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ABSTRACT
The sexual pattern, reproductive mode, and timing of reproduction of Isophyllia

sinuosa and Isophyllia rigida, two Caribbean Mussids, were assessed by histological

analysis of specimens collected monthly during 2000–2001. Both species are

simultaneous hermaphroditic brooders characterized by a single annual

gametogenetic cycle. Spermatocytes and oocytes of different stages were found to

develop within the same mesentery indicating sequential maturation for extended

planulation. Oogenesis took place during May through April in I. sinuosa and

from August through June in I. rigida. Oocytes began development 7–8 months

prior to spermaries but both sexes matured simultaneously. Zooxanthellate

planulae were observed in I. sinuosa during April and in I. rigida from June through

September. Higher polyp and mesenterial fecundity were found in I. rigida

compared to I. sinuosa. Larger oocyte sizes were found in I. sinuosa than in I. rigida,

however larger planula sizes were found in I. rigida. Hermaphroditism is the

exclusive sexual pattern within the Mussidae while brooding has been documented

within the related genera Mussa, Scolymia and Mycetophyllia. This study represents

the first description of the sexual characteristics of I. rigida and provides an updated

description of I. sinuosa.
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INTRODUCTION
Reproduction in corals consists of a sequence of events which include: gametogenesis,

spawning (broadcasters), fertilization, embryogenesis, planulation (brooders), dispersal,

settlement and recruitment (Harrison & Wallace, 1990). The success of the reproductive

effort is determined largely by the timing, duration, frequency and intensity of the

aforementioned events (Babcock et al., 1986). In corals, sexual pattern, mode of

reproduction, fertilization, larval dispersal, recruitment and survivorship are key

components in determining evolutionary fitness (Szmant, 1986; Edmunds, 2005; Vermeij,

2006; Weil, Croquer & Urreiztieta, 2009; Pinzon & Weil, 2011) which is defined as the

product of sexual output (fecundity) and survivorship (Metz, Nisbet & Geritz, 1992).

Consequently, the ability of coral species to adapt to modern-day environmental

pressures depends greatly on the ability of species to reproduce effectively.

The reproductive characteristics of some scleractinian groups have been more

thoroughly studied than others; however, little is known about the reproductive patterns
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of many Caribbean coral species and some of the available information is conflictive or

incomplete (Fadlallah, 1983; Harrison & Wallace, 1990; Harrison, 2011; Weil & Vargas,

2010; Pinzon & Weil, 2011). Of the approximately 60 Caribbean zooxanthellate coral

species reported, thorough descriptions of their reproductive characteristics and cycles are

available for 19 species; many other studies available provide partial or conflicting results

(Weil, 2003; Weil & Vargas, 2010; Harrison, 2011). Reproductive studies of the sexual

patterns of I. sinuosa were among the first studies of such nature performed in the

Caribbean (Duerden, 1902). These were limited to histological observations of oocytes

in a few colonies of I. sinuosa (Figs. 1A and 1B), therefore, the species is classified as

gonochoric. This characterization contrasts with the reproductive mode of other studied

Mussids which are classified as hermaphroditic. Currently, there is no information

available on the reproductive biology of I. rigida (Figs. 1C and 1D).

Figure 1 Plate showing study corals. (A, B) Isophyllastrea rigida (C, D) Isophyllia sinuosa. Photos by

Ernesto Weil.
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This study characterizes the reproductive biology of I. rigida and I. sinuosa in terms

of sexual pattern, mode of development, gametogenic cycles, and fecundity. These

fundamental aspects of the physiology of this taxa are understudied. Knowledge of the

reproductive biology and ecology of coral species is important for the interpretation

of their population and ecological dynamics, their patterns/potential for dispersal,

and their local and geographical distribution. The threats currently faced by coral reefs

and the ongoing global effort to understand why corals are dying highlight the need to

expand our understanding of basic coral physiology.

MATERIALS AND METHODS
Sampling for this study was carried out at La Parguera Natural Reserve, off the southwest

coast of Puerto Rico (Fig. 2). This complex reef environment is among the many regions

experiencing deterioration by anthropogenic and environmental climate influences at

local and global scales. Coral reefs in La Parguera are important local economic drivers,

supporting artisanal and recreational fishing, tourism, recreational activities and also

protect coastal settlements, seagrass communities and other wetland habitats from the

effects of hurricanes and coastal erosion (Ballantine et al., 2008).

