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The recent breakthrough from AlphaFold2 and RoseTTAFold set a profound milestone for solving the
protein folding problem, but they were not explicitly trained to predict protein foldability, i.e., if a protein
can really fold into the predicted 3D structure. We wondered if the computational models from
AlphaFold2 and RoseTTAFold might carry protein foldability information. Therefore, we predicted the
structural models of 159 circular permutants and 158 alanine insertion mutants of the 159-residue
dihydrofolate reductase. Our data showed that although AlphaFold2 and RoseTTAFold cannot directly
identify unfoldable proteins, the RMSD values of computational models are correlated with protein
foldability, with higher RMSD values indicating lower protein foldability. Furthermore, this correlation
is independent of secondary structures, and the RMSD values of computational models are quantitatively
correlated with protein foldability but not protein functions. Additionally, using a dataset of 129 de novo
designed proteins, we showed that inter-model RMSD values between AlphaFold2 models and
RoseTTAFold models are a good indicator of protein foldability. At last, we showed that inter-model
RMSD values are also useful for evaluating protein solubility by modeling 1664 natural proteins. Our
work could be of great value to the design of novel proteins and the prediction of protein foldability.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Proteins are synthesized as linear chains of amino acids, but
generally they could not perform biological functions before form-
ing specific three-dimensional (3D) conformations. The formation
of the 3D structure of a peptide sequence, i.e., protein folding, is
tremendously challenging because the large dimensionality and
its stochasticity. However, the seminal work by Christian Anfinsen
and colleagues led to the hypothesis that the peptide sequence of a
protein intrinsically determines its specific 3D structure [1]. Since
then, protein folding has been described as a searching for the
lowest-energy conformation in the energy landscape [2]. This
hypothesis further led to the extensive investigation of the protein
folding problem, which includes three questions: what is the pro-
tein folding code, how to predict the 3D structure of a given
peptide sequence, and what are the kinetic folding pathways of
proteins [2,3]. The answers of these three questions will let us
know if a protein can fold (foldability), what is the 3D conforma-
tion (fold) of a protein, and how a protein achieves its 3D confor-
mation (folding kinetics).

With the accumulated contributions of many scientists,
remarkable achievements have been made in solving the protein
folding problem in the last fifty years [2]. The biggest breakthrough
was recently achieved by AlphaFold2 [4] and RoseTTAFold [5]. Both
methods took advantages of previous knowledges on protein folds
and the recent development of computational algorithms and
hardware. By incorporating physical constraints, evolutionary
information, neural networks, and GPU computing, AlphaFold2
and RoseTTAFold were able to predict most protein structures
(folds) comparable to experimental accuracy. Therefore, these
methods are extremely helpful when we want to know the possi-
ble 3D structure of a natural protein. However, a virtually pre-
dicted model is far from a viable folded protein. It is unknown
yet whether a peptide chain could be really foldable when it is vir-
tually folded. For example, David Baker and colleagues recently
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designed 129 proteins computationally with trRosetta but
discovered that 102 proteins did not fold well after expression [6].

Circular permutation is a protein engineering strategy to eluci-
date the structure–function relationship and folding kinetics of
proteins [7]. In circular permutation, the peptide chain of a protein
is rearranged by joining the N-terminus and the C-terminus while
new termini are generated by the cleavage of a peptide bond other
than the original ones (Fig. 1a). Therefore, circular permutation
changes the connectivity but not the composition of residues of a
protein. Besides being a research tool, circular permutation also
occurs in natural proteins as an evolution strategy [8]. Studies
showed that certain circular permutation affects the folding pro-
gress of a protein while keeping the overall structure and function
without significant changes [7,9–11]. If the cleavage in a contigu-
ous peptide segment results in the complete loss of the ability of
the protein to fold, this sequence region is named as a folding ele-
ment, which might play key roles in the formation of folding nuclei
during the protein folding process [11]. Previous studies proposed
that the presence but not the order of folding elements is essential
for a protein to be foldable [9,11–13]. Although neither AlphaFold2
nor RoseTTAFold was designed to predict folding foldability or
folding kinetics, both methods took advantages of sequence evolu-
tion information. Therefore, it is of great interest to know if these
state-of-the-art computational methods could distinguish foldable
circular permutants from unfoldable ones of a natural protein. That
is, if protein foldability information could be extracted from pre-
dicted protein folds. A note is that protein folding kinetics is not
discussed in this work.

