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A B S T R A C T

This study considers the accuracy of cell-to-face centre interpolation of convected quantities in unstructured finite
volume meshes with cell-centred storage of variables. The accuracy of the interpolation algorithms were tested in
isolation using ideal data to determine their numerical accuracy on both standard and artificially distorted
meshes. It was found that the formally second- and third-order accurate interpolations based on one-dimensional
interpolation along the line connecting the cells to the right and left of the face under consideration only have
first-order accuracy in standard unstructured mesh, and less than first-order accuracy in distorted unstructured
mesh. L1 interpolation errors in the distorted unstructured mesh are greater than in standard unstructured mesh.
The order of accuracy and L1 errors can be improved by applying spatial corrections. The formally second-order
accurate multi-dimensional interpolations tested in this study that are not based on one-dimensional interpolation
along lines connecting the neighbour cells have first-order accuracy in both standard and distorted unstructured
mesh. Linear interpolation between end vertices produces greatest L1 error in standard mesh; polynomial
interpolation, linear interpolation between cell centres and standard QUICK produce the greatest L1 error in
distorted mesh. Spatially correct QUICK, spatially correct linear interpolation between cell centres, Laplacian
interpolation to face centres, and Taylor series expansion about an upstream cell produce the smallest L1 error in
both standard and distorted mesh. Based on accuracy and the simplicity of implementation, Taylor series
expansion about an upstream cell is the best choice for use in unstructured mesh.
1. Introduction

The finite volume solvers that used unstructured and cell centre
storage mesh have gained high popularity in the solution of heat and
fluids flow problems because the methods can efficiently model real
engineering fluids flow problems that have complex geometric bound-
aries. The approach have been used in some commercial CFD codes, such
as Ansys FLUENT and Ansys CFX.

Unstructured meshes typically use triangular cells for two-
dimensional problems, allowing great flexibility in efficiently model-
ling complex boundaries, and in enabling localized grid refinement. The
cost of this flexibility is that the familiar locally one-dimensional oper-
ators for differentiation and interpolation are no longer applicable and
must be replaced by new multi-dimensional algorithms, the properties of
which are less well-established, although the algorithms have been
widely reported in the literature. A number of researchers have
attempted to use one-dimensional interpolation on multi-dimensional
Tasri).
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meshes, including Croft [1]. Weiss et al. [2] and Tasri [3] developed
interpolation schemes to reduce the effect of non-orthogonality for mo-
mentum interpolation algorithms used in unstructured mesh. Barth and
Jespersen [4] introduced an upwind biased scheme with basic cell face
properties calculated using cell properties at an upstream cell centre. The
scheme was derived using Taylor series expansion of flow variables
around the cell centre. Leonard [5] introduced the Quadratic Upstream
Interpolation Convective Kinetics (QUICK) scheme for interpolation of
properties from cell centre to cell face on structured mesh. The upwind
bias and QUICK scheme were later corrected by other authors to improve
the accuracy and stability in unstructured grid applications. Darwish and
Moukalled [6] and Tasri [7] extended the QUICK scheme for unstruc-
tured mesh application. Kim and Choi [8] improved the central differ-
encing scheme by adding a correction to the central differencing
equation. Frink [9] calculated the face value of flow variables by aver-
aging face vertices values; the vertices values were reconstructed from
cell values around each vertex. Wang and Ren [10] used spline
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Figure 1. 2-D cell and its immediate neighbours.
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interpolation to solve Euler and Navier-Stokes equations. Using
high-speed flow test cases, they found that the hybrid WENO and spline
reconstructions were more accurate than the MUSCL scheme. Katta et al.
[11] developed a high-order 1-D interpolation procedure that combines a
cubic and a quadratic interpolations to address the discontinuous edges
of the cubed-sphere grid. Most recently, Vakilipour et al. [12] developed
physical influence upwind interpolation schemes for linking pressure and
velocity fields in incompressible flow solutions.

