18]. It mainly used when data
satisfy a weak secondary invariance and do not show a particular trend. When predicting an unknown
value using ordinary kriging, the error variance is minimized while the kriging estimation equation
is not biased. Bias is defined as a difference between the factor average of the population and the
estimation equation average for predicting that population factor; when there is no difference, it is said
to be unbiased. A condition for the equation not to become biased is as follows:

bz˚ “ E pzq ´ E pz˚q “ 0 (3)

where bz˚ shows a bias of z*, and since all data used in kriging have an identical average value,
the sum of the weights must be 1. This is shown in the following equation in order for the kriging
estimation equation to be always unbiased:

1´
n

ÿ

i“1

λi “ 0 (4)

Ordinary kriging was selected as a spatial interpolation technique in this study because existing
reports indicate that the soil contamination distribution of copper and lead in the Busan mine area
satisfy a weak secondary invariance and do not show a particular trend [23].

Co-kriging is a multivariate geostatistics technique in which an unknown value is predicted by
using two or more variables. Using a primary variable to be predicted and a secondary variable having
a correlation with the primary variable, a weight is determined and the distribution of the primary
variable is determined. A general equation of co-kriging is as follows:

z˚ “

N
ÿ

i“1

λizi `

M
ÿ

i“1

kjuj (5)

where zi is a primary variable, N is the number of data for the primary variable, λi is the weight of
the primary variable, uj is a secondary variable, M is the number of data for the secondary variable,
and kj is the weight of the secondary variable. When the number of primary variables is small and the
number of secondary variables with relatively low accuracy is large, co-kriging is usually used [18].
A spatial correlation should exist between the two variables, and using the secondary variable can
reduce the uncertainty of the predicted value for the primary variable. Thus, co-kriging is known to
be suitable for geostatistical integration of two data with complementary characteristics. To apply
co-kriging, there should be a variogram for each variable, and a cross variogram between the primary
and secondary variables is necessary.

2.3. Four Different Approaches for Mapping Copper and Lead Concentrations

Four different approaches based on ordinary kriging and co-kriging were used to generate soil
contamination maps for copper and lead by using the ICP–AES and PXRF analysis data (Table 1).
Even if ordinary kriging and co-kriging do not require the input data to follow a normal distribution,
the variogram is sensitive to strong departure from normality because a few large values can contribute
to many very large squared differences. Such skewness can often be removed, and the variances
stabilized by transforming the data to their corresponding natural logarithms [14]. This leads to
lognormal kriging [27]. Therefore, this study transformed the element analysis data from ICP–AES
and PXRF instruments to their corresponding natural logarithms if their histograms are characterized
by a positively skewed distribution.
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Table 1. Four different approaches designed in this study to generate soil contamination maps for
copper and lead by using the inductively coupled plasma atomic emission spectrometry (ICP–AES)
and portable X-ray fluorescence (PXRF) analysis data.

ID Input Data Geostatistical Method

1 ICP–AES analysis data Ordinary kriging
2 PXRF analysis data Ordinary kriging

3 ICP–AES and PXRF analysis data transformed by considering the
correlation between them Ordinary kriging

4 ICP–AES (primary) and PXRF (secondary) analysis data Co-kriging

Approaches 1 and 2 were designed to generate soil contamination maps using either the ICP–AES
(n = 12) or PXRF (n = 100) analysis data. The ICP–AES analysis data from 11 validation samples were
not utilized herein. Because approaches 1 and 2 depended on a single data source, they are almost
identical to the conventional approaches used in the previous studies for soil contamination mapping.
Ordinary kriging was used as a spatial interpolation technique for approaches 1 and 2.

Conversely, approaches 3 and 4 were designed to generate soil contamination maps by using both
ICP–AES and PXRF analysis data. In approach 3, the PXRF analysis data, which has relatively low
accuracy, were transformed by considering the correlation between the PXRF and ICP–AES analysis
data. This study examined the correlation by using the element analysis data of 12 samples in which
the PXRF and ICP–AES analyses were performed together. After the transformation, ordinary kriging
was applied to the ICP–AES (n = 12) and transformed PXRF analysis data (n = 100) to generate copper
and lead soil contamination maps. The ICP–AES analysis data was used in preference when both the
ICP–AES and transformed PXRF analysis data were available at the same point. Ordinary kriging was
also used for approach 3. In approach 4, co-kriging was applied to both ICP–AES (primary variable)
and PXRF analysis data (secondary variable) to generate the soil contamination maps. Here, the PXRF
analysis data, which exhibit relatively low accuracy, have a role in the reduction of the uncertainty of
the estimated value from the ICP–AES analysis data if a correlation is detected.