The dihydrofolate reductase of Escherichia coli (EC 1.5.1.3;
referred as DHFRcoli in this work) is an intensively studied model
in protein circular permutation. By generating circular permutants
at all 158 neighbored residue pairs of this 159-residue protein,
Masahiro Iwakura and colleagues defined ten folding elements of
DHFRcoli based on experimental data [11]. Breaking any one of
these folding elements abolished the correct folding of DHFRcoli.
Interestingly, these folding elements did not strictly align with
the secondary structural units, or the substrate and coenzyme
binding sites [11]. Nonetheless, the residues in these folding
Fig. 1. Construction of the circular permutants and model quality. (a) Scheme of circula
new termini are introduced by the cleavage of a peptide bond elsewhere. (b) Scheme of th
are residue numbers. A five-glycine linker was added to connect the original termini.
permutants. The pointed models by the arrows are shown in D. (d) A predicted model fr
and A predicted model from RoseTTAFold for the experimentally foldable and active circ
calculated as the backbone RMSD aligned to the X-ray structure (PDB ID: 1RX4). The X-ray
spectrum by pLDDT values of Ca atoms (red: higher pLDDT values; blue: lower pLDDT val
referred to the web version of this article.)
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elements were correlated with the formation of the folding nuclei
in the early folding events [11].

In this work, we systematically modelled the 3D structures of
the 159 circular permutants of DHFRcoli with both AlphaFold2
and RoseTTAFold. Although not all permutants were experimen-
tally foldable and active, they were all virtually folded and highly
resembled the X-ray structure of the wild-type protein, indicating
that these computational methods cannot evaluate the foldability
of proteins. However, when aligned to the wild-type structure,
the theoretical models of unfoldable permutants had larger RMSD
values than the foldable permutants. Furthermore, the correlation
between RMSD values and foldability was independent of sec-
ondary structures. These findings were confirmed by modeling
another 158 alanine insertion mutants of DHFRcoli [14] using both
AlphaFold2 and RoseTTAFold. Furthermore, using a dataset of 129
de novo designed proteins, we found that inter-model RMSD val-
ues between AlphaFold2 models and RoseTTAFold models were a
good indicator for evaluating protein foldability when no wild-
type structure information is available. At last, we showed that
inter-model RMSD values could also be used to evaluate protein
solubility based on a dataset of 1664 natural proteins. Our work
indicated that the computational models from AlphaFold2 and
RoseTTAFold could be used to evaluate protein foldability.

2. Methods

2.1. Construction of the sequences of the circular permutants

The circular permutated sequences were constructed according
to the construction methods described in [10,11,21]. A five-glycine
(GGGGG) sequence flanked the C-terminal residue (residue 159) of
the wild-type sequence, connecting the downstream sequence in
the permutated protein. When the N-terminal residue was not
methionine (M), the extra M was added as required in protein
expression. However, as describe in [21], an extra M was also
added for the DHFRcoli-20 sequence since this was done in protein
expression to protect the removal of M20 by the methionyl-
aminopeptidase.
te permutation. The original termini are connected by a flexible peptide linker, and
e sequence construction of the DHFRcoli circular permutants. The marked numbers
(c) The distributions of the backbone RMSD values of the 159 AlphaFold circular
om AlphaFold2 for the experimentally unfoldable circular permutant DHFRcoli-92,
ular permutant DHFRcoli-79. The RMSD values were averaged from five models and
structure of the wild-type DHFRcoli is colored in gray and the models are colored as

ues). (For interpretation of the references to colour in this figure legend, the reader is
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2.2. Construction of the sequences of the alanine insertion mutants

As describe in [14], an alanine insertion mutant had an alanine
residue inserted between two neighbored residues. For the 195-
residue DHFRcoli, there would be 158 insertion sites. However,
When the nth residue is an alanine, (n-1)An and nA(n + 1) have
the same sequence. So the actual number of the alanine insertion
mutants were 145 since DHFRcoli contains 13 alanine residues.
2.3. Acquiring of the experimental data