These interpolation algorithms have advantages and disadvantages; a
comparison is necessary to determine the best algorithm. Lehnhauser and
Schafer [13] compared the accuracy of a central differencing scheme and
a Taylor series expansion-based scheme; they found that the Taylor series
outperformed the central differencing scheme. Fakuchi [14] also
compared the performance of interpolation schemes in solving Poisson
equations. McBride et al. [15] compared vertex-based discretisation using
the shape function for the distribution of variables in volume control with
cell centre discretisation.

Some researchers have compared interpolation methods using certain
case studies; other researchers have also compared interpolation
methods with different case studies. The best interpolation method
among popular existing methods is still uncertain because the techniques
are not compared using the same test case.

In this study, several popular interpolation methods used in com-
mercial numerical software and a newly developed method were
compared to determine the interpolation method that produces the
smallest error for an unstructured mesh finite volume solver. The
Kovasznay's model of viscouse flow [16] and potential flow past a cir-
cular cylinder [17] were used as analytical solution benchmarks.

2. Finite volume discretisation of governing equation

The governing equations of 2-D incompressible laminar steady flow
are incompressible continuity and the Navier-Stokes equation:
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u and v, represent the xcomponent of velocity and the ycomponent of
velocity. μ and p represent the viscosity coefficient and the pressure,
respectively. Finite volume discretisation of the Navier-Stokes equation is
accomplished by integrating the equation using the Gauss divergence
theorem, yielding:
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where φ represents the x and ycomponents of velocity; V
!
is a velocity

vector; q, A, and Ω are the source term, the surface, and the volume of
finite volume grid cells, respectively; n! is a unit vector normal to the
surface grid cell. For numerical solution, these equations need to be
discretised so that the equations may be applied to the finite volume cells
in the solution domain. The equation, for a finite volume cell that has a
finite number f of identifiable plane faces, may be discretised using
second order midpoint rule
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where the subscript f represents the value of the variables at the face
centres and m is index for the faces of the control volume.Am represents
the area of face mth of the control volume. The methods for obtaining the
2

face value of φ are explained in the next section; the face values of φmay
be written in terms of cell centroid value for the current cell P and the
values for neighbour cells nb immediately adjacent. The cell P and
neighbour cells nb are defined in Figure 1. Eq. (4) can be simplified into
the following form:

aPφP ¼
X
nb

anbφnb þ SφP
(5)

φP and φnb are cell centroid value of φ for current cell P and neighbour
cell nb;SφP

is a source term that lump all terms not included in the first and
second terms of Eq. (5); aP and anb are determined by the equation for the
face values of φ and rφ.

Follow the SIMPLE algorithm, the continuity equation is discretised in
a finite volume cell P to form the pressure correction equation [3].
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p0 is the pressure correction; b is a source term that includes all terms not
included in the first and second terms of Eq. (6); ap and anbare point
coefficients contained in the discretised Navier-Stokes equation, Eq. (5);

Ωp is volume of cell P andΩnb is the volumes of cell neighbour nb; A
!
, e!s,

and dsare the face area vector, the unit vector from cell P to cell neigh-
bour nb, and the distance from cell P to nb, respectively.

Based on the SIMPLE algorithm, Eq. (5) was solved using estimated
values as initial values for pressure and velocity. The pressure and ve-
locity obtained from the solution of Eq. (5) were updated using the
pressure correction obtained from Eq. (6). Eq. (5) was then solved again
using the updated value; the procedure was repeated until convergence
was reached.

3. Interpolation to cell faces

To find the solution of the discretised Navier-Stokes equation (Eq.
(4)), face average values for flow variable φ are required to compute the
convective flux across the cell faces. Eight methods for calculating the
face average values of φ are presented in this section.
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3.1. Linear interpolation between cell centres

This method is based on the one-dimensional interpolation approach
along the line connecting cells located to the left and right of the surface
where the face value of φ is to be obtained. Assuming the face centre is
midway between adjacent cell centres, the face value of φ is expressed as

φf �
φL þ φR

2
(9)

This interpolation is only truly second-order accurate for the special
case of equilateral triangular cells, where face centres are co-linear and
equidistant from the cell centres L and R, as shown in Figure 2.
3.2. Spatially correct linear interpolation between cell centres

The linear interpolation method gives the value of φ at the point of
intersection of the surface with a line connecting the cells to the left and
right of the surface. If the intersection point is not at the centre of the
surface, there is an increased error in the surface integral of the
convective flux in Eq. (3). To correct these errors, a spatial correction is
necessary.