At least five unique sample cores were collected monthly for 14 months between March

2000 and May 2001 (Fig. 3A). A total of 89 samples of each species were collected.

Colonies were selected by searching in a zig-zag pattern over the distributional range of

both species (5–18 m). Samples were collected from San Cristobal reef (17�55′24.88″N,
67�6′14.52″W), Caracoles reef (17�57′46.02″N, 67�2′8.21″W), Media Luna reef

Figure 2 Map of La Parguera, Puerto Rico with study sites. Image made with QGIS using NOAA’s

National Centers for Enviromental Information (NCEI) Multibeam Bathymetric Surveys Dataset.
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(17�56′22.68″N, 67�2′43.26″W), Pinaculos (17�56′1.13″N, 67�0′39.75″W), Turrumote

reef (17�56′13.56″N, 67�1′8.92″W), Beril (17�52′47.85″N, 66�59′1.40″W), El Palo

(17�55′50.2″N, 67�05′36.9″W), Laurel (17�55′50.2″N, 67�05′36.9″W) and Enrique

(17�55′50.2″N, 67�05′36.9″W) (Figs. 3B and 4).

Sample cores were placed in Zenker Formalin (Helly’s solution) for 24 h, rinsed and

then decalcified in 10% HCl solution. Tissues were then cleaned and placed in plastic

tissue holders. Preserved samples were sequentially dehydrated in the rotary tissue

processor under 70 and 95%, ethanol, Tissue Dry, and xylene solution (Tissue Clear III).

Samples were embedded into Paraplast blocks then sectioned using a rotary microtome.

The 8–10 strip sections (7–10 mm) were obtained from each embedded block and placed

onto glass slides. Finished tissue slides were stained utilizing a modified Heidenhain’s

Aniline-Blue method (Coolidge & Howard, 1979) to examine the maturation stages of

gametocytes and embryos.

Figure 3 Collection data for [i]I. sinuosa[i] and [i]I. rigida[i]. (A) Number of samples collected per

month, (B) Number of samples collected per location.
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Slides were examined under an Olympus BX40 compound microscope coupled to an

Olympus DP26 digital microscope camera. Images were captured utilizing Olympus

cellSens 1.7 imaging software. The sexual pattern, gametogenic cycle and fecundity of

Figure 4 Developmental stages of oocytes (O) and spemaries (S) in I. sinuosa. (A) Stage I and II

oocytes, (B) stage III oocytes, (C) stage II spermaries and stage IVoocytes, (D) stage IVoocytes and stage III

spermaries, (E) stage IV oocytes and stage V spermaries, and (F) stage II planula. Scale bar measures

100 mm2.
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each species were determined by observing the gametocyte development throughout

the collection year. Gamete stages were characterized according to Szmant-Froelich,

Reutter & Riggs (1985). Oocyte sizes were obtained using cellSens, by taking perpendicular

measurements at the cell’s widest points. Cell length and width measurements were used

to calculate geometric area. Fecundity was assessed by counting oocytes per mesentery

(I. sinuosa n = 120; I. rigida n = 60) and per polyp (I. sinuosa n = 10; I. rigida n = 5)

on histologic cross-sections during months with the highest proportion of mature oocytes

(I. sinuosa April 2001 n = 5; I. rigida May 2001 n = 5).

In April 2012, several presumed gravid colonies of each species were collected and placed

in an open seawater aquarium system to observe planulation. Two colonies of each species

were placed within six-gallon aerated aquariums under continuously circulating seawater

and daylight synchronized lights. Specimens were placed under mesh-lined PVC pipes

allowing water to freely circulate. Traps were checked daily for larvae over a 90-day period.

Statistical analyses
Results are expressed as means ± standard error. All statistical tests were performed

using the RStudio 0.99.484 software platform (R Studio Team, 2015) using the stats

package (R Development Core Team, 2015). Normality was assessed using the Shapiro-

Wilk test performed with the R function shapiro.test. Equality of variance was tested using

the F test performed with the R function var.test. Differences in fecundity were tested

by means of a Wilcoxon rank sum test with continuity correction performed with the

R function wilcoxon.test.

Collection permit
All coral tissue samples were collected under a General Collection Permit granted by

the Puerto Rico Department of Natural Resources (DNER) to the Faculty of the

Department of Marine Sciences, University of Puerto Rico Mayaguez (UPRM).