The experimental data of the circularly permutants were
obtained from the reference [11]. From the original paper, we
could not determine the relative expression level (solubility) of
the permutants, so we assigned foldability (foldable vs unfoldable)
according to the enzymatic activity data and the CD data. The
experimental data of the permutant 54 (DHFRcoli-54) was missing,
but it was assigned as foldable since this position was not included
in any folding element [11]. The experimental data of the alanine
insertion mutants were obtained from the reference [14]. The ala-
nine insertion mutant 67 (DHFRcoli-67A68) did not have the pre-
cipitant ratio data, but this mutant was assigned as foldable in
this work, since it was not included in any folding elements. The
data were extracted from the figures using WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer).
2.4. Acquiring of the sequences of the de novo design and E. coli

The sequences of the E. coli proteins reported in Niwa et al. [16]
were downloaded from the NCBI protein sequence database by
matching the JW ID, the locus tag K-12, the locus tag MG1655,
and the gene name. The sequences of the de novo designs of the
Baker group [6] were obtained from the associated information
of the paper. The experimental data were obtained from the papers
as well.
2.5. Protein structure prediction with AlphaFold2

The 3D structures of the DHFRcoli sequences were predicted
with AlphaFold2 using MMseqs2 v1.2 [22]. Templates were used,
and the Amber force field was used to relax the model structures.
The multiple sequence alignment (MSA) mode was MMseqs2
(UniRef + Environment), and the pair mode was set as
‘‘unpaired + paired”. The recycle number was three. For each
sequence, five unrelaxed and five relaxed models were generated,
and the relaxed models were used in followed analyses.
2.6. Protein structure prediction with RoseTTAFold

The 3D structures of the DHFRcoli sequences were predicted
with the RoseTTAFold using the end-to-end version. The checked
out main version was 20,210,803 with UniRef30 HHsuite
(2020.06), BFD (id30_c90), and pdb100 (2021Mar03). For each
sequence, five models were generated and used for analyses.
2.7. RMSD calculation

The RMSD values between the predicted models and the crystal
structure (PDB ID 1RX4) were calculated with the ‘‘align” function
in Pymol [23]. Only backbone non-hydrogen atoms (CA + CB + C +
O) were used in the alignment. The aligned structures were pre-
pared in Pymol and the models were colored by pLDDT scores in
spectrum.
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3. Results

3.1. Foldable and unfoldable circular permutants have folded 3D
models from AlphaFold2 and RoseTTAFold

DHFRcoli is a 159-residue protein with well characterized crys-
tal structures. As a control, we modelled the structure of the wild-
type protein using AlphaFold2 and RoseTTAFold. The model quality
was evaluated by the backbone RMSD value between the model
and the X-ray structure (PDB ID 1RX4). The RMSD values of the
AlphaFold2 model and the RoseTTAFold model were 0.369 ± 0.02
2 Å and 0.529 ± 0.003 Å respectively (Figure S1), indicating that
both methods recaptured the native structure with high accuracy.

In 158 circular permutants, a five-glycine linker was inserted
between the original N-terminal and C-terminal residues [11].
Therefore, this five-glycine linker was also appended to the C-
terminus of the wild-type sequence to serve as the reference
sequence. This linker was optimized and did not perturb the core
structure and function of DHFRcoli according to the previous inves-
tigation [10] and an X-ray structure containing four glycine resi-
dues at the C-terminus (PDB ID: 5UII). Since this sequence also
could be considered as an additional circular permutant with the
first residue being the original N-terminus, it was referred as
DHFRcoli-1, leading to 159 circular permutants in total. Accord-
ingly, the circular permutant with the nth residue as the N-
terminus was named as DHFRcoli-n in this work (Fig. 1b). Among
the 159 permutants (including DHFRcoli-1), 86 were assigned as
foldable and 73 were unfoldable based on the experimental data
from trimethoprim (TMP) sensitivity assay, activity assay, and cir-
cular dichroism (CD) measurement [11] (Table S1). However, the
RMSD values showed that AlphaFold2 gave all permutants 3D
models closely resembling the wild-type structure (Fig. 1c & 1d).
Some models from RoseTTAFold had large RMSD values and were
very different from the wild-type structure (Fig. 1c), but a part of
them were actually foldable and active in experimental assays
(Fig. 1d & S2). This data indicated that, although AlphaFold2 and
RoseTTAFold generated computationally folded models for all
DHFRcoli permutants, they were unable to classify foldable and
unfoldable permutants. Therefore, whether AlphaFold2 and RoseT-
TAFold generate well-folded models or not is not an indicator of
the actual foldability of a peptide sequence.
3.2. RMSD values of the DHFRcoli circular permutants correlate with
their foldability