A spatially correct linear interpolation scheme can be constructed
using auxiliary points L

0
and R

0
, as shown in Figure 2. These auxiliary

points are related to cell centres L and R, but are located on the normal
bisector of the face, equidistant from the face centre, such that the dis-
tance between L

0
and R

0
is equal to the distance between L and R; φ at the

auxiliary points L
0
and R

0
is determined by Taylor series expansions about

cell centres L and R, respectively. The sequence of operations is
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It is suggested that the additional error associated with a two-stage
Figure 2. Linear interpolation stencil for interpolation to faces.
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process may not be large, as the distances LL0 and RR0are generally
small compared to the cell dimensions.

An alternative spatially correct central difference scheme can be ob-
tained by averaging the face value given by a Taylor series expansion
about cell centre L, with a value given by a similar Taylor series expan-
sion about cell centre R:
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3.3. Approximate QUICK

The QUICK scheme of Leonard [5] is a popular higher-order
upwind-biased face interpolation scheme for structured meshes of
quadrilateral cells that uses quadratic interpolation based on two cell
centre points on the upstream side of the cell face and one on the
downstream side. It is not generally possible to find three such collinear
cell centres for unstructured meshes, but Darwish and Moukalled [6]
indicate how an approximate equivalent scheme may be constructed by
introducing a “fictitious” far upstream point UU, such that cell centre U is
midway between point UU and cell centre D, as shown in Figure 3a. The
value of φ at the fictitious point UU is calculated as

φUU �φD � 2
�
∂φ
∂x

�
U

ΔxUD � 2
�
∂φ
∂y

�
U

ΔyUD (14)

where ΔxUD and ΔyUD are the components of the vector displacement
from point U to point D. For an approximate QUICK scheme, the face
value of φ is expressed as

φf �
1
8
ð3φD þ 6φU �φUUÞ (15)

The method is denoted here as “approximate QUICK”, as the spacing
and collinearity errors described for the approximate linear interpolation
scheme are still present.
3.4. Spatially correct approximate QUICK

A “spatially correct" version of the Darwish and Moukalled QUICK
scheme can be made using auxiliary points U

0
and D

0
, as shown in

Figure 3b. The φvalues at these auxiliary points are determined as
described in the previous sub-section; the method follows Eq. (14) and
Eq. (15), replacing subscripts UU, U, and D with UU

0
, U

0
, and D

0
.

φf �
1
8
ð3φD0 þ 6φU0 �φUU0 Þ (16)
Figure 3. Approximate QUICK stencils for interpolation to faces. (a) Standard
scheme; (b) Spatially correct scheme.
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3.5. Polynomial interpolation

φ at the face centre can be estimated by assuming that φ is distributed
as a three-order polynomial along the line connecting cell centres located
to the left and right of the face.

φðrÞ¼ a0 þ a1sþ a2s2 þ a3s3 (17)

where s represents a local coordinate axis along the line from the left cell
to the right cell of the face under consideration; a0, a1, a2, and a3 are
unknown constants.

The four unknown constants can be obtained using φ and ∂φ=∂s from
the cells to the left and the right of the face under consideration. Thus, φ
at the face centre can be expressed as Eq. (18).