RESULTS
I. sinuosa
Stage I oocytes are small (78.92 ± 13.15 mm2), stain pink and are characterized by sparse

cytoplasm and prominent nuclei (Fig. 4A). Oocytes originate within the linings of the

mesoglea in the central regions of the mesenteries. Stage II oocytes are larger than stage

I cells (144.54 ± 43.19 mm2), exhibit prominent nuclei and abundant cytoplasm (Fig. 4A).

Stage III oocytes are larger than stage II (264.51 ± 37.24 mm2), tend to have a round

shape, stain pink or red, and are characterized by many cytoplasmic globules which

produce a grainy appearance (Fig. 4B). Stage IVoocytes are larger and boxier than stage III

(376.69 ± 73.20 mm2). This stage is characterized by dark staining nuclei and large

globules in the cytoplasm (Figs. 4C–4E).

No stage I spermaries were found, suggesting this stage occurs briefly and/or is difficult

to differentiate using the current method. Stage II spermaries form small poorly defined

bundles which form in the mesenteries surrounding oocytes (Fig. 4C). Stage III

spermaries form small sacs with well-defined borders (Fig. 4D) and contain bright red
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Figure 5 Gametogenic cycle of I. sinuosa. (A) Sea surface temperature ranges in La Parguera, Puerto Rico. Adjusted values of relative proportions

of colonies of I. sinuosa in each gametogenetic stage of (B) oogenesis, (C) spermatogenesis, and (D) embryogenesis from March 2000 to May 2001.

O-I, O-II, O-III, O-IV represent oocyte stages 1 through 4, respectively; S-I, S-II, S-III, S-IV, S-V represent spermary stages 1 through 5, respectively;

P-I, P-II, P-III, P-IV represent planulae stages 1 through 4, respectively.
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staining spermatids. Stage IV spermaries stain dark red and are larger than stage III.

Tails visible on spermatozoa at high magnification are indicative of stage V spermaries

(Fig. 4E). Spermary sizes were not measured.

Stage I planulae are approximately the same size as stage IVoocytes (404.07mm2) and stain

pink. During this stage, zooxanthellae become visible within the planulae. Stage II planulae

(455.45 ± 32.84 mm2) are characterized by an outer layer composed of columnar cells which

contain nematocysts and cilia (Fig. 4F). Developing mesenteries can be seen within the

gastrodermis of stage III planula (501.98 ± 44.68 mm2). Stage IV planula were not observed.

The gametogenic cycle of I. sinuosa is summarized in Fig. 5. Weekly sea surface

temperature measurements taken during the collecting period are included for reference

(Fig. 5A). Oogenesis in I. sinuosa lasts approximately 11 months (Fig. 5B). Onset of

oogenesis was determined to occur during May 2000 and during April 2001. Onset

of oogenesis was determined as the month of appearance of stage I and II oocytes after the

culmination of the previous gametogenic cycle. Stage II oocytes were prevalent in tissues

during all months sampled except during November 2000 and January 2001. Stage III

oocytes were observed in all sampled months except April 2001. Stage IV oocytes were

observed between August 2000 through May 2001.

Spermatogenesis takes places during four months (Fig. 5C). Onset of spermatogenesis

was not determined because stage I spermaries were not identified. Stage II spermaries

were observed during January through February 2001. Stage III spermaries were visible

from January through March 2001. Stage IV spermaries were present in March 2001.

Stage V spermaries were present in tissues in April 2001.

Stage I–III planulae were observed in histologic sections during April 2001 (Fig. 5D).

The identification of planulae on tissue sections coincided with a sharp decrease in the

proportion of colonies containing mature (IV) oocytes. No larvae were collected from

specimens placed in aquaria for observation.

I. rigida

Stage I oocytes are very small (72.97 ± 15.75 mm2) and are characterized by

sparse cytoplasm and a large nucleus. Stage II oocytes are larger than stage I cells

(101.25 ± 23.09 mm2), are ovoid shaped and feature a prominent nucleus and nucleolus

(Fig. 6A). A pink-staining nucleus and red nucleolus can clearly be identified in many

stage III oocytes (148.77 ± 49.35 mm2) (Fig. 6B). Stage IVoocytes are large (190.40 ± 45.18

mm2), irregularly shaped and contain large vacuoles in the ooplasma which give it a

grainy appearance (Figs. 6C and 6D).