Highly flexible proteins might encounter frustration during
folding, and permutation could introduce or eliminate this kind
of frustration, leading to the change of folding kinetics [7]. An
unfoldable protein is usually kinetically trapped by unsolvable
frustration. We propose that if such frustration is introduced in
to a DHFRcoli permutant, it might be possible to notice relatively
large structural inconsistency in these models. This hypothesis
could be true for AlphaFold2 and RoseTTAFold models, because
frustrated residue-residue contact information might be less repre-
sented in their training data based on experimental structures
from foldable proteins and then less accurately predicted. From
the modeling in the last section, we noticed that the RoseTTAFold
models of the DHFRcoli permutants were less accurate than the
AlphaFold2 models (Fig. 1c, 1d & S2), so we only used the Alpha-
Fold2 models for further analyses in this and the next sections.
Indeed, we noticed that unfoldable permutants had larger RMSD
values when aligned to the wild-type structure (Fig. 2a). On the
contrary, the pLDDT values, a model quality evaluation score in
AlphaFold2, were not distinguishable between these two groups
(Fig. 2b). Since DHFRcoli-1 only had five glycine residues appended
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Fig. 2. The RMSD variations of the AlphaFold2 models of DHFRcoli circular permutants. (a) The comparison of the model RMSD values of experimentally foldable and
unfoldable permutants. The statistical p value was calculated with the unpaired t-test. (b) No difference in the average pLDDT values of the models of the foldable and
unfoldable permutants. The average pLDDT value was calculated from the pLDDT values of all alpha carbons in a model. (c) The amounts of the foldable and unfoldable
permutants in the Low RMSD group and the High RMSD group. The numbers beside the bar are the permutant number and the percentage in the corresponding group. (d)
Scatter plot of the RMSD values of the 159 DHFRcoli circular permutants. The blue dots indicate the experimentally foldable permutants, and the orange dots indicate the
unfoldable ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to the C-terminus and minimally affecting the structure, we chose
to use the RMSD value of DHFRcoli-1 as a threshold to split all per-
mutants into two categories: the ‘‘High RMSD” group contains the
permutants with RMSD values higher than that of DHFR-1, and the
‘‘Low RMSD” group contains the rest. Then it is noticeable that the
Low RMSD group had more foldable permutants (59.8 %) than the
High RMSD group (43.9 %) (Fig. 2c, 2d). Meanwhile, the latter con-
tained more unfoldable permutants than the former (56.1 % v.s.
40.2 %). We calculated the standard deviations from the five mod-
els of each permutant, and the Low RMSD permutants also had a
smaller average standard deviation (0.018 Å) than the High RMSD
permutants (0.032 Å). A note is that the original paper [11] men-
tioned that some foldable permutants were refolded in vitro from
inclusion bodies, but the paper did not provide enough information
that could be used to tell if and how many permutants in the High
RMSD group were among them.

3.3. The correlation between RMSD values and foldability weakly
depends on structural elements

Both experimental and theoretical data support the formation
of folding nuclei during protein folding [15]. Based on the cleavage
sites of unfoldable circular permutants of DHFRcoli, Iwakura et al.
assigned the 73 corresponding DHFRcoli residues to ten ‘‘Folding
Elements” that might play important roles in the formation of fold-
ing nuclei [11]. Accordingly, the other 86 residues do not belong to
Folding Elements (Fig. 3a). Since secondary structure units (alpha
helices and beta sheets) are the main structural elements of folded
proteins, we asked if the High RMSD group contains more residues
within secondary structure units than the Low RMSD group.

Among the 159 residues of DHFRcoli, 79 (49.7 %) residues form
secondary structure units (alpha helices and beta sheets), and 80
(50.3 %) residues belong to random coils. As shown in Fig. 3b, the
79 permutants with the cutting site in secondary structure units,
25 (31.6 %) were foldable and 54 (68.4 %) were unfoldable. The
80 permutants with the cutting site outside of secondary structure
units, 61 (76.2 %) were foldable and 19 (23.8 %) were unfoldable.
Therefore, bond cleavage within secondary structure units resulted
4484
in unfoldable permutants with higher probability. When the
cutting site was within secondary structure units, there were more
foldable permutants in the Low RMSD group than that in the High
RMSD group (15 v.s. 10). Similarly, when the cutting site was out-
side of secondary structure units, there were also more foldable
permutants in the Low RMSD group than that in the High RMSD
group (46 v.s. 15). When the secondary structure rule and the
model RMSD rule were combined, the percentage of foldable per-
mutants in the Low RMSD group (34.1 %, or 15/44) was higher than
the percentage of the foldable permutants in the High RMSD group
(28.6 %, or 10/35). When the cutting site was outside of secondary
structure units, these percentages of foldable permutants were
79.3 % (46/58) and 68.2 % (15/22) respectively. Therefore, no mat-
ter where the cutting site is, the permutants in the Low RMSD
group has higher foldability than those in the High RMSD group.

