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Abstract
Background: The transforming growth factors (TGF)-β, TGF-β1, TGF-β2 and TGF-β3, and their
receptors [TβRI, TβRII, TβRIII (betaglycan)] elicit pleiotropic functions in the prostate. Although
expression of the ligands and receptors have been investigated, the splice variants have never been
analyzed. We therefore have analyzed all ligands, the receptors and the splice variants TβRIB,
TβRIIB and TGF-β2B in human prostatic cells.

Results: Interestingly, a novel human receptor transcript TβRIIC was identified, encoding
additional 36 amino acids in the extracellular domain, that is expressed in the prostatic cancer cells
PC-3, stromal hPCPs, and other human tissues. Furthermore, the receptor variant TβRIB with four
additional amino acids was identified also in human. Expression of the variant TβRIIB was found in
all prostate cell lines studied with a preferential localization in epithelial cells in some human
prostatic glands. Similarly, we observed localization of TβRIIC and TGF-β2B mainly in the epithelial
cells with a preferential localization of TGF-β2B in the apical cell compartment. Whereas in the
androgen-independent hPCPs and PC-3 cells all TGF-β ligands and receptors are expressed, the
androgen-dependent LNCaP cells failed to express all ligands. Additionally, stimulation of PC-3 cells
with TGF-β2 resulted in a significant and strong increase in secretion of plasminogen activator
inhibitor-1 (PAI-1) with a major participation of TβRII.

Conclusion: In general, expression of the splice variants was more heterogeneous in contrast to
the well-known isoforms. The identification of the splice variants TβRIB and the novel isoform
TβRIIC in man clearly contributes to the growing complexity of the TGF-β family.
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Background
Transforming growth factor (TGF)-β is a secreted cytokine
implicated in a wide variety of biological processes such as
apoptosis, motility, tumorigenesis, proliferation, differen-
tiation, and gene expression [1]. In mammals three TGF-
betas, TGF-β1, TGF-β2 and TGF-β3, have been cloned, and
although they show very often overlapping functions in
vitro, the isoform-specific knockout mice revealed non-
redundant and non-overlapping phenotypes. Approxi-
mately 50% of the TGF-β1 knockout mice died during
embryogenesis from yolk sac defects; the survivors devel-
oped inflammatory disorders and died typically within
one month [2-4]. TGF-β2 knockout mice were perinatally
lethal and developed defects in different organs such as
heart, kidney, testis, as well as various craniofacial defects
and axial and appendicular skeletal defects [5]. Moreover,
TGF-β3 knockout mice were perinatally lethal due to a
delayed lung development and defective palatogenesis
[6,7].

Secretion and inactivation of the TGF-betas is regulated by
the latency-associated peptides (LAPs) which are gener-
ated from the respective N-terminal TGF-β proteins by
cleavage [8]. Additionally, latent TGF-β binding proteins
(LTBP1-4) are covalently attached to the LAPs and medi-
ate storage in the extracellular matrix (ECM). After activa-
tion by proteolytic enzymes or acidic environment the
TGF-betas bind with high affinity to the serine/threonine
kinase receptor TβRII which in turns phosphorylates TβRI.
Activation of the receptor complex propagates the signal
downstream to the Smad proteins, who regulate many
TGF-β-induced transcriptional responses [9]. Alterna-
tively, TGF-β2 can bind to the accessory receptor TβRIII,
who facilitates binding of TGF-β2 to TβRII. However, sig-
nal transduction is initiated again by TβRI. Recently, it was
shown that TGF-β2 might also bind to an alternative
splice product of the TβRII gene, mainly expressed in oste-
oblasts and mesenchymal cells. The receptor isoform
TβRIIB binds TGF-β2 also in the absence of TβRIII and
then activates TβRI starting the signal transduction [10].
However, recently it was shown in human chondrocytes
that TβRIIB exerted a higher affinity for TGF-β1 than for
TGF-β2 [11]. In addition to alternative splicing of TβRII,
TGF-β2 and TβRI also were demonstrated to be alterna-
tively spliced in human prostatic PC-3 cells [12] and
embryonic stem cells from mouse [13], respectively.

TGF-betas are believed to be involved in several aspects of
carcinogenesis. At the beginning of tumor formation the
TGF-betas might inhibit proliferation of cancer cells, but
with ongoing dedifferentiation, the TGF-betas and the
receptors seem to enhance motility and metastasis of the
tumor cells [1,14]. In more advanced and especially
metastasised stages higher serum levels of TGF-β1 were

found [15] and reduced expression of TβRII and TβRI in
the tumor tissue was associated with poor prognosis [16].

Recently, analyses of alternative splicing indicated that
approximately 40–60% of human genes express splice
variants, suggesting that alternative splicing contributes to
the growing complexity of the human genome [17]. In
many transcripts, addition or deletion of complete exons
or introduction of an early stop codon may result in a
truncated or unstable mRNA [18]. Alternative splicing has
been shown to be involved in ligand binding to growth
factor receptors like TβRIIB [10], cell adhesion or various
human diseases [19]. Additionally, alternative splicing
occurs sometimes during developmental processes and
may be restricted to distinct tissues [18]. Interestingly, it
was reported that more alternative splicing was found in
organs such as testis, pancreas, placenta, and liver [20]. Up
to date many groups have presented genomic analyses of
alternative splicing by use of expressed sequence tags
(EST, [e.g. [21-23]] or microarrays [20]. Most of these
results are now available in databases [17].

In this study, we have analyzed the mRNA expression of
the TGF-betas and the receptors TβRI-III mainly in human
prostatic cells available to us and identified the splice var-
iants TGF-β2B, TβRIB, TβRIIB and the new variant TβRIIC.
Of note, the alternatively spliced exons were found in the
N-terminal part of the proteins and extracellular domains
of the receptors. The splice variant TGF-β2B could be iden-
tified in more species than the other isoforms and showed
less sequence variation among the various species. Fur-
thermore, this is the first report showing localization of
the splice variants TβRIIB, TβRIIC and TGF-β2B in human
prostate tissue.

Results
Literature and database search for alternative splicing
The search in the literature (PubMed) and sequence data-
bases for TGF-betas and their high-affinity receptors dis-
played deleted or additional exons. Alternative splicing of
the TGF-beta ligands was described for TGF-β1 in pig [24]
and for TGF-β2 in human and rat [12,25]. Alternative
splicing of the high-affinity receptors was demonstrated
for TβRI in mouse, rat and boar [13,26,27], and for TβRII
in mouse and human [28-30].

