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Cognition is defined as the brain’s ability to acquire, process, store, and retrieve
information. Pain has been described as an unpleasant sensory or emotional
experience, and for experiencing pain consciously, cognitive processing becomes
imperative. Moreover, evaluation of pain strongly depends on cognition as it requires
learning and recall of previous experiences. There could be a possible close link between
neural systems involved in cognition and pain processing, and studies have reported an
association between pain and cognitive impairment. In this narrative review, we explore
the available evidence that has investigated cognitive changes associated with pain.
We also examine the anatomical, biochemical, and molecular association of pain and
neuro-cognition. Additionally, we focus on the cognitive impairment caused by analgesic
medications. There is a need to improve our understanding of pathophysiology and
cognitive impairment mechanisms associated with chronic pain and its treatment. This
area provides a diverse opportunity for grounding future research, aiding institution of
timely interventions to prevent chronic pain and associated cognitive decline, ultimately
improving patient care.

Keywords: cognition, pain, memory, cognitive behavior therapy, chronic pain

INTRODUCTION

The multidimensional pain experience is a prevalent complaint in clinical practice and impacts an
individual’s physiologic and psychologic states. Pain is classically defined as an unpleasant sensory
or emotional experience associated with actual or potential tissue damage (Raja et al., 2020). Thus,
pain is a subjective perceptive phenomenon involving cognitive processing rather than a purely
sensory phenomenon (Casey and Lorenz, 2000). Cognition involves the acquisition, processing,
storage, and retrieval of information by the brain (Lawlor, 2002). Cognition is composed of critical
elements such as attention, perception, memory, motor skills, executive functioning, and verbal and
language skills (Gellman and Rick Turner, 2013). Cognition is a vital component of the subjective
perception of pain requiring cognitive-evaluation, learning, recall of past experiences, and active
decision making (Hansen and Streltzer, 2005; Moriarty et al., 2011). The key aspects of learning
and memory require attention, which is enhanced by adding an emotional component to the
process (Tyng et al., 2017). Multiple cortical and subcortical brain areas are involved in perception,
processing, relaying, and pain modulation. Increasing evidence of the close association between
neural systems of cognition and pain shows a bi-directional modulatory role.

Observations in the setting of chronic pain (pain persisting longer than 3 months) usually exceed
the duration of the noxious stimulus and have deleterious effects on the psychosocial elements of
the individual (Hart et al., 2000; Treede et al., 2019; Walankar et al., 2020). Although chronic pain
has long been shown to alter cognitive outcomes, emerging studies over the past decade have drawn
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particular attention to the multi-dimensional effects of pain
on various cognitive domains (Nadar et al., 2016). Apart from
the psycho-social influences of pain, it can also impact the
functional domains and the quality of life in general (Al
Mahrouqi et al., 2020). Further, chronic pain’s economic impact
costs $635 billion annually in direct medical costs, loss of
productivity, and disability programs (Barrett et al., 2020). Thus,
evaluating the relationship between cognition and pain is critical
to understanding chronic pain syndromes, their associations
with comorbidities, and their psychosocial impact for ultimately
improving therapeutic targets and patient outcomes.

In this narrative review, we explore the available evidence
and summarize the existing literature on the effects of pain
on various cognitive changes. We also examine the anatomical,
biochemical and molecular association of pain and neuro-
cognition. Additionally, we focus on the cognitive impairment
caused by analgesic medications. We highlight the need to
improve our understanding of the pathophysiology and the
mechanisms of cognitive impairment associated with chronic
pain and the treatment thereof.

ANATOMY AND NEUROPHYSIOLOGY OF
PAIN

Understanding the association between neural systems involved
in pain and cognition is central to deciphering the relationship
between these two entities. At the most basic level, the pain
pathway consists of (1) Transduction, (2) Transmission, (3)
Modulation, and (4) Perception (Institute of Medicine, and
Committee on Pain, Disability, and Chronic Illness Behavior,
1987; Yam et al., 2018).

Noxious stimuli are transduced via a series of specialized
nociceptors into a recognizable signal, transmitted through Aδ

(touch, temperature), and C fibers (pain). Most sensory fibers
would then project to the dorsal root ganglion (DRG), from
where the sensory input is transmitted to the central nervous
system (CNS; Bourne et al., 2014). In the event of persistent
noxious stimulation, there is an upregulation of A-fibers to
perceive pain in addition to C fibers; this is responsible for central
sensitization leading to hyperalgesia.