3.4. Alanine insertion confirms the conclusions from circular
permutation

To further investigate the folding of DHFRcoli, Shiba et al. [14]
systematically constructed 158 alanine insertion mutants of
DHFRcoli. They obtained the precipitant ratios of all mutants by
comparing the fluorescence intensities of the protein bands on
denatured SDS-PAGE gels. A mutant with a precipitant ratio (pro-
tein in supernatant/total protein) <60 % was defined as foldable
by Shiba et al. [14]. Although this definition might include proteins
forming molten globules, we adopted their definition in this work
for consistency. In their design, an alanine residue was inserted
between one pair of neighbored residues to construct an alanine
insertion mutant. For example, the mutant DHFRcoli-1A2 contains
an inserted alanine residue between the first and the second resi-
dues. When the nth residue is an alanine, (n-1)An and nA(n + 1)
have the same sequence. Therefore, the actual number of the
mutants was 145 since DHFRcoli contains 13 alanine residues.
Again, we computed the 3D structural models of these 145
DHFRcoli mutants with both AlphaFold2 and RoseTTAFold. When
the nth residue is an alanine residue, the same computational and
experimental model was used for the mutants (n-1)An and nA



Fig. 3. The correlation between the structural variations of the AlphaFold2 models of the 159 DHFRcolil circular permutants, their experimental foldability, and structural
elements. (a) Iwakura et al. assigned the DHFRcoli residues into ‘‘Folding Elements” if the corresponding circular permutant had low foldability [11]. (b) The correlation
between RMSD values of the models, the foldability of the permutants, and the secondary structure units of the residues. The numbers in purple circles are the numbers of the
permutants in different categories. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(n + 1). For simplicity, we refer them as 158 alanine-insertion
mutants in this paper.

Similar to the circular permutants, the distribution of the back-
bone RMSD values of the models of these 158 alanine-insertion
mutants showed that AlphaFold2 generated near-native 3Dmodels
(Fig. 4a & Table S2). However, the unfoldable mutants had a larger
mean RMSD value than the foldable mutants (Fig. 4b). When we
divided the models into two groups based on their RMSD values
relative to the RMSD value of DHFRcoli-1A2 as in the previous sec-
tions, the mutants in the Low RMSD group had higher foldability
than the mutants in the High RMSD group (Fig. 4c). The mutants
in the High RMSD groups formed local clusters as well (Fig. 4d).
Among these 158 mutants, there were 79 (50.0 %) mutants with
an alanine residue inserted either within secondary structural ele-
ments or outside of secondary structural elements respectively. As
shown in Fig. 4e, among the 79 mutants with the insertion site
within secondary structure units, 23 (29.1 %) were foldable and
56 (70.9 %) were unfoldable. The 79 mutants with the insertion site
outside of secondary structure units, 64 (81.0 %) were foldable and
15 (19.0 %) were unfoldable. Therefore, alanine insertion within
secondary structure units resulted in unfoldable mutants with
higher probability. When the insertion site was within secondary
structure units, there were significantly more foldable mutants in
the Low RMSD group than that in the High RMSD group (20 v.s.
3). Similarly, when the insertion site was outside of secondary
structure units, there were also more foldable mutants in the
Low RMSD group than that in the High RMSD group (59 v.s. 5).
When the secondary structure rule and the RMSD rule were com-
bined, the percentage of foldable mutants in the Low RMSD group
(40.0 %, or 20/50) was higher than the percentage of the foldable
mutants in the High RMSD group (10.3 %, or 3/29). When the inser-
tion site was outside of secondary structure units, these percent-
ages were 86.8 % (59/68) and 45.4 % (5/11). Therefore, no matter
where the insertion site is, the mutants in the Low RMSD group
has higher foldability than those in the High RMSD group. These
data indicated that the conclusions from the circular permutants
above are also valid for alanine insertion mutants. In addition,
there was a positive correlation between the RMSD values of the
circular permutants and the alanine insertion mutants (Fig. 4f),
confirming the experimental data showing that alanine insertion
and circular permutation were different but comparable on
DHFRcoli [14].
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Different from the circular permutants, RoseTTAFold generated
models resembling the wild-type structure for all alanine insertion
mutants (Fig. 5a & Table S2), likely due to the fact that the insertion
of one alanine residue had limited consequence on multiple
sequence alignment. The conclusions from AlphaFold2 held true
for RoseTTAFold, including: (1) The unfoldable mutants had a lar-
ger mean RMSD value than the foldable mutants (Fig. 5b); (2)
The mutants in the Low RMSD group had higher foldability than
the mutants in the High RMSD group (Fig. 5c); (3) The mutants
in the High RMSD groups formed local clusters (Fig. 5d). As shown
in Fig. 5e, when the insertion site was outside of secondary struc-
ture units, the percentage of foldable mutants in the Low RMSD
group (88.2 %, or 15/17) was higher than the percentage of the
foldable mutants in the High RMSD group (79.0 %, or 49/62). When
the insertion site was within secondary structure units, no mutant
in the Low RMSD group was foldable due to the very limited sam-
ple size (4), and the foldable mutants in the High RMSD group were
only 30.7 % (23/75). Additionally, the comparison of AlphaFold2
models and RoseTTAFold models showed that their model qualities
(evaluated by their RMSD values aligned to the wild-type struc-
ture) were correlated but not identical, and the AlphaFold2 models
had lower RMSD values than the RoseTTAFold models (Fig. 5f).
Despite of these discrepancies, we could see that both AlphaFold2
models and RoseTTAFold models are good enough to reveal a good
correlation between model RMSD values and protein foldability.

