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ABSTRACT
Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress
requires deeper insights into the biology of immune cells in the lung cancer micro-environment.

Dendritic cells (DCs) represent a heterogeneous and highly plastic immune cell system with a central
role in controlling immune responses. The intratumoral infiltration and activation status of DCs are
emerging as clinically relevant parameters in lung cancer.

In this study, we used an orthotopic preclinical model of lung cancer to dissect how the lung tumor
micro-environment affects tissue-resident DCs and extract novel biologically and clinically relevant
information.

Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist
of CD11bC cells that, compare with peritumoral lung DC counterparts, strongly overexpress the T-cell
inhibitory molecule PD-L1 and acquire classical surface markers of tumor-associated macrophages (TAMs).
Transcriptome analysis of these CD11bC tumor-infiltrating DCs (TIDCs) indicates impaired antitumoral
immunogenicity, confirms the skewing toward TAM-related features, and indicates exposure to a hypoxic
environment. In parallel, TIDCs display a specific microRNA (miRNA) signature dominated by the
prototypical lung cancer oncomir miR-31. In vitro, hypoxia drives intrinsic miR-31 expression in CD11bC

DCs. Conditioned medium of miR-31 overexpressing CD11bC DCs induces pro-invasive lung cancer cell
shape changes and is enriched with pro-metastatic soluble factors. Finally, analysis of TCGA datasets
reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung
cancer.

Together, these data suggest a novel mechanism through which the lung cancer micro-environment
exploits the plasticity of the DC system to support tumoral progression.

Abbreviations: DC, dendritic cell; DC-CM, dendritic cell conditioned medium; FACS, fluorescence-activated cell sort-
ing; GSEA, gene-set enrichment analysis; HIF, hypoxia-inducible factor; LLC, Lewis Lung Carcinoma; MDSC, myeloid-
derived suppressor cell; miR(NA), microRNA; PD-L1, programmed cell death ligand 1; RT-qPCR, reverse transcription
quantitative PCR; TAM, tumor associated macrophage; TCGA, The Cancer Genome Atlas; TIDC, tumor infiltrating
dendritic cell; TME, tumor micro-environment; Treg, regulatory T cell; VEGF, vascular-endothelial growth factor
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Introduction

Lung cancer is the leading cause of cancer death world-
wide and is characterized by a high incidence of relapse
after surgical removal, along with notorious resistance
toward chemotherapy and/or radiotherapy. Recently, drugs
interfering with T-cell-suppressing checkpoint molecules
(e.g., PD-1/PD-L1) have produced unprecedented thera-
peutic benefits, thereby, signaling a paradigm shift in the

treatment of this malignancy. Although these compounds
can achieve long-lasting remissions in metastatic disease,
this only applies to a minority of patients. This indicates
that immune checkpoint molecules are but a part of the
larger network of immunosuppressive mechanisms operat-
ing in lung cancer, and warrants continued efforts to map
the startling complexity of the tumor-associated immune
compartment.
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Immune cells infiltrating tumor beds comprise on the one
hand immunogenic/antitumoral leukocytes such as type-1-
polarized macrophages and T-helper lymphocytes, cytototoxic
T lymphocytes, mature dendritic cells (DCs), and natural killer
cells. On the other hand, a plethora of immuno-suppressive/
tumor-supporting leukocytes including regulatory T cells
(Tregs), tumor-associated/M2-polarized macrophages (TAMs)
and myeloid-derived suppressor cells (MDSCs) are co-opted by
cancer to evade immunological destruction.

DCs are recognized as central orchestrators of immune
responses in general and antitumoral immunity in particular.1

In the context of cancer, DCs are capable of taking up and
processing apoptotic and necrotic tumor fragments, while
undergoing activation/maturation by tumor-derived innate
danger signals, and present tumor-antigens to antigen-specific
helper and cytotoxic T cells.2 In this interaction, the mature
DCs crucially need to display T-co-stimulatory molecules (e.g.,
CD40, CD86), while releasing cytokines and chemokines that
will favor type-1-polarized and cytotoxic T-cell responses.
A key cytokine in this process is IL-12, shown to be critical in
the immune surveillance of carcinogen-induced tumors.3