Primarily, C fibers contribute to modulation at the level
of DRG by regulating the N-methyl-D-aspartate (NMDA)
receptor configuration and sensitivity (Neumann et al., 1996).
An additional modulation of the ascending pain occurs at the
spinal cord level through the release of gamma-aminobutyric
acid. Functional loss of the lamina II has been implicated in the
development of chronic neuropathic pain (Bourne et al., 2014).

The spinothalamic tracts transmitting pain and temperature
sensations run along the ventrolateral spinal cord to the ventral
posterior nucleus and the central nucleus of the thalamus. Later,
the thalamic projections relay to brainstem reticular formation,
hypothalamus, and higher cortical centers. These projections
to the reticular formation, periaqueductal gray matter (PAG),
and the medial thalamic nuclei are important components of
motivational and affective domains of pain (Bourne et al., 2014).
The thalamic reorganization is an essential pathway for the

development of central pain and neuropathic pain. There is an
extensive cortical neural circuitry involved in the perception,
localization, and modulation of painful stimuli. This network
mostly consists of medial and lateral pain systems. The median
system consists of the anterior cingulate cortex (ACC), the insular
cortices, and the lateral system consisting of primary (SI) and
the secondary somatosensory (SII) cortices. Other cortical areas
involved in pain perception are the ventrolateral orbital cortex
and the motor cortex (Xie et al., 2009).

The descending pain pathway comprises various supraspinal
components – the rostral ventromedial medulla (RVM),
the dorsolateral pontomesencephalic tegmentum, and the
PAG (Bourne et al., 2014). The PAG-RVM-DH (Dorsal
horn) pathway is called the descending pain modulatory
pathway. In the limbic system, amygdala is associated with
the emotional-affective component of pain and modulation
thereof. It is activated in response to noxious stimuli, thus
lending the amygdala’s central nucleus the name “nociceptive
amygdala” (Neugebauer, 2015). The interconnection between
the amygdala and the prefrontal cortex, cingulate cortex,
basal ganglia, and the cortico-limbic reverberating loops is
implicated in chronic pain conditions such as chronic regional
pain syndrome (CRPS), visceral hypersensitivity in irritable
bowel syndrome (IBS), chronic pelvic pain (Thompson and
Neugebauer, 2017). Monoamines, serotonin (5-HT), dopamine
(DA), and norepinephrine (NE) help with modulation of the
descending pathway by predominantly acting on lamina I and
II of the spinal cord. Dysregulated descending modulation plays
a vital role in chronic pain conditions (Bourne et al., 2014)
Figure 1.

NEUROPLASTICITY AND CHRONIC PAIN

Neuroplasticity includes the structural and functional changes
that occur in the brain enabling adaptation to environmental
cues, learning, memory, and rehabilitation after brain injury
(Gulyaeva, 2017). In fact, it is the neurochemical basis of
memory formation (Joshi et al., 2019). Neuroplasticity in the
context of pain refers to the changes that alter an individual’s
response to pain by the development of either chronic pain
or hypersensitivity (Basbaum et al., 2009; Gulyaeva, 2017).
Neuroplastic adaptations of the brain to chronic pain lead to
modulation of cognitive domains, affecting the pain perception.

Imaging studies have suggested a spatiotemporal
reorganization of brain activity in relation to chronic pain,
during which the representation of pain gradually shifts from
sensory to emotional and limbic structures. Thus, the transition
of acute pain to chronic pain is a type of activity-induced
plasticity of the limbic-cortical circuitry resulting in the
reorganization of the neocortex (Thompson and Neugebauer,
2017). Evidence suggests the relationship of the medial prefrontal
cortex (mPFC) in the cortico-limbic interaction for modulation
of response at the amygdala level. This may offer novel
techniques for the control of pain by engaging mPFC control
of the amygdala. There is an inter-individual difference in the
encoding of painful stimuli and generation of memory for
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FIGURE 1 | Ascending and descending pain signaling and modulation of pain at each level. Inset shows a schematic of cortical modulation of pain. PAG,
Periaqueductal gray; RVM, Rostral ventral medulla; DRG, Dorsal root ganglion; NSAIDs, Non-steroidal anti-inflammatory drugs; SNRI, Serotonin and norepinephrine
reuptake inhibitor; SI, Primary somatosensory cortex; and SII, Secondary somatosensory cortex. The schematic art pieces used in this figure were provided by
Servier Medical art (http://servier.com/Powerpoint-image-bank). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License. Cortical modulation schedmatic adapted from Xie et al. (2009).