3.5. RMSD values of the computational models quantitatively correlate
with protein foldability

We then asked to what extent the RMSD values of computa-
tional models quantitatively correlate with protein foldability. In
the alanine insertion study, Shiba et al. [14] reported the precipi-
tant ratios of all mutants from E. coli cell lysates. We found that
the RMSD values of the computational models quantitatively cor-
relate with the precipitant ratios with a Spearman r being 0.5421
(p < 0.0001) for the AlphaFold2 models and a Spearman r being
0.3554 (p < 0.0001) for the RoseTTAFold models (Fig. 6), indicating
that RMSD values could be a predictor of protein foldability. For
foldable circular permutants, Iwakura et al. [11] obtained their
in vitro enzymatic activity data (kcat and KM) and conformational
stability data (deltaG and m-Value). Interestingly, there were no
clear correlations between the RMSD values and these data (Fig-



Fig. 4. The statistics of the AlphaFold2 models of 158 alanine insertion mutants of DHFRcoli. (a) The distribution of the RMSD values of the 158 AlphaFold2 models. (b) The
comparison of the AlphaFold2 models’ RMSD values of experimentally foldable and unfoldable mutants. The statistical p value was calculated with the unpaired t-test. (c) The
amounts of the foldable and unfoldable mutants in the Low RMSD group and the High RMSD group. The numbers beside the bar are the mutant number and the percentage in
the corresponding group. (d) Scatter plot of the RMSD values of the 158 DHFRcoli alanine insertion mutants. The blue dots indicate the experimentally foldable mutants, and
the orange dots indicate the unfoldable ones. (e) The correlation between RMSD values of the models, the foldability of the alanine insertion mutants, and the secondary
structure units of the residues. The numbers in purple circles are the numbers of the alanine insertion mutants in different categories. (f) The correlation between the RMSD
values of the AlphaFold2 models of the circular mutants and the alanine insertion mutants. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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ure S3a). On the contrary, even only when foldable alanine mutants
were included, a positive correlation between their RMSD values
and the precipitant ratios was noticed for AlphaFold2 models (Fig-
ure S3b). These data indicated that the RMSD values of the pre-
dicted models are correlated with proteins’ native foldability but
not their in vitro activities. Nonetheless, this would need further
investigations since circular permutation and alanine insertion
are comparable but not exactly equivalent [14].