Stage I spermaries were not detected in I. rigida. Stage II spermaries were observed

forming adjacent to stage III eggs (Fig. 6B). Spermaries typically adopt a spherical

shape and often form in series resembling a string of beads (Figs. 6B and 6C). Stage III

spermaries form small oblong sacs and stain red (Fig. 6C). Stage IV spermaries are densely

packed with sperm, have irregular shapes, stain dark red to brown. Stage V spermaries

stain darker than stage IV (Fig. 6E) but are characterized by tails on spermatozoa under

high magnification. No measurements were collected for spermaries.
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Stage I planulae are approximately the same size as stage IV oocytes (approximately

324.01 ± 71.64 mm2), stain pink, and contain zooxanthellae in the epidermis.

Zooxanthellae were observed within planula beginning at this stage. Stage II planulae are

Figure 6 Developmental stages of oocytes (O) and spemaries (S) in I. rigida. (A) Stage II oocytes

in the mesoglea, (B) stage III oocytes and Stage II spermaries, (C) stage III spermaries and stage IV

oocytes, (D) stage IVoocytes and spermaries, (E) stage V spermaries, and (F) stage II planula. Scale bar

measures 100 mm2.
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Figure 7 Gametogenic cycle of I. rigida. (A) Sea surface temperature ranges in La Parguera, Puerto Rico. Adjusted values of relative proportions of

colonies of I. sinuosa in each gametogenetic stage of (B) oogenesis, (C) spermatogenesis, and (D) embryogenesis from March 2000 to May 2001.

O-I, O-II, O-III, O-IV represent oocyte stages 1 through 4, respectively; S-I, S-II, S-III, S-IV, S-V represent spermary stages 1 through 5, respectively;

P-I, P-II, P-III, P-IV represent planulae stages 1 through 4, respectively.
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larger (521.27 ± 84.18 mm2) (Fig. 6F) and exhibit an epidermis consisting of columnar

epithelium similar to I. sinuosa. Stage III and stage IV larvae measure 818.91 ± 82.96 mm2

and 951.78 ± 176.36 mm2 respectively, and show clear development of the mesenteries.

The gametogenic cycle of I. rigida is summarized in Fig. 7. Weekly sea surface

temperature measurements taken during the collecting period are included for reference

(Fig. 7A). Oogenesis in I. rigida lasts approximately 10 months (Fig. 7B). Oogenesis

began during August 2000. Stage II oocytes were observed in tissues in March 2000

and August 2000 to April 2000. Stage III oocytes were observed in March 2000,

May and June 2000 and from January 2001 through May 2001. Stage IV oocytes were

observed in samples collected during March, May and June 2000, and February,

April and May 2001.

Spermatogenesis in I. rigida is estimated to last approximately 2–3 months (Fig. 7C).

Onset of spermatogenesis was not determined because stage I spermaries were not

identified. Stage II spermaries were observed in May 2000. Stage III spermaries were

visible in May 2000. Stage IV spermaries were observed first in June 2000. Stage V

spermaries were observed in May 2000.

Stage I planulae were observed in June 2000 indicating the onset of embryogenesis

(Fig. 7D). The appearance of planulae coincided with a sharp decrease in the

proportion of colonies containing mature oocytes. Stage II planulae were observed during

June 2000 and May 2001. Stage III planulae were observed from June through

August 2000. Stage IV planulae were observed in tissues from June throughout

September 2000. No larvae were collected from specimens placed in aquaria for

observation.

Fecundity
Mesenterial fecundity in I. sinuosa (11.13 ± 8.27 oocytes/mesentery) was significantly

higher (Wilcoxon-rank sum test,W = 1,208, p < 2.2� 10-16) than in I. rigida (1.70 ± 3.52

oocytes/mesentery) (Fig. 8A). Polyp fecundity in I. sinuosa (110.11 ± 96.33 oocytes/polyp)

was significantly higher (Wilcoxon-rank sum test, W = 18, p = 0.018) compared to

I. rigida (20.45 ± 23.91 oocytes/polyp) (Fig. 8B).

Oocyte size
Measurements of oocyte geometric area in I. sinuosa (range 43.94–463.79 mm2) show an

increase in the size of oocytes as maturity progresses from April through March (Fig. 9A).