φf ¼
φL þ φR

2
þ rLR

8
ðrφL � s!�rφR � s!Þ (18)

Subscripts L and R refer to cells to the left and the right of the face; rLR and
s! are the distance from cell L to cell R and the unit vector from cell L to
cell R, respectively.
3.6. Linear interpolation between end point vertices

An alternative two-stage interpolation method is to interpolate first
from cell centres to cell vertices and obtains face centre values of φ by
linear interpolation between face end or corner vertices. In two di-
mensions:

φf �
φv1 þ φv2

2
(19)

where φv is the vertex value of φ. The accuracy of this non-biased
approach is limited primarily by the accuracy of the first stage interpo-
lation of the vertices.
3.7. Taylor series expansion about upstream cell centre

The classic second-order upwind scheme of Barth and Jespersen [4]
approximates the face centre value of φ using a Taylor series expansion
about the cell centre point on the upstream side of the face:

φf �φu þ
�
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�
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ΔxUf þ
�
∂φ
∂y

�
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ΔyUf (20)

whereΔxUf andΔyUf are the components of the displacement vector from
cell centre U to face centre f, as shown in Figure 4. The approximation is
evidently dependent upon the accuracy of the partial derivatives at cell
Figure 4. Stencil for Taylor series expansion about upstream cell centre.
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centre U, but second-order accuracy is obtained with accurate first-order
derivatives.

3.8. Laplacian interpolation to face centres

A Laplacian of a variable can be estimated using a pseudo-Laplacian
as proposed by Holmes and Connel [18]. Applying the
pseudo-Laplacian to determine the Laplacian of flow variable φ on the
face centre of the unstructured mesh, the following equation is obtained:

LðφÞf ¼
XN
i¼1

wi

�
φi �φf

�
(21)

where i represents cell centres nb1, nb3, and P located upstream of the
face f, and a cell nb2 downstream of the face, as shown in Figure 1. The
use of upstream cells to calculate φf provides an upstream bias condition
that prevents oscillations in the area around locations with a strong
gradient of φ [5].

If φis linearly distributed, the Laplacian of φ should be zero. Thus, Eq.
(21) can be rearranged to solve for φf .
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PN
i¼1

wi

(22)

The weights wi are chosen to achieve the stability of the numerical,
finite volume, solution such that Eq. (22) meets the positivity re-
quirements [5]. The positivity requirements are satisfied if wi is positive.
Following Holme and Connel [18], wi is defined in Eq. (23).

wi ¼ 1þ Δwi (23)

where Δwi is of the form

Δwi ¼ βx
�
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�þ β2
�
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�
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xi, yi are rectangular coordinates of cells nb1, nb2, nb3, and P; xf , yf are
rectangular coordinates of face centre f; βx and βy are expressed as
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Figure 5. Mesh used for potential flow past a circular cylinder. (a) Standard test mesh; (b) Distorted test mesh.

Figure 6. Mesh used for Kovasznay flow. (a) Standard test mesh; (b) Distorted test mesh.

Figure 7. Interpolation errors of cell faces for potential flow past a circu-
lar cylinder.
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4. Comparison of methods for interpolation to faces

In this section, the accuracy of individual component algorithms for
interpolation are tested. Kovasznay flow [15] and potential solutions of
flow past a circular cylinder, modelled as a combination of source and
sink of equal strength, were used as the analytical solution benchmarks
[17]. These were chosen over purely arbitrary analytical functions to be
more representative of typical high-Reynolds number flows.

Adopting the test procedure used by Syrakos et al. [19], accuracy of
the individual interpolation algorithmwas considered in isolation, rather
than the effect of the interpolation algorithm when used in a complete
Navier-Stokes solver. For this purpose, a typical triangular unstructured
mesh was overlaid on the flow domain. The procedure in each case was to
evaluate cell centre values of a variable φ, typically a velocity component,
from analytical solution, then to use these values only as data for the
algorithm under test, to calculate interpolated values of φ at cell faces.
Exact values at these locations are available from the analytic solution
and so the error in the value computed via the test algorithm may be
determined at each point. The L1 norm of these errors, taken over the
whole domain except for boundary values, may be used as a comparative
measure of the algorithm accuracy.