The soil contamination maps for copper and lead generated by the four different approaches were
compared by considering the spatial variations of copper and lead in the maps and the estimation
errors at the 11 validation sample points (Figure 1). Because the spatial variation of PTEs in an
abandoned mine area is largely affected by topography and surface erosion owing to runoff [1,28–30],
this study used a digital elevation model (DEM) to identify the topographical and hydrological
characteristics of the target area. To generate a DEM of the study area, topographical contours with 5-m
intervals were extracted from 1:5000-scale topographical maps published by the National Geographic
Information Institute of Korea. A triangulated irregular network (TIN) surface was then created
from the topographical contours and was converted to a DEM with 5-m grid spacing using ArcGIS
10.1. Spurious depressions on the DEM were identified by ground inspection and were removed by
using the Fill tool in ArcGIS. The flow directions of rainwater in the watershed area including the
contamination sources were analyzed by using the DEM and the Flow Direction tool in ArcGIS.

3. Results and Discussion

Figure 2 shows the spatial distribution of copper and lead contents at the 100 sampling
points that were analyzed by the ICP–AES and PXRF instruments. The concentration of copper
and lead were low in most of areas, although high concentrations were detected near the
waste rock pile and pit heads. A statistical summary of the PXRF analysis results include
copper at minimum = 21 mg/kg, maximum = 8255 mg/kg, mean = 1129.6 mg/kg, and standard
deviation (std. dev.) = 1563.6 mg/kg and lead at minimum = 33 mg/kg, maximum = 2350 mg/kg,
mean = 436.6 mg/kg, and std. dev. = 453.2 mg/kg. The copper and lead contents analyzed by the
ICP–AES instrument for the 23 soil samples, including the 11 validation samples, are presented in
Table 2. The ICP–AES analysis results showed 4437 mg/kg maximum, 17 mg/kg minimum and
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1212.8 mg/kg mean for copper, and 1924 mg/kg maximum, 26 mg/kg minimum and 410.9 mg/kg
mean for lead. The ICP–AES analysis data, with relatively high accuracy, tended to be lower than that
of PXRF. The EC and pH for the 23 soil samples are also presented in Table 2. A statistical summary of
the results include EC at minimum = 13.7 µS/cm, maximum = 65.0 µS/cm, mean = 34.63 µS/cm, and
std. dev. = 13.44 µS/cm and pH at minimum = 4.41, maximum = 5.76, mean = 5.07, and std. dev. = 0.34.
There were no statistically significant correlations among the copper and lead contents, EC and pH.Int. J. Environ. Res. Public 2016, 13, 384 7 of 16 
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Figure 2. Results of element analysis: (a,c) Copper and lead contents in soil analyzed by ICP–AES,
respectively; and (b,d) copper and lead contents in soil analyzed by PXRF, respectively. The ICP–AES
analysis results for the 11 validation samples are not illustrated.

Table 2. Results of element analysis by using the ICP–AES instrument for 23 soil samples. Electrical
conductivity (EC) and pH of the soil samples are also provided. The sample locations are shown in
Figure 1.

ID Cu (mg/kg) Pb (mg/kg) EC (µS¨ cm) pH Remark

89 636 188 44.0 5.76

12 samples in which the PXRF and
ICP–AES analyses were performed together

90 4437 811 17.8 5.69
91 1080 223 26.3 5.04
92 17 26 27.1 4.72
93 57 81 32.4 4.56
94 1338 402 36.4 5.01
95 33 59 51.3 4.80
96 29 46 30.1 5.57
97 344 94 27.6 4.68
98 1535 872 13.7 5.32
99 4041 1924 22.4 4.93