Mean geometric area is lowest during the month of June 2000 (97.22 ± 28.85 mm2)

and greatest during February 2001 (333.95 ± 74.32 mm2). The appearance of planulae

in histological sections during the month of April 2001 (459.07 ± 45.83 mm2) (range:

404.07–548.49 mm2) coincides with a sharp decrease in mean geometric area of oocytes

compared to the previous month (285.68 ± 96.46 vs. 143.28 ± 84.07 mm2). Measurements

of oocyte geometric area in I. rigida (range 43.31–307.35 mm2) also show a trend of

increasing oocyte size as maturity progresses from August through June (Fig. 9B).

Mean geometric area is lowest during the month of September 2000 (68.35 ± 17.04 mm2)

and greatest during June 2000 (210.54 ± 42.90mm2). Mean planulae area was greatest during
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the month of July 2000 (909.48 ± 250.56 mm2) and ranged from 241.66–1,183.96 mm2.

Mean oocyte geometric area was greater in I. sinuosa than in I. rigida (Wilcoxon-rank

sum test, W = 43,911, p < 2.13 � 10-13); however, mean planulae geometric area

Figure 9 Monthly geometric mean oocyte and planulae areas in (A) I. sinuosa and (B) I. rigida.

Figure 8 (A) Average mesenterial (eggs/mesentery) fecundity and (B) polyp (eggs/polyp) fecundity

in I. sinuosa and I. rigida. Whiskers represent standard error.
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was significantly higher in I. rigida compared to I. sinuosa (Wilcoxon-rank sum test,

W = 186, p = 0.008).

DISCUSSION
Microscopic observations indicate that both I. sinuosa and I. rigida are simultaneous

hermaphrodites (gametes of both sexes are present in a single individual at the same

time). Gametes of both sexes are produced adjacent within the same mesentery

(dygonism) in both species. Both species are brooders (bear live young) which transfer

endosymbiotic zooxanthellae directly from parent to offspring. Both species are

characterized by a single annual gametogenic cycle. This study represents the first

description of the sexual characteristics of I. rigida and contradicts observations by

Duerden (1902) which label I. sinuosa as a gonochoric species. The incorrect

classification of I. sinuosa as the sole gonochoric outlier within the traditional Mussidae

was a contrasting element in a group which is otherwise uniformly hermaphroditic

Table 1 Comparison of reproductive characteristics of Mussidae (Clade XXI).

Subfamily Genus Species Sexual pattern Mode of

development

Source

Mussinae Mussa M. angulosa H Steiner (1993)

Isophyllia I. rigida H Brooding This study

I. sinuosa H Brooding Duerden (1902) and This study

Mycetophyllia M. ferox H Brooding Szmant-Froelich (1984), Szmant (1986) and

Morales (2006)

M. aliciae H Brooding Morales (2006)

M. lamarckiana H Brooding Morales (2006)

M. danaana H Brooding Morales (2006)

M. reesi

Scolymia (Atlantic) S. cubensis H Brooding E. Weil (2016, unpublished data)

S. lacera H Brooding E. Weil (2016, unpublished data)

S. wellsi H Brooding Pires, Castro & Ratto (2002)

Faviinae Favia (Atlantic) F. fragrum H Broadcast Duerden (1902), Fadlallah (1983), Szmant (1986),

Richmond & Hunter (1990) and Soong (1991)

Colpophyllia C. amaranthus H Broadcast E. Weil (2016, unpublished data)

C. natans H Broadcast Steiner (1995), Hagman, Gittings & Deslarzes (1998),

Boland (1998) and E. Weil (2016, unpublished data)

Diploria D.labyrinthiformis H Broadcast Duerden (1902), Fadlallah (1983), Wyers, Barnes &

Smith (1991) and Weil & Vargas (2010)

Pseudodiploria D. clivosa H Broadcast Soong (1991) and Weil & Vargas (2010)

D. strigosa H Broadcast Szmant (1986), Richmond & Hunter (1990), Soong,

1991, Steiner (1995) and Weil & Vargas (2010)

Manicina M. areolata H Brooding Duerden (1902), Fadlallah (1983), Richmond & Hunter

(1990) and Johnson (1992)

Mussismilia M.hispida H Broadcast Neves & Pires (2002) and Pires, Castro & Ratto (1999)

M. hartii H Broadcast Pires, Castro & Ratto (1999)

M. brazilensis H Broadcast Pires, Castro & Ratto (1999)

Note:
H, hermaphroditic; G, gonochoric.
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(Duerden, 1902; Fadlallah, 1983; Richmond & Hunter, 1990). This study confirms

the dominant pattern of sexual reproduction described for Mussid corals (Baird,

Guest & Willis, 2009) and provides further support for conserved reproductive patterns

within coral families (Harrison, 2011).