these experiences. This inter-individual difference is based on
how the noxious versus the innocuous stimuli are handled and
shaped by the individual’s anxiety level. The medial thalamus
and ACC are responsible for encoding the stimuli as painful,
and the somatosensory cortex discerns non-painful stimuli. This
encoding process is also associated with enhanced functional
connectivity between the thalamus and the mPFC and is essential
to the affective component of pain perception and memory
formation (Tseng et al., 2017).

Various neurotrophic factors, neuro-modulatory lipids, and
neuropeptides are implicated in the development of plasticity
(Duric and McCarson, 2006; Doan et al., 2015). Neuropeptides
such as NE, DA, and 5-HT are essential in modulating descending
pain signals and the affective component of pain, which is
often linked to depression. Similarly, brain-derived neurotrophic
factors (BDNF) are associated with the development of synaptic
plasticity and de novo neurogenesis throughout the peripheral
and central pain circuits. Decreased BDNF levels at the
hippocampus are found in chronic pain conditions, and this
finding is positively linked to the development of depression-like
symptoms (Duric and McCarson, 2006; Doan et al., 2015).

A classic example of neuroplasticity in chronic pain
setting is neuropathic phantom limb pain (Ramachandran
and Rogers-Ramachandran, 2000). Its central pathophysiology
involves the complex interaction of cortical elements, memory,
and pain perception. Modalities such as non-invasive brain
stimulation (NIBS) and cognitive-behavioral therapies (CBT)

have shown positive effects in the treatment of neuropathic pain,
reinforcing the role of cognition, and cortical perception in the
pathophysiology of pain (Kikkert et al., 2019).

Repetitive noxious stimuli often lead to the development of a
maladaptive change at the CNS level. This maladaptive change,
called the “wind-up phenomenon” or central sensitization,
is responsible for developing chronic intractable pain or
non-responsive pain (Müller, 2000). This manifests either as
hyperalgesia or allodynia. Hyperalgesia, where mildly noxious
stimuli are perceived as painful due to resetting of the peripheral
nerve threshold. Whereas, in allodynia, there is a recruitment of
nerves that carry non-noxious impulses to pain-sensing neurons.
Thus, a non-noxious stimulus is perceived as a noxious stimulus
in allodynia. Additionally, the spontaneous firing of the DRG
may add to the wind-up phenomenon (Gottin et al., 1995;
Wilder-Smith, 1995). When sensory stimuli act on modified
central neural mechanisms, the output is influenced by the
memory of these painful stimuli (Melzack et al., 2006). The pre-
emptive analgesia concept focuses on preventing the wind-up
phenomenon. This is often achieved by blocking the peripheral
transmission of pain by local anesthetics and central perception
by using opioids and NMDA receptor antagonists (Gottin
et al., 1995; Müller, 2000). There is growing interest in the
use of preemptive analgesics in the surgical context. However,
various authors have conflicting opinions about the use of
preemptive analgesics for surgical patients (Gottin et al., 1995;
Wilder-Smith, 1995).
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CLINICAL EVIDENCE FOR PAIN AND
COGNITION

A bi-directional relationship exists between cognition and
pain (Villemure and Bushnell, 2002). Disruption of cognitive
processing has been investigated in various common chronic pain
syndromes, with studies focusing on several cognitive output
types. Fibromyalgia, migraine, chronic back pain, rheumatoid
arthritis, diabetic neuropathy, osteoarthritis, CRPS, peripheral
neuropathic pain syndromes, and multiple sclerosis have been
the focus of most clinical studies (Calandre et al., 2002; Dick
and Rashiq, 2007; Cousins et al., 2015; Gil-Gouveia et al.,
2015; Curatolo et al., 2017; Huang et al., 2017; Jensen et al.,
2018; Martinsen et al., 2018; Alemanno et al., 2019; Said
et al., 2019; Oláh et al., 2020). Major cognitive parameters
investigated encompass attention, learning, memory, sustained
concentration, processing speed, psychomotor ability, and
executive function Figure 2.