In the database ASDB [21], dealing with alternative splic-
ing, TGF-β2 and TGF-β3 were mentioned to contain splice
variants, and in the database ASAP [31] three isoforms for
TGF-β1 were described. The database EASED [32] showed
many but not all of the aberrant ESTs which were found
in this study.
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Alternative splicing and mRNA expression of TβRI
Alignment of the human ESTs with the genomic sequence
of the TβRI revealed several irregular ESTs but none of
them with additional exons. We also identified a pseudo-
gene of the TβRI gene on chromosome 19 reaching from
exon 2 to exon 4 and a short stretch of 62 base pairs (bp)
from the 3'-UTR (Fig. 1A). The pseudogene showed 87
sequence aberrations in 550 bp (16%) compared to the
TβRI cDNA.

A 12 bp extension of the third exon of the TβRI was first
found in mouse and rat [13,26] and recently in boars [27],
but not in human. Therefore, we cloned both variants of
TβRI, with and without the 12 bp extension (Acc. Nos.
AJ619019 and AJ619020, respectively) from the human
stromal cells hPCPs [33] (Figs. 1A,B). mRNA expression of
TβRI and TβRIB was found in the stromal hPCPs cells and
epithelial LNCaP cells, whereas PC-3 cells only expressed
TβRI and not TβRIB (Fig. 1B). Because the splice variant
TβRIB was only weakly expressed, we obtained improved
PCR results by using a primer containing the 12 bp exten-
sion (Fig. 1B, Table 1). The additional exon 3B codes for
4 amino acids in the extracellular domain of the receptor
and is also found in dogs and pigs (Fig. 1C). Up to date,
the sequence of TβRI is not available for Canis familiaris
(Fig. 1C). According to the exon classification [34] exon
3B with the 12 bp extension belongs to the exon-type with
internal acceptor sites.

Alternative splicing and mRNA expression of TβRII
An alternatively spliced exon between the first two exons
of the TβRII gene was described for mouse and human
[28-30] (Fig. 2A–C). The cassette type exon 2B consists of
75 bp and codes for 25 amino acids. Due to admission of
exon 2B amino acid exchange occurs at the splice site
junction between both receptor variants, from isoleucine
to valine in human and from phenylalanine to valine in
the mouse sequence (Fig. 2B,C). Exon 2B shows 14 nucle-
otide exchanges between the human and mouse sequence
coding for 7 different amino acids. In contrast the nucle-
otide and amino acid sequence from Pan troglodytes is
100% identical to human, whereas the nucleotide
sequence from Macaca mulatta demonstrated two differ-
ent nucleotides, thus resulting in one amino acid
exchange.

The alignment of the ESTs with the genomic sequence
revealed the novel transcript TβRIIC (Acc. No. AJ786388)
with the alternatively spliced exon 4B comprising 108
nucleotides arranged in frame and encoding 36 amino
acids (Fig. 3). Exon 4B belongs to the cassette type of
exons and is part of the extracellular domain of the recep-
tor (Fig. 2A). The nucleotide and amino acid sequence
from Pan troglodytes demonstrated one different nucle-
otide thus resulting in one different amino acid, whereas
the nucleotide sequence from Macaca mulatta demon-
strated 7 different nucleotides, thus resulting in 5 amino
acid exchanges compared with the human sequence (Fig.
3).

The alternatively spliced exon 2B was found in the human
EST database (e.g. BG898778, Fig. 4A). We also analyzed
the truncated TβRII sequence provided by Yang et al. [35]
and found that it was identical to exon 1 and exon 2 and
some nucleotides in the 3'-UTR, thus resulting in a trun-

(A) Comparison of the exon structure of the human TβRI mRNA with the pseudogene on chromosome 19Figure 1
(A) Comparison of the exon structure of the human TβRI mRNA with the 
pseudogene on chromosome 19. A detailed alignment of the pseudogene 
with exons 2 to 4 and the 3'-UTR is available from the authors upon 
request. Lines depict the 5'-UTR and 3'-UTR. The repetitive elements 
AluSX, AluSB and L1Pa13 are encircled. (B) Expression pattern of the 
TβRI gene in human prostatic cells. Expression of both transcript variants 
(upper panel, 5-TB1RL/3-TB1RL) and expression of the splice variant 
TβRIB (lower panel; 5-TB1RL/3-HTB1RL) is demonstrated. (C) Scheme of 
the TβRI protein (EC, extracellular domain; TM, transmembrane domain; 
kinase, Ser/Thr kinase domain) with the nucleotide and amino acid 
sequence of exon 2 and exon 3 (capital letters) and the alternatively 
spliced exon 3B (lower case letters). Additionally, the partial sequence 
without the alternatively spliced exon is given below. The sequence of 
TβRI was not available for canis familiaris. The splice site junctions are 
indicated by italic letters. Bold letters mark the amino acid and nucleotide 
exchanges with respect to the human sequence. The accession numbers 
are given below (hs, homo sapiens; mm, mus musculus; rn, rattus norvegi-
cus; ss, sus scrofa; cf, canis familiaris). Arrows indicate the exon bounda-
ries. Ctrl, control.

E1 E2 E3 E4 E5 E9E8E7E6 TβRI (AY497473)
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5`-GAACTTCCAACTGgtaag.....aggccctttttcagTAAAGTCATCACCTGGCCTC-3`

EXON 2      INTRON 2   EXON 3B EXON 3

TβRIB, alternative exon

GAACTTCCAACTACTGgccctttttcagTAAAGTCATCACCTGGCCTC    hs TβRIB (AJ619019)

GAACTCCCAACTACAGgacctttttcagAAAAGCAGTCAGCTGGCCTT mm TβRIB (NM_009370)

GAACTCCCAACTACAGgacctttttcagAAAAGCAGTCAGCTGGCCTC    rn TβRIB (NM_012775)

GAACTCCCAACTGTTGgtccttttccagGAAAGCCACCATCTGGCCTT ss TβRIB (NM_001038639)

GAACTCCCAACTACAGgacctttttcagAAAAGCAGTCAGCTGGCCTC    cf TβRIB (AY455799)

E  L  P  T  T  G  P  F  S  V  K  S  S  P  G  L      hs TβRIB (AJ619019)
E  L  P  T  T  G  P  F  S E K  Q S  A G  L      mm TβRIB (NM_009370)

E  L  P  T  T  G  P  F  S  E K  Q S  A G  L      rn TβRIB (NM_012775)

E  L  P  T  V G  P  F  P G K  P P S G  L      ss TβRIB (NM_001038639)

E  L  P  T  T  G  P  F  S  E K  Q S  A G  L      cf TβRIB (AY455799)