Traditional morphology-based classifications are being restructured by designating

systematic affinities using molecular methods in combination with morphometric

analyses. The traditional Mussidae family has recently undergone extensive restructuring

by separating Indo-Pacific Mussids from their Atlantic counterparts which are more

closely related to some members of the family Faviidae (Fukami et al., 2004; Fukami et al.,

2008; Budd et al., 2012). The resulting ‘modern’ Mussidae (clade XXI) is composed of the

genera Mussa, Isophyllia, Mycetophyllia, and Scolymia (Atlantic) under the Mussinae

subfamily and Favia (Atlantic), Colpophyllia, Diploria, Pseudodiploria, Manicina and

Mussismilia under the Faviinae subfamily. Under the new classification, hermaphroditism

has been exclusively documented within all genera of the subfamily Mussinae:

Mycetophillia (Szmant-Froelich, 1985; Morales, 2006), Scolymia (Pires, Castro & Ratto,

2002; E. Weil, 2016, unpublished data) andMussa (Steiner, 1993) and within the subfamily

Faviinae: Favia (Soong, 1991), Colpophyllia (E. Weil, 2016, unpublished data), Diploria

(Weil & Vargas, 2010) Pseudodiploria (Weil & Vargas, 2010), Manicina (Johnson, 1992),

Mussismilia (Pires, Castro & Ratto, 1999) (Table 1). Mode of development within the

modern Mussidae is mixed; both brooding and spawning species are present. Brooding

has been documented within Mycetophyllia (Morales, 2006), Scolymia (Pires, Castro &

Ratto (2002); E. Weil, 2016, unpublished data), and Manicina (Johnson, 1992).

Broadcast spawning occurs in Colpophyllia (E. Weil, 2016, unpublished data), Diploria

(Weil & Vargas, 2010), Pseudodiploria (Weil & Vargas, 2010), and Favia (Soong, 1991).

Sexual mode exhibits more plasticity than sexuality (Van Moorsel, 1983; Harrison, 1985):

contrasting modes of development exist within families and even within genera

(Harrison, 2011).

Szmant (1986) suggested that sexual mode is potentially a function of habitat stability,

where successful recruiters would be small, rapidly maturing species, which produce

many offspring over short periods but subject to high mortality rates. Thus, the sexual

modality of species occupying unstable habitats would gravitate towards brooding

because it increases the chances of successful recruitment by reducing gamete and larval

mortality even in low population densities. Edinger & Risk (1995) on noting a correlation

between brooding and eurytopy, hypothesized that brooding corals may preferentially

survive in unstable habitats due to higher recruitment success. The benefits provided by

the brooding modality may partially explain why, in recent decades, brooding corals

have begun to dominate some Caribbean reefs following degradation by natural and

anthropogenic disturbances (Hughes, 1994;Mumby, 1999; Knowlton, 2001; Irizarry-Soto &

Weil, 2009).

The close proximity of oocytes and spermaries within the same mesentery (dygonism)

in I. sinuosa and I. rigida suggests that it is possible that self-fertilization can occur in

these species. Generally, self-fertilization is not a favored method of fertilization in corals

due to possibility of inbreeding depression (Knowlton & Jackson, 1993). Selfing, however,
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is thought to be advantageous in sessile hermaphrodites which are ecologically distant

from other mates and may have limited access to gametes of the other sex, providing a

viable alternative for successful fertilization (Ayre & Miller, 2004; Darling et al., 2012;

Sawada, Morita & Iwano, 2014). These corals may then switch to sexually produced larvae

as population sizes increase (Ayre & Resing, 1986). Selfing has been documented in the

brooding corals Seriatopora hystrix (Sherman, 2008), Favia fragum and Porites astreoides

(Brazeau, Gleason & Morgan, 1998).

The duration of the gametogenic cycle is similar in I. sinuosa and I. rigida (11 and

10 months, respectively). Long oocyte generation times, differential gamete maturation,

and long brood retention times in Isophyllia suggest the possibility of multiple brooding

events during a single gametogenetic cycle. This strategy may increase reproductive

output due to space limitations within polyps. A single annual gametogenetic cycle is the

dominant pattern in most broadcasting corals such as Orbicella, Montastraea, Diploria,

Porites, Acropora, Siderastrea (Szmant, 1986; (Vargas-Ángel & Thomas, 2002; Weil &

Vargas, 2010) and brooding Caribbean corals like Porites andMycetophyllia (Szmant, 1986;

Soong, 1993; Vermeij et al., 2004; Morales, 2006). Multiple spawning events have been

documented in Acanthastrea lordhowensis (Wilson & Harrison, 1997) and cannot be ruled

out in these species.