100 48 29 48.3 5.09

V1 1517 602 29.7 4.95

11 samples collected at random points for
validating the soil contamination maps

V2 2364 562 26.7 5.01
V3 1176 262 35.4 5.20
V4 3814 1545 30.3 4.95
V5 334 114 38.2 4.89
V6 48 29 59.6 4.88
V7 2454 695 65.0 4.41
V8 1368 536 31.7 5.10
V9 69 32 14.5 5.47

V10 589 132 37.1 5.21
V11 567 187 50.9 5.38
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Histograms of the copper and lead concentration are presented in Figure 3. As shown in Figure 3,
the distributions of copper and lead contents measured by the ICP–AES instrument at the 12 sampling
points and those measured by the PXRF instrument at the 100 sampling points were positively skewed
(Figure 3a–d). After transforming the data to their corresponding natural logarithms, the PXRF analysis
data for copper and lead mostly followed a normal distribution (Figure 3g,h). However, the ICP–AES
analysis data for copper and lead did not followed a normal distribution due to the insufficient input
data even if the natural logarithm transformations were applied to them (Figure 3e,f).
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copper and lead by PXRF, respectively.

The correlation between the PXRF and ICP–AES analysis data was examined using the contents
of copper and lead measured at the 12 sampling points in which PXRF and ICP–AES analyses were
performed together. As shown in Figure 4, the value of the determination factor, R2, was 0.99 for copper
and lead, indicating a very strong correlation. However, the PXRF analysis data, with relatively low
accuracy, tended to be higher than that of ICP–AES. Therefore, the trend equations of these two data
were calculated as shown in the figure and used in approach 3 to transform the overestimated PXRF
analysis data (n = 100) into approximate values close to those determined by ICP–AES analysis.
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Figure 5 and Table 3 present the results of variogram modeling and cross-validation test, which is
required to perform spatial interpolation by using ordinary kriging and co-kriging. A Gaussian model
was selected at a fitting function for theoretical variogram model because of its general applicability
when the correlation and continuity of data were strong in a small separation distance. Because a
clear anisotropy appeared with the PXRF analysis data, a geometric anisotropy model was used in
approaches 2 and 3. The goodness of fit was checked by cross-validation. The results were satisfactory
for the PXRF (approach 2) and transformed PXRF (approach 3) analysis data, however unsatisfactory
for the ICP–AES analysis data (approaches 1 and 4) due to the insufficient amount of input data.
The variogram models for copper and lead obtained from the PXRF analysis data at the 12 sampling
points (ID: 89–100) were almost identical to Figure 5a,b, respectively, because the correlation between
the PXRF and ICP–AES analysis data was strong.

Int. J. Environ. Res. Public 2016, 13, 384 9 of 16 

 

 
Figure 4. Graphs showing the correlation of ICP–AES and PXRF analysis data for: (a) copper; and (b) 
lead.  

Figure 5 and Table 3 present the results of variogram modeling and cross-validation test, which 
is required to perform spatial interpolation by using ordinary kriging and co-kriging. A Gaussian 
model was selected at a fitting function for theoretical variogram model because of its general 
applicability when the correlation and continuity of data were strong in a small separation distance. 
Because a clear anisotropy appeared with the PXRF analysis data, a geometric anisotropy model was 
used in approaches 2 and 3. The goodness of fit was checked by cross-validation. The results were 
satisfactory for the PXRF (approach 2) and transformed PXRF (approach 3) analysis data, however 
unsatisfactory for the ICP–AES analysis data (approaches 1 and 4) due to the insufficient amount of 
input data. The variogram models for copper and lead obtained from the PXRF analysis data at the 
12 sampling points (ID: 89–100) were almost identical to Figure 5a,b, respectively, because the 
correlation between the PXRF and ICP–AES analysis data was strong. 

 
Figure 5. Results of variogram modeling: (a,b) copper and lead for approach 1, respectively; (c,d) 
copper and lead for approach 2, respectively; (e,f) copper and lead for approach 3, respectively; (g,h) 
copper and lead for approach 4 (primary), respectively; (i,j) copper and lead for approach 4 
(secondary), respectively; and (k,l) copper and lead for approach 4 (cross variogram), respectively.  