TβRI, exon2/3 junction

GAACTTCCAACTACTGTAAAGTCATCACCTGGCCTC                hs TβRI (NM_004612)

GAACTCCCAACTACAGAAAAGCAGTCAGCTGGCCTT mm TβRI (D25540)

GAACTCCCAACTACAGAAAAGCAGTCAGCTGGCCTC                rn TβRI (S81584)

GAACTCCCAACTGTTGGAAAGCCACCATCTGGCCTT ss TβRIB (DQ519380)

E  L  P  T  T  V  K  S  S  P  G  L                  hs TβRI (NM_004612)

E  L  P  T  T  E K  Q S  A G  L                  mm TβRI (D25540)

E  L  P  T  T  E K  Q S  A G  L                  rn TβRIB (NM_012775)

E  L  P  T  V G K  P P S G  L                  ss TβRIB (DQ519380)

B

C
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cated receptor isoform as published (Fig. 4A). Addition-
ally, only one EST for TβRIIC could be identified (Fig. 4A).
Expression of TβRII and TβRIIB was apparent in the pros-
tate cells hPCPs, PC-3 and LNCaP (Fig. 4B). In contrast to
the weak expression of TβRIB compared to TβRI, the long
variant TβRIIB is as strongly expressed as TβRII. Because
TβRIIC was very weakly expressed in the prostatic cell
lines and the EST BG955255 was derived from colon tis-
sue, we also analyzed the colon cancer cells Caco-2. With
nested RT-PCR, mRNA expression could be detected in
Caco-1, PC-3 and hPCPs, but only very weakly in LNCaP
cells (Fig. 4B). Despite the low expression, we found
mRNA expression in up to 20 normal tissues (Fig. 4B).
Furthermore, we identified an aberrant splicing pattern at
the 5'-end of the alternative exon of TβRIIC, where an
alternative AG was used for splicing (Fig. 4C), resulting in
a preliminary stop codon (Fig. 3). Although expression of
TβRIIC∆4 was low compared to TβRIIC (Fig. 4C), it was
apparent in all cell lines and tissues studied.

Alternative splicing and mRNA expression of TβRIII 
(betaglycan)
The alignment of the ESTs for TβRIII with the genomic
sequence did not reveal additional exons. All prostatic
cells expressed mRNA of the TβRIII (Fig. 5A).

Alternative splicing and mRNA expression of TGF-β1
The alignment of the TGF-β1 gene with the ESTs did not
show any new exons. Because in the TGF-β2 gene the
alternatively spliced exon 2B between the first two exons
was found as mentioned above, we tested whether this
was also the case for the TGF-β1 cDNA. However, in the
prostatic cells no additional exon was identified (data not
shown). Besides LNCaP all cell lines studied showed
expression of TGF-β1 (Fig. 5B). Additionally, we tested
whether exons 4 and 5 were deleted in the human
sequence as has been published for the porcine sequence
[24]. However, in the prostatic cell lines studied this dele-
tion was not detectable (Fig. 5B).

(A) Schematic drawing of the TβRII protein (EC, extracellular domain; TM, transmembrane domain; Kinase, Ser/Thr kinase domain) with the two alternatively spliced exons 2B and 4BFigure 2
(A) Schematic drawing of the TβRII protein (EC, extracellular domain; TM, transmembrane domain; Kinase, Ser/Thr kinase 
domain) with the two alternatively spliced exons 2B and 4B. (B) Nucleotide sequence of the cDNA and deduced amino acid 
sequence of exon 2B (underlined capital letters) and splice site junctions (lower case letters) of the variant TβRIIB are shown. 
(C) Additionally, the partial nucleotide and amino acid sequence of TβRII without exon 2B is shown. Underlined amino acids 
indicate amino acid exchange at the splice site junction due to the alternative splicing. Bold letters mark the amino acid and 
nucleotide exchanges with respect to the human sequence. Arrows indicate the exon boundaries. (hs, homo sapiens; pt, pan 
troglodytes; mmu, macaca mulatta; mm, mus musculus).

A

EC KinaseTM

Exon 2B                Exon 4B

B T RIIB, alternative exon

5`-CAGAAGTCGGgtgag..agATGTGGAAATGGAGGCCCAGAAAGATGAAATCATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATAgtaaag..agTTAATAACGAC-3`

EXON 1    INTRON 1   EXON 2B INTRON 1 EXON 2

CAGAAGTCGGATGTGGAAATGGAGGCCCAGAAAGATGAAATCATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATATTAATAACGAC   hs T RIIB (NM_001024847)

CAGAAGTCGGATGTGGAAATGGAGGCCCAGAAAGATGAAATCATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATATTAATAACGAC   pt T RIIB (XM_516343)

CAGAAGTCGGATGTGGAAATGGAGGCCCAGAAAGGTGAAATGATCTGCCCCAGCTGTAATAGGACTGCCCATCCACTGAGACATATTAACAATGAC   mmu T RIIB (XM_001095877)

CCCAAGTCGGATGTGGAAATGGAAGCCCAGAAAGATGCATCCATCCACGTAAGCTGTAATAGGACCATCCATCCACTGAAACATTTTAACAGTGAT mm T RIIB (NM_009371)

Q  K  S  D  V  E  M  E  A  Q  K  D  E  I  I  C P  S  C  N  R  T  A  H  P  L  R  H  I N  N  D   hs T RIIB (NM_001024847)

Q  K  S  D  V  E  M  E  A  Q  K  D  E  I  I  C P  S  C  N  R  T  A  H  P  L  R  H  I N  N  D   pt T RIIB (XM_516343)

Q  K  S  D  V  E  M  E  A  Q  K G E  M  I  C  P  S  C  N  R  T  A  H  P  L  R  H  I N  N  D   mmu T RIIB (XM_001095877)

P K  S  D  V  E  M  E  A  Q  K  D A S I H V S  C  N  R  T I H  P  L K H F N S D   mm T RIIB (NM_009371)

CAGAAGTCGGTTAATAACGAC hs T RII (AC096821)

CAGAAGTCGGTTAATAACGAC pt T RII (XM_001166647)

CAGAAGTCGGTTAACAATGAC mmu T RII (XM_001095987)

CCCAAGTCGGTTAACAGTGAT mm T RII (NM_009371)

Q  K  S  V N  N  D hs T RII (AC096821)

Q  K  S  V N  N  D pt T RII (XM_001166647)

Q  K  S  V N  N  D mmu T RII (XM_001095987)

P K  S  V N S D mm T RII (NM_009371)

C T RII, exon1/2 junction
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Alternative splicing and mRNA expression of TGF-β2
For the TGF-β2 gene an additional cassette type exon
between exons 1 and 2 was published for man and rat
[12,25] and is now also available for monkeys, dogs, rab-
bits and mice (Fig. 6). The coding sequence is 84 bp in all
species, resulting in additional 28 amino acids with a
change from asparagine to aspartic acid in TGF-β2B at the
splice site (Fig. 6). Nucleotide and amino acid sequences
of TGF-β2B of the different species are more closely
related to the human sequence than these of TβRIIC or
TβRIIB. For example, the nucleotide and amino acid
sequence of TGF-β2B from Pan troglodytes and Macaca
mulatta is 100% identical to the human sequence (Fig. 6),
whereas the nucleotide sequence of TβRIIC from Pan trog-
lodytes and Macaca mulatta is only 99.1% and 93.5%,
respectively, identical to the human sequence (Fig. 3).