Both species differ in the timing of oogenesis and planulogenesis events by various

months which suggests that opportunities for hybridization between both species are

limited. The dates of onset of oogenesis in both species (May in I. sinuosa and August

in I. rigida) coincide with warm local sea surface temperatures suggesting seasonal

synchronization of the gametogenic cycle. In I. sinuosa, planulae were observed in

histologic sections during April 2001 which suggests that fertilization occurred during

early April (most recent Full Moon: April 9). In I. rigida, planulae were observed in

June 2000 which suggests a fertilization date in late May (most recent Full Moon:

May 6, 2001). Various environmental factors have been shown to correlate with coral

reproductive cycles and may play a role in their synchronization, including sea

temperature, salinity, day length, light/dark cycles and tidal cycles (Harrison & Wallace,

1990). Van Woesik, Lacharmoise & Köksal (2006) showed experimentally that some coral

spawning schedules correlate strongly with solar insolation levels prior to gamete release,

however, water temperatures are highly influential in determining actual gamete

maturity. van Woesik (2009) also demonstrated a positive correlation between the

duration of regional wind calm periods and the coupling of mass coral spawnings.

Studies with the brooding coral Pocillopora damicornis revealed that synchronization

of larval production was lost under constant artificial new moon and full moon

conditions, demonstrating that planulation in some species is linked to nighttime

irradiance (Jokiel, Ito & Liu, 1985).

Acquisition of the endosymbiont Symbiodinium in Isophyllia occurs directly from

parent to offspring (vertical transmission), a characteristic strongly linked to the brooding

modality (Baird, Guest & Willis, 2009). Vertical symbiont transmission may be

advantageous by providing larvae with various Symbiodinium genotypes which may

improve their ability to recruit successfully and grow in different environmental
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conditions (Padilla-Gamiño et al., 2012). Brooded larvae are capable of motility

immediately or shortly after planulation (Fadlallah, 1983), in contrast to broadcast

spawned propagules which are positively buoyant and may take between 12–72 h to

become motile (Baird, Guest & Willis, 2009). By avoiding the surface, brooded larvae may

better avoid exposure to high levels of solar radiation which may overwhelm the

photosynthetic capacities of zooxanthellae producing oxygen radicals (Tchernov et al.,

2004) and cause tissue damage and mortality (Lesser et al., 1990). However, under high

temperature conditions, larvae of corals with vertical symbiont transmission may suffer

higher oxidative stress and tissue damage, suggesting that these corals may be more

vulnerable to the effects of ocean warming (Yakovleva et al., 2009).

There is increasing evidence that sexual reproduction in corals is highly susceptible

to natural and anthropogenic stressors that reduce fecundity, fertilization success, and

larval survival (Harrison & Wallace, 1990; Harrison, 2011). Increases in sea surface

temperatures as a consequence of global warming have produced widespread coral

bleaching events and disease outbreaks with massive mortality of susceptible individuals.

This worldwide decline of coral reefs underscores the need for understanding sexual

reproduction in corals as the only mechanism capable of safeguarding their future.

Sexual recombination is an important prerequisite for the selection of individuals

which are to be able to adapt to the pressures of a changing environment. A greater

understanding of the mechanisms and variables in sexual reproduction in corals, in

combination with knowledge of the taxonomy and variability of the species, is essential for

any coral reef management strategy (Harrison & Wallace, 1990).
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2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in

corals. Proceedings of the National Academy of Sciences of the United States of America

101(37):13531–13535 DOI 10.1073/pnas.0402907101.

Van Moorsel GWNM. 1983. Reproductive strategies in two closely related stony

corals (Agaricia, Scleractinia). Marine Ecology Progress Series 13:273–283

DOI 10.3354/meps013273.

van Woesik R. 2009. Calm before the spawn: global coral spawning patterns are explained by

regional wind fields. Proceedings of the Royal Society of London B: Biological Sciences

277(1682):715–722 DOI 10.1098/rspb.2009.1524.
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