3.6. Model difference between AlphaFold2 and RoseTTAFold partially
predicts foldability

In these two DFHRcoli examples, the wild-type structures were
reasonable references for calculating the RMSD values of the com-
putational models. When it comes to the evaluation of the foldabil-
ity of a protein without a wild-type reference (de novo protein
design, for example), is it possible to get any indicators of foldabil-
ity from the computational models of AlphaFold2 and RoseTTA-
Fold? A possible indicator is the RMSD value between the
AlphaFold2 model and the RoseTTAFold model (defined as inter-
model RMSD hereafter), since we supposed that foldable proteins
4486
might have more evolutionary information for better and more
consistent models. To answer this question, we calculated the
inter-model RMSD values of the alanine insertion mutants of
DHFRcoli (Table S2). Then we noticed that there was indeed a pos-
itive correlation between foldability and the inter-model RMSD
values (Fig. 7a & Table S2). Without a wild-type structure as the
reference, we grouped the models according to the average inter-
model RMSD value. In the group with inter-model RMSD values
lower than the average, 63.0 % alanine inserts are foldable, which
is much higher than 43.9 %, the percentage of the foldable mutants
in the group with higher RMSD values (Fig. 7b). This result also
holds true when the median inter-model RMSD was used as the
reference (Fig. 7b).

Then we asked if the inter-model RMSD value between Alpha-
Fold2 model and RoseTTAFold model could be useful in de novo
protein design. We obtained the sequence of the 129 de novo
designs from the recent work of the Baker group, among which
27 were assigned as correctly folded [6]. We noticed that, using
either the average RMSD or the median RMSD as the reference,
the percentage of correctly folded designs in the lower inter-
model RMSD group was much higher (Fig. 7c). Therefore, the



Fig. 5. The statistics of the RoseTTAFold models of 158 alanine insertion mutants of DHFRcoli. (a) The distribution of the RMSD values of the 158 RoseTTAFold models. (b) The
comparison of the RoseTTAFold models’ RMSD values of experimentally foldable and unfoldable mutants. The statistical p value was calculated with the unpaired t-test. (c)
The amounts of the foldable and unfoldable mutants in the Low RMSD group and the High RMSD group. The numbers beside the bar are the mutant number and the
percentage in the corresponding group. (d) Scatter plot of the RMSD values of the 158 DHFRcoli alanine insertion mutants. The blue dots indicate the experimentally foldable
mutants, and the orange dots indicate the unfoldable ones. (e) The correlation between RMSD values of the models, the foldability of the mutants, and the secondary structure
units of the residues. The numbers in purple circles are the numbers of the mutants in different categories. (f) The correlation between RMSD values of the AlphaFold2 models
and the RoseTTAFold models of the DHFRcoli alanine insertion mutants. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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inter-model RMSD value between AlphaFold2 model and
RoseTTAFold could be a useful parameter for evaluating the protein
foldability in de novo design.

Since unfoldable proteins tend to precipitate, we supposed that
the inter-model RMSD value could also be used to evaluate the
Fig. 6. The quantitative correlation between the RMSD values of computational models
insertion mutants. (b) Plot for the RoseTTAFold models of the DHFRcoli alanine insertio
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solubility of proteins. So we tested this idea on a dataset containing
1664 proteins of E. coli reported by Niwa et al. [16]. As reported by
Niwa et al., the solubility of these proteins is bimodally distributed
(Fig. 7d & Table S3). Similarly, we noticed a correlation between
the solubility and the inter-model RMSD values of these E. coli
and protein foldability. (a) Plot for the AlphaFold2 models of the DHFRcoli alanine
n mutants. The precipitant ratios were obtained from [14].