The alignment of the ESTs coding for TGF-β2 with the
genomic sequence showed the EST BF725669 to contain
an additional exon (Fig. 7A). The alternatively spliced
TGF-β2B and TGF-β2 are expressed in PC-3 and hPCPs

cells, but expression of TGF-β2B was weaker in compari-
son to TGF-β2 (Fig. 7B).

Alternative splicing and mRNA expression of TGF-β3
The alignment of the TGF-β3 cDNA sequence with the EST
database only yielded incorrectly spliced exons (Fig. 7C).
We found an annotation for alternative splicing of TGF-β3
in the ASDB database [22]. Although the TGF-β3 gene
could be found in this genomic clone, the alternative
splicing does belong to the next gene, adjacent to TGF-β3.
mRNA expression of TGF-β3 was investigated with prim-
ers located in exon 1 and exon 2 to test for possible new
exons. However, we only observed one specific amplicon
in all prostatic cell lines except for LNCaP cells (Fig. 7D).
Expression of the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) for all cell lines used
is shown in Fig. 7D. 

Localization of the alternative splice variants
Localization of the splice variant TβRIIB was found
mainly in the basal cells but also in the columnar cells of
the epithelium of nontumorous glands and is shown

Table 1: Primer pairs used for characterization

Gene (Acc No)a Position Designation Size Sequence ATb

TβRI, human, 256–275c 5-TB1RL 288 bp GACCACAGACAAAGTTATAC 60°C
(NM_004612) 524–543 3-TB1RL 300 bp TGGTGAATGACAGTGCGGTT
(AJ619019) 159–178 3-HTB1RL 178 bp TACTGAAAAAGGGCCAGTAG 52°C

TβRII, human 435–454 5-HTBR2B 274 bp CGCGTATCGCCAGCACGATC 63°C
(NM_003242) 688–708 3-HTBR2B 349 bp TGGTAGGGGAGCTTGGGGTCA
(NM_001024847) 795–815 5-HTBR2E3 298 bp GTAGCTCTGATGAGTGCAATG 60°C

1072–1092 3-HTBR2E4 406 bp TGGTTGATGTTGTTGGCACAC
TβRIIC, human 89–108 5-HTBR2Z 319 bp GGAGCACTTGTCAAAACACTG 57°C
(AJ786388) 84–115 3-HTBR2CD 115 bp TCCCAGCCAGTGTTTTGACAAG 60°C

TβRIII, human 2501–2520 5-HTBR3E13 217 bp TGTGTGCCTCCTGACGAAGC 59°C
(NM_003243) 2609–2717 3-HTBR3E15 AGGCTGCAAACGCAATGCCC

TGF-β1, human 1402–1420 5-HTGFB1E3 426 bp TGGCGATACCTCAGCAACC 55°C
(NM_000660) 1809–1827 3-HTGFB1E6 GTTGGCATGGTAGCCCTTG

TGF-β2, human 680–699 5-HTB2CP 185 bp CAACAGCACCAGGGACTTGC 65°C
(M19154) 845–864 3-HTB2CP AGCACAAGCTGCCCACTGAG
(NM_003238) 658–679 5-TGFB2E1B 272 bp CCCCGGAGGTGATTTCCATCTA 62°C

908–929 3-TGFB2E1B 188 bp GTAGGGTCTGTAGAAAGTGGGC

TGF-β3, human 342–361 5-TGFB3E1 332 bp TGGACTTCGGCCACATCAAG 57°C
(NM_003239) 653–673 3-TGFB3E2 CTCCACTGAGGACACATTGAA

GAPDHd, human 402-421 5-GAPDH 300 bp CGTCTTCACCACCATGGAGA 59°C
(NM_002046) 682-701 3-GAPDH CGGCCATCACGCCACAGTTT

aAcc No, EMBL/DDBJ/GenBank Accession Number
bAT, annealing temperature
cthis position is equivalent to 1–20 in AJ619019
dGAPDH, glyceraldehyde-3-phosphate dehydrogenase
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exemplarily for a prostate carcinoma patient with histo-
logical grading pT3apN0M0 (Fig. 8A). However, staining
was also found in epithelial cells in tumorous glands
(data not shown). The negative control without the pri-
mary antibody did not show any staining (Fig. 8B).

TβRIIC was localized in the epithelial cells (Fig. 8C) in
very few glands of the human prostate (histological grad-
ing pT2apN0M0) and also in muscle cells (Fig. 8D, histo-
logical grading pT3bpN0M0). The splice variant TGF-β2B
was found also mainly in the epithelial cells in the apical
region (Fig. 8E, histological grading pT2bpN0M0). The
negative control without the primary antibody did not
show any staining (Fig. 8F).

Functional analysis of the alternative splice variants
We used a sensitive ELISA to determine the amounts of
plasminogen activator inhibitor-1 (PAI-1) in the superna-
tant of PC-3 cells which are known to secrete PAI-1 [36].
Stimulation of PC-3 cells with 10 ng/ml recombinant
TGF-β2 demonstrated a highly significant approximately
10-fold increase in PAI-1 secretion compared to the
unstimulated control (Fig. 9). Antibody perturbation
experiments performed with three different antibodies
against TβRII, TβRIIB and TβRIIC showed a significant
reduction (approximately 30%) in secretion of PAI-1 only
for the anti-TβRII antibodies compared to the stimulation
with TGF-β2 (Fig. 9). Although antibodies against TβRIIB
and TβRIIC demonstrated a reduction of 14% and 21%,

respectively, in PAI-1 secretion, the effects were not signif-
icant.