The methodologies employed in these studies comprise a
battery of tests, which typically include pain questionnaires such
as numerical rating scales, visual analog scales, or McGill pain
questionnaire to measure pain, coupled with tests of cognition.
Cognitive function may be assessed using subjective self-
report measures or objectively with formal, empirically validated
neuropsychological tests focusing on one or more aspects of
cognition. To provide objectivity to the diagnosis, predicting
therapeutic benefits of individualized interventions for chronic
pain, the use of fMRI signatures is being investigated. This neural
circuit potentially includes the thalamus, anterior and posterior
cingulate cortex, and PAG (Wager et al., 2013). Analyzing the
change in these signatures over time and with treatment can
help pave way for personalized medicine in the future (Thorp
et al., 2018). Comorbid affective disorders (such as depression
and anxiety) and the effects of sleep disturbance and medication
use are sometimes, but not always, considered, and they present
an interesting dichotomy in the experimental approach.

Attention
Attention is the individual’s capacity to process information and
involves focused or directed consciousness (Mirsky et al., 1991).
A diffuse system of interconnected neurons controls attention
at the most fundamental level called the attention matrix. This
system receives intrinsic and extrinsic sensory input continually,
ultimately impacting the functional adaptations. Attention is
a function of cortical and subcortical gray matter structures
globally, with interconnected white matter tracts. The frontal
lobe and inputs from a widespread network of thalamic and
bihemispheric structures are the essential component of the
attention neural networks (Filley, 2002). There is an overlap
between the pain pathways and attention matrix, which makes
the study of attention in pain and the modulation particularly
interesting. Legrain et al. (2009) suggested that continued
painful stimuli impact attentional control mechanisms required
to remove task-irrelevant stimuli, resulting in decreased task
performance. In experimental studies, attention is evaluated
based on attention span, attention switching between ≥2

cognitive tasks, and divided attention, which studies the
ability to process >1 source of information simultaneously
(Moore et al., 2019).

Young adults and middle-aged adults can use cognitively
demanding tasks to diverge their attention and self-manage pain
to some extent (Valet et al., 2004). Pain sensitivity is decreased
with engagement in attention requiring tasks and with the use
of environmental distractors (Sloan and Hollins, 2017; Hoegh
et al., 2019). However, older adults are limited in this capacity,
and chronic pain can impair independent living, a risk factor
for physical disability, hospitalization, and death (van der Leeuw
et al., 2018). Comorbidities such as depression and anxiety can
impact both the perception of pain and attention (Shuchang
et al., 2011). Thus, chronic pain patients, especially in the older
age group with coexisting conditions, require special care in the
clinical setting.

Clinical studies over the past decade have shown that there
is an increased incidence of patient-reported attention deficits
with chronic pain (McCracken and Iverson, 2001; Muñoz and
Esteve, 2005; van der Leeuw et al., 2018). The majority of
the studies found no association between age, gender, pain-
chronicity, anxiety, depression, medication, site of pain, and
cognitive performance (Dick and Rashiq, 2007; Martinsen et al.,
2018). Interestingly, recent studies show decreased accuracy on
attentional switching and divided attention tasks in patients with
fibromyalgia (Moore et al., 2019). Animal models used to study
the impact of pain on attention and learned behavior (operant
nose poke tests) shows increased omissions and decreased
accuracy in experimentally induced inflammatory pain (Boyette-
Davis et al., 2008; Pais-Vieira et al., 2009). Due to heterogeneity in
the chronic pain syndrome type, pain scales used, and cognitive
tests for assessment of attention, it is difficult to draw definitive
conclusions (Emerson et al., 2020; Rischer et al., 2020).