  

Figure 5. Results of variogram modeling: (a,b) copper and lead for approach 1, respectively;
(c,d) copper and lead for approach 2, respectively; (e,f) copper and lead for approach 3, respectively;
(g,h) copper and lead for approach 4 (primary), respectively; (i,j) copper and lead for approach
4 (secondary), respectively; and (k,l) copper and lead for approach 4 (cross variogram), respectively.



Int. J. Environ. Res. Public Health 2016, 13, 384 10 of 15

Table 3. Variogram modeling parameters used for the generation of soil contamination maps and
results of cross-validation test.

ID of Approach Element Model Type Nugget Sill
Range

(Major/Minor)
Major

Direction 1

Cross-Validation

ME 2 RMSE 3

1
Cu

Gaussian
model

Isotropic model 0.6 3.2 90 - 475 2392
Pb 0.3 2.2 80 88 611

2
Cu Geometric

anisotropic model
0.4 1.7 70/35 115 232 588

Pb 0.2 0.8 75/40 115 35 170

3
Cu Geometric

anisotropic model
0.25 1.4 65/40 115 86 330

Pb 0.2 0.8 75/40 115 29 140

4 (primary) Cu

Isotropic model

0.6 3.2 90

-

572 1044
Pb 0.3 2.2 80 56 248

4 (secondary) Cu 0.5 1.6 90 - -
Pb 0.5 0.7 80 - -

4 (cross variogram) Cu N/A 2.2 90 - -
Pb N/A 1.0 80 - -

1 Parameters required for geometric anisotropic models; 2 Mean error (mg/kg); 3 Root-mean-square error (mg/kg).

According to approaches 1–4, four types of soil contamination maps of the target mapping area
were generated for copper (Figure 6). The result from approach 1 showed a northwest–southeast
contamination pattern, which was estimated to be concentrated in an area of more than 1000 mg/kg in
broad distribution regardless of the contamination source locations (Figure 6a). Because approach 1
depended on a small amount of ICP–AES analysis data (n = 12), the spreading pattern of copper
concentration was not well illustrated in Figure 6a when considers the contamination sources.
The result from approach 2 showed a spreading pattern of copper contamination in the western
and southern directions, respectively, from the contamination sources (Figure 6b). In addition, a highly
concentrated contamination area of more than 3000 mg/kg was estimated to be distributed around the
contamination sources. Although the spreading pattern of copper contamination was well illustrated
in Figure 6b compared with that in Figure 6a, the copper content in Figure 6b could be overestimated
because the PXRF analysis data tended to be higher than the ICP–AES analysis data, as shown in
Figure 4a.
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Figure 6c shows the result from approach 3 in which both the ICP–AES and transformed PXRF
analysis data were used. The spreading pattern of copper concentration was shown to be similar to
that of Figure 6b. However, the width of the highly concentrated contamination area of more than
3000 mg/kg was estimated to be smaller than that in Figure 6b. This result occurred because approach
3 used the trend equation in Figure 4a to transform the overestimated PXRF analysis data into values
close to that of ICP–AES analysis. Figure 6d illustrates the result from approach 4 in which co-kriging
was applied. A spreading pattern of copper concentration similar to that shown in Figure 6c was
observed. However, the width of the highly concentrated contamination area of more than 3000 mg/kg
was estimated to be larger than that in Figure 6c.