Fig. 7. Model difference between AlphaFold2 and RoseTTAFold partially predicts protein foldability. (a) There is a positive correlation between the precipitation ratios of the
DHFRcoli alanine insertion mutants and their model RMSD values between AlphaFold2 and RoseTTAFold (inter-model RMSD). (b) The DHFRcoli alanine insertion mutants
with lower inter-model RMSD values have better foldability. The numbers of the models are shown beside to the bars, with the percentages shown in the parentheses. (c) The
classification of the correctly folded proteins of the de novo designs by the Baker group [6] and the inter-model RMSD values. More correctly folded designs have lower inter-
model RMSD values. The numbers of the models are shown above the bars, with the percentages shown in the parentheses. (d) The distribution of the experimental solubility
of the 1664 E. coli proteins reported in [16]. (e) The E. coli proteins with lower inter-model RMSD values have higher solubility when using the average inter-model RMSD
value as the cutoff. The median of each category is shown as the white line, while the first and third quartiles are shown in colored lines. (f) The E. coli proteins with lower
inter-model RMSD values have higher solubility when using the median inter-model RMSD value as the cutoff. The median of each category is shown as the white line, while
the first and third quartiles are shown in colored lines. (g) The percentages and the average residue numbers of soluble proteins when different inter-model RMSD cutoff
values were defined for the 1664 E. coli proteins.
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proteins when the average inter-model RMSD value was used as
the cutoff (Fig. 7e). The proteins with lower inter-model RMSD val-
ues had a solubility distribution biased toward the high solubility
end, whereas the proteins with higher inter-model RMSD values
biased toward the low solubility end (Fig. 7e). Similar but even
more significant trends were noticed when the median RMSD
value was used as the cutoff (Fig. 7f). When different inter-model
RMSD cutoff values were set, the percentage of protein with high
solubility (solubility �60 %) steadily increased from 50 % to 75 %
(Fig. 7g), but this trend was not dependent on the size of the
proteins.
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4. Discussion

The protein folding problem is a ‘‘holy grail” problem in biology.
To predict the natural 3D structure from a sequence of amino acids
has been a tantalizing but extremely challenging task in the last
50 years. With the assembly of the biannual Critical Assessment of
Structure (CASP) meetings, global efforts have pushed forward the
progress in the computational prediction of protein structure [17].
At the recent CASP14 meeting, artificial intelligence (AI) based
AlphaFold2 [4] and RoseTTAFold [5] achieved high-accuracy predic-
tion of protein structures comparable to experimental data. How-
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ever, in a recent example, only a small fraction of computationally
designed proteins could be expressed as well-folded proteins [6].

A possible reason of this caveat of the current AI-based protein
structure prediction tools is that from the training of PDB data,
only the protein folding code could be extracted. That is, neither
AlphaFold2 nor RoseTTAFold could directly obtain the kinetics
information of protein folding. Meanwhile, the folding of a protein
is not only determined by whether it could be theoretically folded,
but also affected by its folding kinetics [2]. If a peptide chain could
not be folded in a suitable time scale, its folding would be trapped
by frustration and fails to form folded structures. Therefore, it is
not surprising that the current AI-based prediction tools could
not determine the biological foldability of a protein (Figs. 1 & 4).

Nonetheless, considering that the structures in the PDB data-
base are intrinsically foldable, it is possible that the network prop-
erties of AI-based methods contain some information of protein
foldability. For example, the residue-residue contact information
from multiple sequence alignment might contain foldability infor-
mation, since unfoldable mutants have been discarded by evolu-
tion. Then a reasonable inference is that there is some foldability
information hidden in the computationally folded models. The
question is how that information could be extracted.

Circular permutation modifies the termini of a protein but does
not change its sequence composition. Most circular permutants
could fold into native structures, although their folding kinetics
might change. The alanine insertion method is more conserved
on perturbing protein sequence. Since the protein sequence is min-
imally changed, the computational tools would be hard to tell the
difference on the foldability of different constructs. Our data
showed that this is true, since AlphaFold2 and RoseTTAFold pre-
dicted near-native 3D models for both foldable and unfoldable
DHFRcoli permutants and alanine-insertion mutants. However, it
was interesting to notice that the RMSD values of the computa-
tional models contains some information on the foldability of a
protein in our work. We think our work, along with the contribu-
tions from the other colleagues [18,19], will provide great help to
the prediction of protein foldability.

A caveat of our work is that the experimental data only reflected
the foldability of a peptide sequence kinetically accessible within a
laboratory time scale. For example, Iwakura et al. [11] refolded
some permutants from inclusion bodies in vitro. But this should
not be a big problem, since a protein not foldable within a reason-
able time scale might be not biologically useful.

Our work would be helpful to the design of protein circular per-
mutants and novel proteins. Based on our findings, we hypothesize
that including non-foldable protein sequences in the training data
of neural networks would be useful for the AI-based prediction
methods to predict protein foldability. In this regard,we believe that
publishingunsuccessful proteindesigndata is scientifically valuable
[20]. Lastly, we hope that our work would be a hint to the establish-
ment of AI-based prediction of protein folding kinetics in the future.
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