Memory
Conceptually, memory consists of a succession of storage
systems essential for information flow from the environment
to a short-term memory store, which then feeds long-term
memory. The information about the environmental cues passes
temporary sensory buffers en-route, which are essentially part
of perceptual processes (Baddeley, 2010). Working memory is
a subset of memory which controls this flow of information
in and out of the long-term memory, thus playing an essential
role in learning and cognition (Shiffrin, 1977). The hippocampus
is associated with long-term explicit memory formation and
handling emotional stressors (Zaletel et al., 2016; Sawangjit
et al., 2018). Human and animal studies show a decreased
hippocampal volume and structural and biochemical plasticity
in the setting of chronic pain (Johnston et al., 2012; Mutso
et al., 2012; Tajerian et al., 2018). Amygdala is another critical
brain region for learning. The basolateral amygdala is activated
in the presence of glucocorticoid, which impacts memory
consolidation. Furthermore, working memory performance
and retrieval are impaired with high glucocorticoid levels
(Roozendaal et al., 2006). Involvement of the amygdala in chronic
pain has now been shown in human studies and animal models
for chronic pain, eliciting the influence of dorsal horn (DH)
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FIGURE 2 | Cognitive domains and the interconnectivity to pain perception and memory formation.

neuron excitation and the interaction between the amygdala and
the mPFC (Neugebauer et al., 2004; Ji et al., 2010).

Studies over the past have demonstrated that chronic pain
adversely affects working memory, recall, and recognition
memory (McCracken and Iverson, 2001; Muñoz and Esteve,
2005; Berryman et al., 2013). Most patients with chronic pain
report poor memory, recall, and concentration in their daily
activities (Dufton, 1989; Iezzi et al., 1999, 2004; McGuire,
2013). Interestingly, implicit memory (semantic, procedural,
and conditioned) is less likely to be affected by pain owing
to its automated nature (Grisart and Van der Linden, 2001).
Additionally, most studies concluded that patients with pain have
deficits in general and specialized cognitive screening measures
(Povedano et al., 2007; Rodríguez-Andreu et al., 2009). It is
still unclear whether the intensity and nature of chronic pain
syndrome impact semantic memory, immediate or delayed verbal
memory, recognition memory, visuospatial memory, and long-
term memory (Ryan, 2005; Weiner et al., 2006; Lee et al., 2010).
Several groups have modeled pain-related cognitive impairment
in animal models and demonstrated poor performance on
delayed non-matching to position lever press tasks and delayed
novel object recognition (Lindner et al., 1999; Millecamps et al.,
2004; Hu et al., 2010). They describe this decreased accuracy,
increased response latency for cognitively challenging tasks as
the negative effects of pain on spatial learning, recognition, and

memory (Hu et al., 2010). Neuropathic rat models are being
analyzed to investigate the role of novel molecular therapeutic
targets for chronic pain (Qian et al., 2019).

Processing, Executive Functioning, and
Decision Making
Executive function is a set of neurological processes that assist
with complex cognitive functions such as planning, organization,
thought control, self-regulation, goal-directed actions, initiation,
and analyses of actions (Moriarty et al., 2011). Emotional
decision-making requires higher executive functioning (Tyng
et al., 2017). Anatomically, executive functioning is a higher
mental function regulated by the frontal lobes, including the
dorsolateral prefrontal cortex (DLPC), ACC, orbitofrontal cortex
(Verdejo-García et al., 2006). There is a functional overlap in
the pathways in the brain responsible for executive functioning
and pain perception. Gray matter reduction is implicated in age-
related cognitive decline and an impaired executive functioning
and decreased processing speed (Minkova et al., 2017). These
age-related gray matter changes are expedited in chronic pain
syndromes. ACC, IC, and the DLPC are decreased in volume
in patients with chronic pain (Ceko et al., 2013; Lai et al., 2020;
Planchuelo-Gómez et al., 2020). Since these areas are also part of
the pain neuromatrix, loss of these areas correlates with changes
in cognitive executive functioning, and processing speed.
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Perception, processing speed, executive functioning, and
decision making are studied in patients with chronic pain and
have demonstrated that pain adversely affects perceptual learning
and emotional decision making (Grisart and Van der Linden,
2001; Apkarian et al., 2004; Barnhart et al., 2019). Patients
with pain often show greater harm avoidance, but there is no
impact on overall cognition in this subset (Verdejo-García et al.,
2009). The type of chronic pain defines the impact on executive
functioning. While it is impacted in FM, no correlation is noted
in neuropathies and chronic musculoskeletal pain (Grisart and
Van der Linden, 2001; Verdejo-García et al., 2009). Interestingly,
emotional decision-making is more significantly impacted in
patients with chronic lower back pain than CPRS (Apkarian et al.,
2004). It is still unclear whether the intensity and nature of the
chronic pain syndrome impacts processing speed and attentional
interference tasks. Animal models for inflammatory pain show
impaired emotional decision-making on rodent gambling tasks
(Pais-Vieira et al., 2009; Ji et al., 2010).