Discussion
We have analyzed the mRNA expression of the TGF-betas
and their respective high-affinity receptors in human pro-
static cells available to us and identified alternative splic-
ing in TβRI, TβRII and TGF-β2 (Table 2). It is striking that
the alternatively spliced exons are located in the N-termi-
nal part of the proteins, whereby in both receptors the
additional amino acids were part of the extracellular
domain. Also, the novel isoform TβRIIC is characterized
by 36 additional amino acids in the extracellular domain.
Up to date, the variant TGF-β2B is sequenced in more spe-
cies and showed less sequence variations than TβRIIB and
TβRIIC. Additionally, we demonstrated that the splice var-
iants are translated and found a preferential epithelial
localization in the human prostate. For the first time we
could show that stimulation of PC-3 cells with TGF-β2
resulted in a significant and strong increase in secretion of
PAI-1 with a major participation of TβRII and to a lesser
extent that of TβRIIB and TβRIIC.

mRNA Expression of prostatic TGF-betas and their 
receptors
Analysis of mRNA expression of TGF-betas and their
receptors in human prostatic cell lines showed very con-
troversial results. It is generally accepted that PC-3 cells
express TGF-β1, TGF-β2 and TGF-β3 [37,38] and even

Nucleotide and amino acid sequence of exon 4B (underlined capital letters) of the variant TβRIIC and TβRIIC∆4 are givenFigure 3
Nucleotide and amino acid sequence of exon 4B (underlined capital letters) of the variant TβRIIC and TβRIIC∆4 are given. Fur-
thermore, the partial nucleotide and amino acid sequences of TβRII without exon 4B are shown. Bold letters mark the amino 
acid and nucleotide exchanges with respect to the human sequence. Arrows indicate the exon boundaries. (hs, homo sapiens; 
pt, pan troglodytes; mmu, macaca mulatta).

T RIIC, alternative exon

5`-GAAGgtgag..agGTAGATGTAAAATCAGACATATAGGTTCAAACAATCGATTGCAAAGGAGCACTTGTCAAAACACTGGCTGGGAATCTGCTCATGTGATGAAGACCCCAGGGTTTAGAGgtgag..agAATAT-3`

EXON 3  Intron 3     EXON 4B Intron 3 EXON 4

4

GAAGGTAGATGTAAAATCAGACATATAGGTTCAAACAATCGATTGCAAAGGAGCACTTGTCAAAACACTGGCTGGGAATCTGCTCATGTGATGAAGACCCCAGGGTTTAGAGAATAT hs T RIIC (AJ786388)

GAAGGTAGATGTAAAATCAGACATATAGGTTCAAACAATCAATTGCAAAGGAGCACTTGTCAAAACACTGGCTGGGAATCTGCTCATGTGATGAAGACCCCAGGGTTTAGAGAATAT pt T RIIC (XM_001166587)

GAAGGTAGGTGTAAAATCAGACATATAGGTTCAAACAATCAATTGCAAAGGAGCACTTATCAAAACAGTGGCTGGGAATCTGCCCCTGTGATGAAGACCCCAGGGTATAGAGAATAC mmu T RIIC (XM_001095763)

GAAGATGTAAAATCAGACATATAG hs T RIIC 4 (AJ786388)

E  G  R  C  K  I  R  H  I  G  S  N  N  R  L  Q  R  S  T  C  Q N  T  G  W  E  S  A  H  V  M  K  T  P  G  F  R  E  Y   hs T RIIC (AJ786388)

E  G  R  C  K  I  R  H  I  G  S  N  N Q L  Q  R  S  T  C  Q  N  T  G  W  E  S  A  H  V  M  K  T  P  G F  R  E  Y   pt T RIIC (XM_001166587)

E  G  R  C  K  I  R  H  I  G  S  N  N Q L  Q  R  S  T Y Q  N S G  W  E  S  A P V  M  K  T  P  G Y R  E  Y   mmu T RIIC (XM_001095763)

E D  V  K  S  D  I Stop

T RII, exon3/4 junction

GAAGAATAT hs T RII (NM_003242)

GAAGAATAT pt T RII (XM_001166647)

GAAGAATAC mmu T RII (XM_00109587)

E  E  Y hs T RII (NM_003242)

E  E  Y pt T RII (XM_001166647)

E  E  Y mmu T RII (XM_00109587)
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more the TGF-β2 gene was originally cloned from PC-3
cells [12]. In line with this, our study also showed expres-
sion of all TGF-beta ligands in the stromal hPCPs and PC-
3. However, experiments with LNCaP yielded controver-
sial results. Whereas mRNA expression for TGF-β1 to TGF-
β3 was demonstrated [37] all other studies including this
one could not find mRNA expression of TGF-β1 in LNCaP
cells [39,40]. Our study showed expression of all TGF-beta
ligands in the stromal cells hPCPs which is in accordance
with the results for other stromal cell lines derived from
the human prostate [41]. However, this study confirmed
an earlier report showing that PC-3 cells express the splice
variant TGF-β2B [12].

PC-3 cells showed expression of TβRI and TβRII, which
was confirmed in this study. In LNCaP cells expression of

TβRII was found, but TβRI was not expressed [42,43].
However, another study [44] like the present detected
mRNA expression by RT-PCR in LNCaP cells. For stromal
prostatic cells expression of TβRI and TβRII was found by
us and others [45]. This is the first study to show expres-
sion of TβRIII and the receptor splice variants TβRIB and
TβRIIB and to identify a novel transcript termed TβRIIC