By varying the mean mesh spacing, the order of accuracy of the al-
gorithm can be estimated. The standardmeshes were produced according
to Delaunay triangulation procedure using Ansys R2 software, with
equally cell face area specified on the boundaries. The standard meshes
was made so that they have maximum equiangle skewness of 0.35, with
an average of 0.1. To simulate the effects of mesh distortion, ‘rando-
mised’ meshes were also produced, with mesh vertex coordinates
randomly perturbed by a fraction of the mean cell size. The distorted
meshes have a maximum and average equiangle skewness of 0.95 and
0.7, respectively.
5

The standard and distorted meshes of triangular cells with an average
area of 0.015 m2, 0.0017 m2, and 0.00015 m2 are used. The standard and
distorted meshes used for the potential flow past a circular cylinder test
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Figure 8. Interpolation errors of cell faces for Kovasznay flow.

Figure 9. Non-conjunctionality and non-orthogonality of face.
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case are shown in Figure 5; the mesh used in the Kovasnay flow test case
is shown in Figure 6. Both meshes are the same as meshes used by Tasri
[20].

L1 error norms for potential flow past a circular cylinder and
Kovasznay flow are shown in Figure 7 and Figure 8, respectively. Line (a)
in Figure 7 and Figure 8 is a superimposition of linear interpolation be-
tween cell centres, basic approximate QUICK, and polynomial interpo-
lation to face centre. Line (b) is a superimposition of Laplacian
interpolation, Taylor series expansion interpolation about upstream cell
centres, spatially correct approximate QUICK, and spatially correct linear
interpolation between cell centres.

Figure 7 and Figure 8 show that the interpolations based on one-
dimensional interpolation along lines connecting cells to the right and
the left of the face under consideration (linear interpolation between cell
centres, basic approximate QUICK, and polynomial interpolation to face
centres) only have first-order accuracy in standard unstructured mesh,
and less than first-order accuracy in distorted mesh, although the in-
terpolations formally have second- and third-order accuracy. L1 errors of
the interpolations in distorted mesh were greater than in standard mesh.
The lower order of accuracy and higher L1 errors in distorted mesh were
most likely caused by non-conjunctionality and non-orthogonality con-
ditions of finite volume mesh. Non-conjunctionality is a condition where
the intersection point between the control volume face and the line
connecting cells to the right and left of the face are not located at the face
centre, as shown in Figure 9. Non-orthogonality is a condition where the
line connecting cells to the right and left of the control volume face are
not normal to the face. In the case of non-conjunctionality, the interpo-
lation point is not located at the face centre but at the intersection of the
face and the line connecting cells to the right and left of the face. If data at
the interpolation point is used to estimate the surface integral of the
convective term on the left side of Eq. (4), the accuracy of the surface
integral will be less than second-order, as second-order midpoint surface
integration requires data at the face centre.
6

To determine how the error affects the accuracy of the finite volume
solution, φ at the face centre f is written as a reconstruction of φ at the
interpolation point k (Figure 9) using Taylor series expansion:

φf ¼φk þrφk � r! (32)

where r!is the Euclidean vector from interpolation point k to the face
centre f . φf and φk are φ at the face centre and the interpolation point,
respectively. If φ at the face centre in Eq. (4) is estimated with φ at the
interpolation point k in Eq. (32), the result is:
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The second term on the left side of Eq. (32) is an estimation error. The
error has a form similar to the diffusive term of the governing equation.
Error terms that similar to diffusive terms tend to reduce the gradient of φ
from the value it should be.

Interpolation errors in the distorted mesh can also be caused by non-
orthogonality of the face and the line connecting cells to the left and right
of the face. Multiplication of the gradient flow variable on the control
volume surface with the vector normal to the surface, as found in the
diffusive term of the discretised governing equation (Eq. (4)), can be
expressed as

rφ � n!� rφ � i
!þrφ � j

!
(34)

Vector i
!

in Eq. (34) is the component of the normal vector n! in the
direction parallel to the line connecting cells on the left and right sides of

the surface, as shown in Figure 9; j
!

is the component of vector n! in the

direction perpendicular to i
!
. If the line connecting the cells to the left

and right of the surface is orthogonal to the surface, the second term is
zero. The second term is often ignored because it can produce un-
boundedness of discretised equation. However, ignoring this term re-
duces the accuracy of the calculation.