Psychomotor Efficiency and Reaction
Time
Clinical studies in patients with chronic pain such as
neuropathies have demonstrated that pain adversely impacts
performance and psychomotor efficiency, and verbal reaction
time (Ryan et al., 1993; Antepohl et al., 2003; Ryan, 2005;
Shuchang et al., 2011). The number of pain sites and neuropathy
duration is also positively correlated to psychomotor efficiency
(Ryan, 2005). It is still unclear whether the intensity and
nature of chronic pain syndrome impact motor skills latency and
amplitude. The measure of psychomotor efficiency has been most
extensively studied and reported in patients with neuropathies,
making the generalizability of this observation over different
pain cohorts difficult.

THERAPIES FOR CHRONIC PAIN AND
IMPACT ON COGNITION

Pharmacological Therapies
Management of chronic pain remains a challenge for healthcare
professionals. Apart from the treatment of inflammation using
non-steroidal anti-inflammatory drugs, routinely used modalities
for pain control target the sensory component of pain. The targets
comprise of control of pain transmission [opioids and tricyclic
antidepressants (TCAs)] and modulation of neuronal excitability
(opioids, anticonvulsants) Figure 1.

Opioid receptors are uniquely present at all the neural loci
associated with pain signaling and perception (Corder et al.,
2018). The opioid system is well-positioned in the brain network
to modify the perception of pain. This includes somatosensory
neurons of the DRG, excitatory interneurons, and lamina I
neurons that relay information to the thalamus and the PAG.
The non-linearity of the intensity of the painful stimulus and the
perception of pain result from the neural input from the sensory,
emotional, interoceptive, inferential, and cognitive information.
In the descending pain pathway, opioids act on the PAG, RVM,

and spinal cord to modify the nociceptive input perception.
Opioid analgesics also act at the level of the rostral, subcortical,
and cortical sites, causing an analgesic impact by altering the
body’s affective and somatic responses (Corder et al., 2018).

Opioids have unique problems, including constipation,
diarrhea, sedation, nausea, vomiting, and pruritus (Benyamin
et al., 2008; Pask et al., 2020). Having said that, opioids remain the
most preferred analgesic in the setting of chronic pain because of
their high potency (Portenoy, 2011). Often patients on long-term
therapy develop tolerance to the opioid medication, and higher
doses are required to achieve the same therapeutic benefit (Anand
et al., 2010). However, higher mean opioid consumption worsens
distinct cognitive domains, in particular attention, language,
orientation, and psychomotor function. Periodically follow-up
with patients on chronic pain medications is essential to diagnose
subtle cognition changes (Pask et al., 2020). That said, the
critical prespecified adverse events related to opioids, including
addiction, depression, and particularly cognitive decline, are
often not reported (Els et al., 2017). Evidence suggests that
children born to opioid-dependent mothers tend to have a higher
incidence of developing cognitive dysfunction, psychomotor
disturbance, attention problems, and overall lower IQ as they
grow up (Lee et al., 2020). Opioid-induced decreases in arousal
are caused by blockage of cholinergic arousal projections from
the brainstem to the thalamus and the cortex (Brown et al.,
2018). Recent studies show a decrease in the gray matter
volume and bilateral amygdalar modulation even with once-
daily administration of morphine for 1 month (Lin et al.,
2016). Mu opioid receptor and kappa-opioid receptor agonists
have been shown to affect normal cognitive function; there
is increased psychomotor retardation, decreased accuracy, and
impaired recall. This bidirectional impact of pain and cognition
has allowed researchers to test opioid antagonists as a potential
cognitive-enhancing drug (Jacobson et al., 2018).