Table 2: Expression pattern of the TGF-β ligands, receptors and 
splice variants

hPCPs LNCaP PC-3

Ligands
TGF-β1 + - +
TGF-β2 + - +
TGF-β3 + - +

Receptors
TβRI + + +
TβRII + + +
TβRIII + + +

Splice 
variants
TβRIB + + -
TβRIIB + + +
TβRIIC + - +
TGF-β2B + - +

(A) Comparison of the exon structure of the human TβRII mRNA with the truncated sequence provided by Yang et al. [35]Figure 4
(A) Comparison of the exon structure of the human TβRII 
mRNA with the truncated sequence provided by Yang et al. 
[35]. Lines depict the 5'-UTR, 3'-UTR and ESTs with addi-
tional exons. (B) Expression pattern of both transcript vari-
ants of the TβRII gene in human prostatic cells (upper panel, 
5-HTBR2B/3-HTBR2B). Expression of the novel splice vari-
ant TβRIIC in human prostatic cells (lower panel, nested 
PCR first round 5-HTBR2E3/3-HTBR2E4, second round 5-
HTBR2Z/3-HTBR2E4) and normal human tissues (5-
HTBR2E3/3-HTBR2CD) is shown. Additionally, GAPDH 
expression is also provided. (C) Fluorescence detection of 
TβRIIC∆4 (5-HTBR2E3/3-HTBR2CD, arrows) and TβRIIC is 
demonstrated. Caco, Caco-2; ctrl, control; g, gland; m, mus-
cle; mu, mucosa; s, small; ma, marrow.
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(A) Exon structure of the human TβRIII (betaglycan) mRNAFigure 5
(A) Exon structure of the human TβRIII (betaglycan) mRNA. 
Lines depict the 5'-UTR and 3'-UTR. Expression pattern of 
the TβRIII gene in human prostatic cells (5-HTBR3E13/3-
HTBR3E15). (B) Exon structure of the human TGF-β1 
mRNA. Lines depict the 5'-UTR and 3'-UTR. Expression pat-
tern of the TGF-β1 gene in human prostatic cells (5-
HTGFB1E3/3-HTGFB1E6). Ctrl, control.
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which will be discussed below. Only the stromal cells
hPCPs expressed all receptor splice variants as well as TGF-
β2B (Table 2). Except for the splice variant TβRIB, PC-3
cells also expressed all receptor splice variants, whereas
LNCaP cells did not express TGF-β2B which is in line with
the missing expression of all TGF-β ligands. Interestingly,
these cells did also not express the newly identified splice
variant TβRIIC (Table 2).

Localization and protein data of the splice variants of 
TGF-β ligands and receptors
Agrotis et al. [30] have demonstrated, that TβRI is more
abundant in contractile smooth muscle cells than the var-
iant TβRIB. Additionally, they found that TβRI displayed

a greater ability to induce PAI-1 mRNA in response to
TGF-β1, whereas TβRIB performed slightly better in
growth inhibition [30]. Interestingly, we identified for
TβRI a pseudogene on chromosome 19, reaching from
exon 2 to exon 4 and a short stretch of 62 bp from the 3'-
UTR of the gene.

In contrast to TβRI which mainly is important for signal
transduction, TβRII is involved in direct interaction with
the ligands TGF-β1, TGF-β2 and TGF-β3 [1]. In TβRII the
additional exon 2B was hypothesized to be involved in
high-affinity binding of TGF-β2 to the receptor isoform
TβRIIB also in the absence of TβRIII [10]. However, it was
shown recently that TGF-β2 could bind to soluble TβRIIB

Schematic drawing of the TGF-β2 protein (LAP, latency-associated peptide) with the alternatively spliced exon 2BFigure 6
Schematic drawing of the TGF-β2 protein (LAP, latency-associated peptide) with the alternatively spliced exon 2B. Nucleotide 
and amino acid sequence of exon 2B (underlined capital letters) of the variant TGF-β2B are shown. Additionally, the partial 
sequence of TGF-β2 without exon 2B is shown. The sequence of TGF-β2 was not available for oryctolagus cuniculus. Under-
lined amino acids indicate amino acid exchange at the splice site junction due to the alternative splicing. Bold letters mark the 
amino acid and nucleotide exchanges with respect to the human sequence. Arrows indicate the exon boundaries. The acces-
sion numbers are also given. (hs, homo sapiens; pt, pan troglodytes; mmu, macaca mulatta; cf, canis familiaris; oc, oryctolagus 
cuniculus; mm, mus musculus; rn, rattus norvegicus).

5`-GAAA...CTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTG...ATGCC-3`

EXON 1                  EXON 2B                              EXON 2

TGF-β2B, alternative exon

GAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  hs TGF-β2B(M19154)
GAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  pt TGF-β2B(XM_001172158)
GAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  mmu TGF-β2B(XM_001103911)
GAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTCTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  cf TGF-β2B(XM_545713)
GAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTGTGCGCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  oc TGF-β2B(AY429466)
GAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCATTGGGCAGCTTTTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  mm TGF-β2B(AJ639842)
GAAACTGTCTGCCCAGTTGTTACAACATCCTCTGGCTCAGTGGGCAGCTTTTGCTCCATACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCC  rn TGF-β2B(AF153012)

E  T  V  C  P  V  V  T  T  P  S  G  S  V  G  S  L  C  S  R  Q  S Q  V  L  C  G  Y  L  D A    hs TGF-β2B(M19154)
E  T  V  C  P  V  V  T  T  P  S  G  S  V  G  S  L  C  S  R  Q S  Q  V  L  C  G  Y  L  D A    pt TGF-β2B(XM_001172158)
E  T  V  C  P  V  V  T  T  P  S  G  S  V  G  S  L  C  S  R  Q S  Q  V  L  C  G  Y  L  D A    mmu TGF-β2B(XM_001103911)
E  T  V  C  P  V  V  T  T  P  S  G  S  V  G  S  F C  S  R  Q  S  Q  V  L  C  G  Y  L  D A    cf TGF-β2B(XM_545713)
E  T  V  C  P  V  V  T  T  P  S  G  S  V  G  S  L  C  A R  Q  S  Q  V  L  C  G  Y  L  D A    oc TGF-β2B(AY429466)
E  T  V  C  P  V  V  T  T  P  S  G  S  L G  S  F C  S  R  Q  S  Q  V  L  C  G  Y  L  D A    mm TGF-β2B(AJ639842)
E  T  V  C  P  V  V  T  T  S S  G  S  V  G  S F C  S  I Q  S  Q  V  L  C  G  Y  L  D A    rn TGF-β2B(AF153012)

TGF-β2, exon1/2 junction

GAAAATGCC                                                       hs TGF-β2 (NM_003238)
GAAAATGCC                                                    pt TGF-β2 (XM_514203)
GAAAATGCC                                                    mmu TGF-β2 (XM_001103999)
GAAAATGCC                                                    cf TGF-β2 (XM_853584)
GAAAATGCC                                                       mm TGF-β2 (NM_009367)
GAAAATGCC                                                       rn TGF-β2 (AJ132718) 
E  N A                                                               hs TGF-β2 (NM_003238)
E  N A                                                             pt TGF-β2 (XM_514203)
E  N A                                                             mmu TGF-β2 (XM_001103999)
E  N A                                                             cf TGF-β2 (XM_853584)
E N A                                                             mm TGF-β2 (NM_009367)
E  N A                                                             rn TGF-β2 (AF153012)

LAP Mature TGF-β2
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or TβRII only in combination with soluble TβRI [46] and
that also TGF-β1 could interact with TβRIIB [11]. Further-
more, the TβR knockouts, TβRI [47], TβRII [48] and TβRIII
[49], revealed non-overlapping phenotypes with the TGF-
β2 null mice [5], although TβRIII knockouts displayed
reduced TGF-β2 binding [49]. This implies that either the
high-affinity receptor for TGF-β2 is still not found or that
receptor combinations might be responsible for the inter-
action.