Accordingly, the magnitude of mature myeloid DC infiltra-
tion in lung cancer specimen appears to have a substantial
prognostic impact.4 DC numbers were shown to be an indepen-
dent predictor of survival and inversely correlated with intratu-
moral expression of VEGF, a pro-angiogenic cytokine that also
suppresses DC functional maturation.5 The presence of DC-
LAMPC (i.e., mature) DCs in tumor-associated tertiary lym-
phoid aggregates was shown to be associated with the degree of
cytotoxic T-cell infiltration and also conveys a strong prognos-
tic signal in lung cancer patients.6 Accordingly, low expression
of IL-12 and of the co-stimulatory molecules CD80/CD86 in
lymph nodes draining lung adenocarcinomas predicts a poorer
outcome.

Furthermore, accumulating evidence suggests that the
tumor micro-environment (TME) effectively enlists DCs to
become active participants in the cancer-induced immunosup-
pressive network.7 The majority of tumor-infiltrating DCs
(TIDCs) in resected lung cancer specimen was shown to reside
in an immature state, with a substantial subset expressing high
levels of the T-cell paralyzing ligand PD-L1,8 features predict-
ing a tolerogenic function. Other reports have shown that
TIDCs are capable of actively suppressing T-cell function
through secretion of Arginase-19 or indoleamine 2,3-dioxyge-
nase.10 These signs of DC “corruption” indicate either a plastic-
ity of these cells under the influence of the lung cancer micro-
environment or a replacement of the immunogenic DCs by a
myeloid cell population that shares some prototypical markers
of DCs, yet exerts functions commonly ascribed to TAMs and
MDSCs.11 Either way, the phenotypical and functional shifts
that DCs can undergo in tumors such as lung cancer deserve
further research, given ongoing efforts to therapeutically target
these cells in vivo to elicit effective antitumoral immunity.1

With this objective in mind, we optimized a preclinical
model of lung cancer featuring orthotopic lung tumor growth
in immunocompetent hosts, allowing us to compare DC popu-
lations from different tissue compartments in the same tumor-
bearing lung. We found that, relative to peritumoral lung tissue

DCs, lung tumors are heavily infiltrated by cells sharing proto-
typical markers of CD11bC DCs and M2-polarized/tumor-sup-
porting macrophages, along with high cell surface levels of
PD-L1. Comparative transcriptomic analysis of lung TIDCs
versus peritumoral DCs confirmed this acquisition of TAM fea-
tures while also indicating exposure to a hypoxic environment.
In addition, these lung TIDCs upregulate a defined miRNA sig-
nature that is partly hypoxia-driven and endows these cells
with tumor-supporting functions. Finally, we show that the
miRNA signature extracted from TIDCs predicts a worse out-
come in patients with early-stage lung adenocarcinoma.

Results

An orthotopic, transplantable model of lung cancer
recreating hallmark features of tumor-induced immuno-
suppression

We optimized a transplantable, orthotopic model of lung can-
cer by inoculating Lewis lung carcinoma (LLC) cells into the
airways of immunocompetent syngeneic C57BL/6 hosts using a
non-invasive instillation technique. Following cancer cell trans-
fer, lesions become apparent on H&E-stained sections as small
tumoral aggregates within the lung parenchyma within 2
weeks, and grow to larger solitary nodules with histopatholog-
ical similarity to human poorly differentiated non-small-cell
lung carcinoma (Fig. 1A). Hosts succumb to local tumor inva-
sion with a median survival of 4 weeks using an inoculum of
1.5 £10E6 LLC cells. Lung tumors can easily be dissected from
peritumoral lung tissue, allowing further processing to address
differential effects of the tissue micro-environment. Compara-
tive analysis of single cell suspensions prepared from lungs of
tumor-free mice, peritumoral lung and lung tumors revealed a
relative enrichment of the intratumoral environment with
Foxp3C Tregs, monocytic myeloid-derived suppressor cells
(mo-MDSCs), along with an upregulation of the PD-1 exhaus-
tion marker on tumor-infiltrating CD4C and CD8C T cells
(Fig. 1B). Locoregional effects were also manifested as a forceful
increase in Tregs as well as mo-MDSCs and granulocytic
MDSCs in mediastinal lymph nodes draining tumor-bearing
lungs, relative to lymph nodes of tumor-free lungs. Systemic
effects were also manifested as an increase in (granulocytic)
MDSCs within the spleen of orthotopic lung tumor-bearing
hosts.