Figure 7 illustrates the soil contamination maps for lead generated by approaches 1–4. The overall
spreading patterns for lead concentration shown in the four maps were similar to those of copper.
In Figure 7a, the spreading pattern of lead concentration around the contamination sources was not
well illustrated owing to insufficient input data. Although Figure 7b showed an improved spreading
pattern of lead concentration from the contamination sources to the west and south compared with
that in Figure 7a, the lead content could be overestimated owing to the limitation of PXRF data analysis.
Figure 7c showed a spreading pattern of lead concentration similar to that of Figure 7b; however,
a highly concentrated contamination area of more than 1400 mg/kg was not identified because the
transformed PXRF analysis data was utilized in approach 3. In Figure 7d, the spreading pattern of lead
concentration was similar to that shown in Figure 7c, however the width of the highly concentrated
contamination area of more than 1400 mg/kg was observed.
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Figure 8 shows the flow direction of rainwater in the study area analyzed by using the DEM and
the Flow Direction tool in ArcGIS. On the basis of the results, it was estimated that the copper and
lead contaminants spread downslope from the contamination sources to the south and west. When
the analytical results for the flow direction of rainwater were compared with the copper and lead soil
contamination maps generated by the four approaches, the spreading patterns of contamination were
shown to be similar to the results from approaches 2–4.
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The estimated values of copper and lead contents in the soil contamination maps generated by
the four approaches were compared with the ICP–AES analysis data for the 11 validation samples
(Figure 1 and Table 2). The results of comparisons for copper and lead are illustrated in Figures 9 and 10
respectively. An examination of the graphs showed that the Pearson Product–Moment Correlation
Coefficient (R) values for copper and lead had strong correlations in the results from approaches 2, 3
and 4. In addition, the root-mean-square error (RMSE) was smallest in the result from approach 3 for
both copper and lead, followed in order by approaches 4, 2, and 1. Therefore, we could know that the
spatial variations of copper and lead contents estimated by approach 3 were more reliable than those
estimated by other approaches.
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Through comparative analysis, approach 3 was determined to be accurate for the generation
of soil contamination maps for copper and lead that can precisely identify the spatial variation of
soil contaminants and can provide the smallest estimation error on average by incorporating the
advantageous aspects of both ICP–AES and PXRF analysis data. Because co-kriging is a suitable spatial
interpolation technique for the integration of multiple-source data with complementary characteristics,
approach 4 was expected to best complement the advantages of the PXRF and ICP–AES analysis data.
However, the errors of estimated values at the 11 validation sampling points were relatively larger
than those from approach 3. This result occurred because the amount of ICP–AES analysis data (n = 12)
for the primary variable was too small to overcome the limitation despite using the PXRF analysis data
for the secondary variable. Therefore, it is necessary to examine the applicability of approach 4 if the
amount of ICP–AES analysis data is insufficient.

Because the distributions of copper and lead contents measured by the ICP–AES instrument at the
12 sampling points did not followed a normal distribution after natural logarithm transformations and
their results of variogram modeling were relatively poor, the geostatisitcal methods (ordinary kriging and
co-kriging) may be misused in approaches 1 and 4. However, this situation can often be occurred if we
depend only on ICP–AES analysis data for exploring the spatial variation of PTEs using geostatisitcal
methods. Therefore, the approach that incorporates the advantageous aspects of both ICP–AES and PXRF
analysis data is recommended when the amount of ICP–AES analysis data is insufficient.

4. Conclusions

In this study, we compared the prediction performances of four different approaches for mapping
copper and lead concentrations using element analysis data from ICP–AES and PXRF instruments.
Through a comparative analysis that considered the spatial variations of copper and lead concentrations
in the soil and the estimation errors at the points of 11 validation samples, the proposed approach 3,
which applies ordinary kriging to both ICP–AES and transformed PXRF analysis data by considering
the correlation between the ICP–AES and PXRF analysis data, was determined to be the most accurate



Int. J. Environ. Res. Public Health 2016, 13, 384 14 of 15

method in generating soil contamination maps because it can incorporate the advantageous aspects of
both data types.

To identify the spatial variation of PTEs in soil, it is important to generate an accurate soil
contamination map using available data and an appropriate spatial interpolation method. However,
numerous previous studies that use either the ICP–AES or the PXRF analysis data for generating soil
contamination maps were limited by insufficient input data or the low accuracy of element analysis,
respectively. From a realistic aspect, it is difficult to secure a large quantity of ICP–AES analysis data to
generate a soil contamination map owing to time and cost constraints. Moreover, although the PXRF
instrument can provide the additional input data needed for performing a spatial interpolation, its
relatively low accuracy makes it difficult to ensure the quality of soil contamination maps. Therefore, it
is beneficial to use the proposed approach 3, which utilizes both the ICP–AES and PXRF analysis data to
compensate for any disadvantages when generating soil contamination maps for an abandoned mine.

It is clear that ICP–AES analysis is the most accurate method for the assessment of soil
contamination related to PTEs. However, this does not detract from the value of the proposed
approach described in the paper because soil contamination mapping requires additional resources.
The proposed mapping approach can act as a valuable filter for the identification of critical areas in
which a more detailed investigation by using the ICP–AES instrument is necessary for the establishment
of preventative measures against the spread of soil contaminants in a given area.
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