Expression of TβRII was found in the human prostate in
normal and tumor tissue primarily in the epithelial cells
with a diminished expression in more advanced stages
[16]. Similarily our results with TβRIIB also showed a dis-
tinct localization in the epithelial cells of normal and
tumor tissue of the human prostate.

Our analysis clearly showed the expression of a novel
transcript variant TβRIIC in PC-3, hPCPs cells, Caco-2 and
up to 20 normal tissues including human prostate, indi-
cating a ubiquitous expression in human organs. The
additional and alternatively spliced exon encodes 36
amino acids located in the extracellular domain in close
proximity to the transmembrane domain. Although the
database search for protein domains revealed no similari-
ties to other proteins or specific motifs, it is noteworthy,
that the additional domain contains two additional
cysteines which might be important for protein folding.
Interestingly, we found a deletion of 4 bp at the 5'-end of
the additional exon 4B in TβRIIC∆4, possibly resulting in
a truncated receptor. Although expressed at a very low

(A) Localization of TβRIIB in human prostate carcinoma is found in most epithelial cells (mainly in basal but also in columnar cells) in a nontumorous gland adjacent to a nontu-morous gland without stainingFigure 8
(A) Localization of TβRIIB in human prostate carcinoma is 
found in most epithelial cells (mainly in basal but also in 
columnar cells) in a nontumorous gland adjacent to a nontu-
morous gland without staining. (B) The negative control did 
not reveal any staining. Localization of TβRIIC in human 
prostate carcinoma was found in epithelial cells (C) and mus-
cle cells (D). TGF-β2B was localized primarily in the apical 
region of epithelial cells (E). (F) The negative control did not 
reveal any staining. A-F, 100× magnification
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D

(A) Comparison of the exon structure of the human TGF-β2 mRNA with the ESTs BP214137 and BF752669 containing the additional alternative exon 2BFigure 7
(A) Comparison of the exon structure of the human TGF-β2 
mRNA with the ESTs BP214137 and BF752669 containing 
the additional alternative exon 2B. Lines depict the 5'-UTR, 
3'-UTR and introns. (B) Expression of both transcript vari-
ants (upper panel, 5-TGFB2E1B/3-TGFB2E2B) and expres-
sion of the splice variant TGF-β2B (lower panel; 5-HTB2CP/
3-HTB2CP) is shown. (C) Exon structure of the human TGF-
β3 mRNA. Lines depict the 5'-UTR and 3'-UTR. (D) Expres-
sion pattern of the TGF-β3 gene in human prostatic cells (left 
panel, 5-TGFB3E1/3-TGFB3E2). Additionally, GAPDH 
expression of all cell lines studied is shown. Ctrl, control.
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level, it was found in normal tissue and preliminary
results suggest this to be also the case in tumor samples.
Interestingly protein localization of TβRIIC was also
found mainly in the epithelial cells of the human prostate
but in very few glands.

The splice variant TGF-β2B mRNA was first described in
the prostatic cell line PC-3 [12,50] and in rats in skeletal
muscles, aorta, primary bronchus, heart, uterus, sciatic
nerve, and spinal cord [25]. Additionally, TGF-β2B mRNA
and protein were found in most somatic and germinal
cells of mouse and rat [51]. TGF-β2B was also demon-
strated to be secreted by BSC-40 cells from monkeys [52].
The additional exon of TGF-β2B is part of the LAP-domain
which is important for correct secretion and inactivation
of the mature C-terminal TGF-β2 dimer [8]. The alterna-
tively spliced exon 2B contains 3 additional cysteine resi-
dues which might be important for the formation of
cysteine bonds and therefore might influence protein
folding. However, TGF-β2B is secreted and forms a latent

complex with the LAP [52]. It is important to note that
TGF-β2B is cleaved similarly to TGF-β2 and yields a
mature monomer/dimer of exactly the same size as
mature TGF-β2 [52]. Because only mature TGF-β2 binds
to the receptor it is equal whether mature TGF-β2 is
cleaved from the short TGF-β2 variant or long TGF-β2B
variant. Whether the existence of the two different TGF-β2
LAP complexes is required for different binding to LTBPs
and thus might be stored differently in the ECM warrants
further investigation.

Up to date TGF-β2B was identified in most species,
whereas TβRIB and TβRIIB were found in fewer species. It
is noteworthy that TβRIIB is not as well conserved
between human and mouse than TGF-β2B and up to date
was not found in rat [51]. Therefore, we conclude that
TβRIIB is not as ubiquitously expressed in the different
species like the other variants and therefore could not
serve as a ubiquitous receptor for TGF-β2. In line with this
assumption, we could observe only a moderate decrease
in PAI-1 secretion after inhibition of TβRIIB or TβRIIC
after stimulation of PC-3 cells with TGF-β2. However, this
is the first report showing a 10-fold increase of PAI-1
secretion in PC-3 cells after stimulation with TGF-β2.

Conclusion
In general, mRNA expression of the TGF-β and TβR splice
variants was more heterogeneous and weaker compared
to the variants without the alternative exons. The variant
TGF-β2B was identified in most species and is up to date
the best conserved isoform among the various species.
Similarly, the splice variant TβRIB was also found in many
species in contrast to the isoforms TβRIIB and TβRIIC
which showed a more restricted species distribution. This
is the first report showing a distinct localization of TGF-
β2B, TβRIIB and TβRIIC in the human prostate mainly in
the epithelium.

Methods
Cell lines and tissues
The stromal cells hPCPs from the human prostate were
propagated as described [33]. LNCaP and PC-3 cells were
purchased from American Type Culture Collection
(ATCC) and cultivated as published [53]. Colon cancer
cell line Caco-2 was purchased from ATCC and kindly
provided by Dr W.W. Franke (German Cancer Research
Center, Heidelberg, Germany) and kept under standard
conditions. Total RNA from 20 normal human tissues was
purchased (Becton Dickinson, Heidelberg, Germany).