Although opioids, TCAs, and anticonvulsant therapies
inherently impact the cognitive domains, this impact is
inconsistently observed over human and animal studies. The
majority of human studies suggest a decrease in attention,
processing, memory encoding and retrieval, reaction time, and
psychomotor performance with the use of opioids, TCAs, and
anticonvulsants (Hindmarch et al., 2005; Sjøgren et al., 2005;
Cherrier et al., 2009; Salinsky et al., 2010). However, evidence
from some human studies and animal models is equivocal
(Jamison et al., 2003; Tassain et al., 2003; Shannon and Love, 2004,
2005). Thus, analgesics in chronic pain and cognition studies can
be a potential confounder that cannot be effectively controlled
due to ethical reasons.

Endocannabinoids (ECs) are the in-built antinociceptive
system of the body. Current research focuses on understanding
this EC system better and maximizing its potential to provide
safer pain control. The major areas of interest include – EC
metabolism inhibition, Anandamide (AEA), and 1-arachidonoyl
glycerol (2-AG) are the earliest recognized EC ligands in the
body (Devane et al., 1992; Stella et al., 1997; Anand et al., 2010).
ECs, AEA, and 2-AG, along with their enzyme modulators, fatty
acid amide hydrolase and monoacylglycerol lipase, are essential
components for modulation of pain perception and target of
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most therapeutic interventions. Even though preclinical evidence
suggests the role of opioid transmitters in causing cognitive
decline, there is not enough evidence to indicate the role of ECs as
a potential to decrease cognitive abilities (Woodhams et al., 2017).
There is a growing interest in exploring the benefit of cannabis-
derived products for managing chronic persistent pain (Wallace
et al., 2015). However, it has been shown in recent studies that
cannabis products increase the risk of depression and anxiety
in adults experiencing chronic pain (Wildes et al., 2020). Thus,
individualizing the analgesic therapy (type and dose) based on the
patient’s profile is essential for preventing pain and pain-related
cognitive decline.

Non- pharmacological Therapies
Opioids are potent analgesics, however, considering their
unique side effect profile and evidence of an emerging opioid
epidemic, alternative non-pharmacological therapies are now
being explored. Sensory processing of signals can be modulated
by altering the attention component of cognitive processing
(Petrovic et al., 2000). Modulation of the central sensory
processing was successfully investigated by measuring regional
cerebral blood flow with Positron Emission Tomography (PET)
based technique during cognitively challenging tasks and with
a painful stimulus (Petrovic et al., 2000). Neuroimaging studies
PET and fMRI have shown a decreased pain perception with
simple distraction techniques. This finding points toward the
phenomenon of cortical suppression of pain in the presence
of a cognitively challenging task. There were an observable
increased signal intensity and activation of the cingulo-frontal
cortex, including the orbitofrontal and perigenual ACC, as well as
PAG and the posterior thalamus (Valet, 2004). This phenomenon
is being translated into clinical practice by using innovative
techniques such as virtual reality (VR) and augmented reality
(AR) as a clinical tool for the management of pain (Pozeg et al.,
2017; Pourmand et al., 2018; Chuan et al., 2020).

Cognitive behavior therapy refers to the psychotherapeutic
techniques used to decrease pain perception. Traditionally,
it includes relaxation therapy, activity pacing, sleep hygiene,
scheduling pleasant activity, identifying and modifying cognitive
distortions (Barrett et al., 2020). CBT has also shown promise
in preventing acute pain conversion to chronic pain (Glare
et al., 2020). Pain catastrophizing is a response style that impacts
the outcomes of chronic pain patients. Pain catastrophizing
is a maladaptive change, and patients often view pain as
uncontrollable, permanent, and destructive. CBT is a vital
treatment modality for this class of chronic pain patients (Day
et al., 2020; Gilliam et al., 2020). Evidence in fibromyalgia
patients suggests the clinical benefits of CBT in reducing
pain catastrophizing (Lazaridou et al., 2017). Newer CBT
methods, such as dialectic pain management (DPM), are being
employed to improve and respond to chronic pain therapy
(Barrett et al., 2020). DPM skill group sessions include a
dialectic integration of change with acceptance to the present
moment; this construct is further strengthened with mindfulness
practices. Emotions, vulnerabilities, self-compassion, motivation,
invalidation, and interpersonal effectiveness, and other personal
challenges are addressed that commonly impact chronic pain

patients (Barrett et al., 2020). Not just chronic pain, but therapies
like acupuncture, hypnosis, mindfulness, relaxation, VR, and
AR-based delivery system are being utilized for inpatient and
outpatient acute pain such as headache, migraine, and pain in
acute and emergency setting (Lindner et al., 2020; Vekhter et al.,
2020). As a complementary procedure, acupuncture provides
therapeutic benefits by increasing pain thresholds and insular
activation (Cao et al., 2019).