Applying spatial correction to basic approximate QUICK and linear
interpolation between cell centres to correct the non-conjunctionality
and non-orthogonality, L1 error is reduced and order of accuracy is
increased from less than first order to first-order. The spatially corrected
versions of basic approximate QUICK and linear interpolation between
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cell centres have lower L1 errors and higher orders of accuracy than the
non-spatially corrected versions, as shown in Figure 7 and Figure 8.

Unlike one-dimensional interpolation along the line connecting cells
to the right and left of the face, multi-dimensional interpolation, the
Laplacian interpolation, and Taylor series expansion about an upstream
cell centre can provide interpolation at the surface centre to minimize the
conjunctionalty error. Figure 7 and Figure 8 show that the tested multi-
dimensional interpolations are better than the one-dimensional based
interpolation, especially with a distorted mesh. The multi-dimensional
interpolations have first-order accuracy on standard unstructured mesh
and remain first-order accurate when used in distorted mesh. The L1
error on the standard mesh is the same as the L1 error on the distorted
mesh; the multi-dimensional interpolations are unaffected by the quality
of the mesh.

Interpolation from vertices is not affected by the non-conjunctionality
conditions as the error of this interpolation is similar for standard and
distorted mesh. The error of this interpolation is mainly from first-step
interpolation from the cell centre to vertices.

The interpolation from vertices has the highest L1 error in standard
unstructured mesh, but in distorted mesh, this interpolation performs
better than standard one-dimensional interpolation along the line con-
necting neighbour cells. Linear interpolation between cell centres, basic
approximate QUICK, and polynomial interpolation to face centre have
the greatest L1 error in distorted unstructured mesh. Laplacian interpo-
lation to the face centre, spatially correct interpolation between cell
centres, spatially correct approximate QUICK, and Taylor series expan-
sion about upstream cell centres have the lowest L1 error in standard and
distorted unstructured meshes.

Considering the simplicity of the computer code needed for interpo-
lation methods, the accuracy of the interpolations, and the positivity
requirements of the discretized governing equation [5], the Taylor series
expansion about an upstream cell centre is the best choice for interpo-
lation from cell centre to face centre in standard or distorted unstructured
mesh.

All interpolations were derived and tested for 2-D flows. Neverthe-
less, 3-D versions of the interpolations can be derived in a similar
manner. The cause of the interpolation errors is the same in 3-D and 2-D.
Thus, conclusions obtained in 2-D cases are also applicable to 3-D cases.

5. Discussion and conclusions

After testing a range of compact-stencil interpolation algorithms in
this study, the following conclusions can be drawn:

1. Formally second- and third-order accurate interpolations based on
one-dimensional interpolation along the line connecting cell centres
to the left and the right of the face under consideration only have first-
order accuracy on standard unstructured mesh. These interpolations
have less than first-order accuracy on distorted unstructured mesh. L1
errors in distorted unstructured mesh are greater than in standard
unstructured mesh.

2. L1 errors and the degree of accuracy of formally second- and third-
order accurate interpolations based on one-dimensional interpola-
tion along the line connecting cell centres to the left and the right of
the face under consideration can be improved with spatial correction.

3. The formally second-order multi-dimensional interpolations not
based on one-dimensional interpolation along the line connecting
neighbour cells of the face under consideration have first-order ac-
curacy on standard and distorted unstructured mesh; there were no
differences in L1 errors for standard and distorted unstructured mesh.

4. Among the tested methods, linear interpolation between end vertices
has the greatest L1 error in standard unstructured mesh. Polynomial
interpolation, standard QUICK, and linear interpolation between cell
centres have the highest L1 error in distorted unstructured mesh.
7

Spatially correct QUICK, spatially correct linear interpolation be-
tween cell centres, Laplacian interpolation to face centres, and Taylor
series expansion about an upstream cell have the smallest L1 error in
standard and distorted unstructured mesh.

5. Based on simplicity and accuracy, Taylor series expansion about an
upstream cell centre is the best choice for interpolation from cell
centre to face centre for unstructured mesh.
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