RNA isolation, cDNA synthesis and RT-PCR
Total RNA from the cell lines was isolated with Trizol
(Gibco BRL, Karlsruhe, Germany) according to the manu-
facturer's instructions. Total RNA of Caco-2 cells was iso-
lated using RNAeasy isolation kit (Qiagen, Hilden,

Secretion of PAI-1 by PC-3 cells was quantified by ELISAsFigure 9
Secretion of PAI-1 by PC-3 cells was quantified by ELISAs. 
TGF-β2 alone (-) stimulated secretion of PAI-1 significantly 
compared to the control (Ctrl). Antibody perturbation 
experiments with antibodies specific for the extracellular 
domains of TβRII (RII), the alternative exons of TβRIIB (RIIB) 
and TβRIIC (RIIC), demonstrated a significant decrease in the 
amount of PAI-1 only for TβRII compared to the stimulation 
with TGF-β2 (-) or the unspecific antibody (ctrl-R). For the 
sake of clarity, we have not indicated that the antibody per-
turbation experiments were also significantly different to the 
control (Ctrl) without any TGF-β2 treatment. An unspecific 
antibody (ctrl-R) did not inhibit PAI-1 secretion stimulated by 
TGF-β2. Each experiment was independently repeated five 
times (n = 5) in duplicate, with each value given as the mean 
± SEM. Statistically significant differences are indicated (*, P < 
0.05; ***, P < 0.001).
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Germany) according to manufacturer's protocol. Reverse
transcription was performed using 2 µg of total RNA and
Omniscript (Qiagen), except for total RNA from Caco-2,
which was reverse transcribed as described elsewhere [54].
Primers used for PCR are denoted in Table 1 and were
intron-spanning to overcome genomic contamination.
PCR was performed on a Hybaid Omnigene Thermocycler
(MWG Biotech, Ebersberg, Germany) using mainly Pan-
Script Taq polymerase (Pansystems, Aidenbach, Ger-
many) as described [55]. Amplification with the primers
5-TGFB3E1/3-TGFB3E2 was performed with the Platinum
Taq Polymerase (Invitrogen, Karlsruhe, Germany) accord-
ing to the manufacturer's instructions. The first round of
the nested PCR to clone TβRIIC was done with the primers
5-HTBR2E3/3-HTBR2E4 from which 20 µl were used for
the second round with the primers 5-HTBR2Z/3-
HTBR2E4. The other fragment of Tβ RIIC was also cloned
after a nested PCR with the primers 5-HTBR2B/3-
HTBR2CD in the first round and primers 5-HTBR2E3/3-
HTBR2CD were used for the second round. The nested
PCR was performed with the Qiagen Taq DNA Polymer-
ase and solution Q (Qiagen) on a PTC100 cycler (Biozym,
Germany). Amplification was carried out for 35 cycles,
except for 5-GAPDH/3-GAPDH which was run for 25
cycles and 5-HTBR2E3/HTBR2CD which was run for 30
cycles. After an initial heating to 94°C for 4 min, each
cycle consisted of denaturing at 94°C for 45 sec, anneal-
ing at the temperatures indicated in Table 1 for 45 sec and
elongation at 72°C for 90 sec except for the last extension
which lasted 5 min. PCR products were separated on aga-
rose gels, extracted with Qiaex (Qiagen), subcloned into
the pCR2.0 vector (Invitrogen) and subsequently
sequenced by MWG Biotech and GENterprise (Mainz,
Germany). Amplification with the Cy-5 labeled primer 5-
HTBR2E3 with the primer 3-HTBR2CD to detect
TβRIIC∆4 was performed as described [56], except that
cDNA instead of genomic DNA was used. PCR fragments
were separated on 8% polyacrylamide gels [56].

Screening for alternatively spliced ESTs
The exon and intron pattern of the TGF-betas and their
receptors was either found in the NCBI sequence database
or determined by sequence comparison of the cDNAs
with the genomic sequences by using the Blast tool. Each
exon of the respective cDNAs was aligned with all availa-
ble ESTs from human. Then, every EST was aligned with
the genomic sequences to find alternatively/incorrectly
spliced exons, which were analyzed for standard splice
sites (GT-AG at the 5'- and 3'-end, respectively) and for a
continuous open reading frame. Only good candidates
which fulfilled both criteria were further analyzed by RT-
PCR.

Generation of polyclonal antibodies
Polyclonal antibodies directed against the peptide SFC-
SIQSQVLCGYLD of the alternative exon of the rat TGF-
β2B (Fig. 6) and against the peptide IRHIGSNNRLQRSTC
of the alternative exon of TβRIIC (Fig. 3) were raised in
two rabbits respectively according to standard protocols
(Coring, Gernsheim, Gemany) as published [51]. These
peptide sequences are highly homologous in most species
and did not show any homology to other proteins. Poly-
clonal antibodies were also affinity-purified on a sepha-
rose column. Specificity of the antibodies was tested in
ELISAs (CovAbtest, Coring) and western blots. Negative
controls were performed with the preimmune serum and
showed no binding.

Analysis of localization of TβRIIB, TβRIIC and TGF-β2B
Polyclonal antibody against TβRIIB was purchased from
R&D Systems (Wiesbaden, Germany) and diluted 1:50 for
immunohistochemistry. Polyclonal antisera against
TβRIIC and TGF-β2B were used at dilutions of 1:50 and
1:100. Negative controls were performed by omitting the
primary antibodies. Immunohistochemistry was done
with the Envision System from DAKO (Hamburg, Ger-
many) according to the instructions of the manufacturer
with DAB staining and HE counterstaining.

PAI-1 ELISA and antibody perturbation
Quantitation of PAI-1 was performed with the highly sen-
sitive PAI-1 Antigen ELISA Kit (Technoclone, Vienna, Aus-
tria), according to the manufacturer's instructions. PC-3
cells (50,000 cells/well) were seeded on 24-well plates
and grown in DMEM (+10% FCS and antibiotics) at 37°C
and 5% CO2 for 24 h. Then, medium was changed to
DMEM containing the antibodies against TβRII (diluted
1:12.5, AF-241-NA, R&D Systems), TβRIIB (diluted
1:12.5, AF1300, R&D Systems), and TβRIIC (diluted
1:12.5). Control incubations were performed (i) without
antibody, and (ii) by replacement of the antibodies by
anti-goat IgG (1:12.5; Invitrogen, Karlsruhe, Germany).
After incubation at 37°C and 5% CO2 for 1 h, TGF-β2 (10
ng/ml) was added. The cells were grown at 37°C for 72 h
and collected supernatants were stored with protease-
inhibitors (Complete Mini, Roche, Mannheim, Germany)
at -20°C until the PAI-1 ELISA was performed.

Statistics
All experiments were repeated independently at least three
times in duplicate. Values from all experiments were used
for calculation of the means and their respective standard
errors of the mean (SEM). Statistical tests of one way anal-
ysis of variance (ANOVA) followed by the non-parametric
test of Kruskal Wallis were used to determine significant
differences between different experimental groups and the
controls by using GraphPad Instat 3 (GraphPad, San
Page 11 of 13
(page number not for citation purposes)



BMC Genomics 2007, 8:318 http://www.biomedcentral.com/1471-2164/8/318
Diego, USA). P values less than 0.05 were considered sta-
tistically significant.
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