Mindfulness meditation and mindfulness-based cognitive
therapy have shown therapeutic benefit and improved sensitivity
to opioid-based treatment in patients with chronic lower back
pain (Zgierska et al., 2016; Day et al., 2019, 2020). Mindfulness-
based practices focus on altering the pain catastrophizing, which
is an essential component of non-pharmacological therapies
for chronic pain. It alters the cognitive content, processing,
and negative affectivity, thus leading to a shift critical for
any treatment efficacy (Day et al., 2020). Other theoretical
models hypothesize that mindful meditation can restructure
the pain-related cognitive content, making adaptive changes
necessary to counter pain perception. Studies have shown an
increase in the EC levels even after short-term meditation
practice, providing evidence of the analgesic potential of mind-
body therapies (Sadhasivam et al., 2020). Understanding and
individualizing the treatment and matching it to the patient’s
requirement can improve treatment response, adherence, and
outcomes (Day et al., 2020; Zetterqvist et al., 2020). Considering
at-home practices and online modules can improve reach and
compliance with mindfulness-based therapies (Day et al., 2020;
Zetterqvist et al., 2020).

FUTURE DIRECTIONS

Clinical and preclinical studies indicate a definitive link between
pain and cognitive domains. However, the precise underlying
psychological and neural mechanisms, the cognitive deficit
associated with each chronic pain condition, and the role of
subjective factors, the nature and the duration of the pain are
yet to be elucidated. Chronic pain also results in adaptations
and alterations in cognitive strategies, further adding to the
heterogeneity in interpreting the primary deficit. Neuroplasticity-
based reorganizational changes have an essential role in pain
permanence and pain modulation and should be considered
during the interpretation of the findings.

Lack of consistent cognitive effects across studies, methods,
and pain conditions highlight the need for more standardized
evaluation methods to allow comparisons to identify global
and precise cognitive deficits. The use of different batteries
of neurocognitive tests and pain questionnaires prevent a
head-on comparison between different chronic pain conditions
and their impact on the cognitive domains. The tests should
have the sensitivity to identify the intensity of pain and the
effect of pain on various cognitive domains. These limitations
and the complex nature of the interconnection between
pain and cognitive neuro-matrix makes evaluative conclusions
rather difficult. Future studies should be designed to address
these issues. Furthermore, current research lacks evidence
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to draw inference for longer-term impacts on cognition in
patients with chronic pain. Chronic pain-based animal models
have been used to understand the implication of pain on long
term cognitive domains; however, these models are limited in
their ability to mimic the motivation-affective and evaluative
aspects of pain.

Future studies should be modified to incorporate
psychophysiological, psychophysical, pharmacological, and brain
imaging techniques to evaluate cognitive effects in the setting of
chronic pain. Such studies would provide a multidimensional
understanding of cognitive effects and provide insights into the
underlying mechanisms and outcomes of pharmacotherapy.
The current knowledge paves the way for future research
to understand better the cognitive domains and their
connection with various pain dimensions to improve therapeutic
management and avoid unfavorable cognitive outcomes.

CONCLUSION

The past two decades have provided tremendous insights into
the multifaceted role of pain in modulating cognitive domains

and vice versa. This comprehensive review focused on the
multidimensional role of pain in several cognitive domains
including attention, memory, processing, executive functioning,
decision making, psychomotor efficiency and reaction time
highlights the current understanding of the intricate association
between pain and cognition. We also provided insights into
the role of various pharmacologic and non-pharmacologic
approaches in the management of pain and the cognitive
implications associated with it. It is imperative to understand the
precise nature of the cognitive task affected by chronic pain. This
understanding is crucial to tailor pain management therapy to the
requirement of the individual. This personalized multimodal pain
management allows improvement in long term quality of life and
facilitates recovery.
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