Orthotopic lung tumors are heavily infiltrated by myeloid
cells sharing generic dendritic cell markers as well as
phenotypical characteristics of alternatively activated
macrophages

We examined the total DC tissue content by strictly gating on
CD11chighMHCIIhigh leukocytes after exclusion of dead cells,
high autofluorescent cells (containing pulmonary macro-
phages), and T-/B-lymphocytes (Fig. 2A). In LLC lung tumors,
we found that the leukocytic infiltrate was highly enriched with
DCs when compared with adjacent peritumoral lung and naive
lung (around 10-fold increase) (Fig. 2B). Lung DCs have been
shown to segregate into ontogenically and functionally separate
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CD11bCCD103¡ and CD11b¡CD103C subsets.12 Within the
orthotopic lung tumors, we observed an overwhelming pre-
dominance of the CD11chigh/MHCIIhigh CD11bC CD103¡ sub-
set with a minor population of CD103CCD11b¡ DCs (Fig. 2C).

We further examined the phenotype of this CD11bC subset in
terms of surface expression of T cell co-stimulatory and check-
point receptors (Fig. 2D). Compared to peritumoral counter-
parts and CD11bC lung DCs from tumor-free hosts, we

Figure 1. Orthotopic preclinical model of lung cancer. (A) H&E-stained sections of paraffin-embedded lungs illustrate typical early- mid- and advanced-stage intrapulmo-
nary tumor growth. (B) Flow cytometry on single-cell suspensions from different anatomical compartments: tumor-free lung, peritumoral lung tissue, lung tumor tissue,
tumor-draining mediastinal lymph nodes, and spleen. Tregs were gated as live CD4C/Foxp3C lymphocytes. PD-1 expression was assessed on the surface CD3C/CD4C and
CD8C T cells. Monocytic and granulocytic MDSCs were gated as CD45C/CD11bC/Ly6Chigh/Ly6Glow and CD45C/CD11bC/Ly6Clow/Ly6Ghigh cells, respectively. Data pooled
from two independent experiments with 3–10 mice per group.
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Figure 2. Quantitative and phenotypical analysis of the global dendritic cell infiltrate in orthotopic lung tumors. Lung tumors at day 28 after intratracheal instillation of
LLCs were dissected from peritumoral lung tissue and single cell suspensions were prepared by gentle enzymatic digest for further downstream analysis. (A) Gating strat-
egy used to delineate the DC compartment. Indicated percentages represent the frequency of immediate parent population. (B) Comparative quantitative analysis show-
ing magnitude of DC infiltration in each tissue compartment, expressed relative to total leukocyte content. (C) Relative abundance of the CD11bCCD103¡ versus
CD11bCCD103¡ DC subpopulations in tumor-free lung, peritumoral lung, and lung tumor tissue. Data pooled from six independent experiments with 5–10 mice per
group. (D) Surface marker Analysis of the CD11bC DC subpopulation for expression of T-cell co-stimulatory/co-inhibitory ligands and tumor-associated macrophage
related markers (gating sequence as in Fig. 2A). Data shown are representative of 2–3 independent experiments with n D 4–9 mice per group. Bars denote mean § SEM.
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observed an upregulation of the co-stimulatory molecules
CD40 and CD86, however, paralleled by a strong increase in
surface expression of CD274/PD-L1. In addition, TAM
markers such as F4/80, CD64/FcgRI and M2-polarized macro-
phage markers CD206/MMR and CD124/IL4Ra were distinctly
upregulated on these cells, further referred as “TIDCs”. Repre-
sentative histograms illustrating the shifts in surface marker
expression are provided as Fig. S1. Surface expression of the
inflammatory monocyte marker Ly6C was also increased on
TIDCs, whereas the granulocytic marker Ly6G and the pulmo-
nary macrophage marker Siglec F were not detected on these
cells (data not shown).

The transcriptome of lung tumor-infiltrating DCs confirms
a loss of immunogenic functions, the acquisition of TAM
features, and cellular responses to hypoxia

We sought to gain a deeper understanding of how the TME
affects the biology of the tissue-resident DC compartment.
The ability to perform comparisons between tumor-infiltrating
and peritumoral cells isolated from the same host (internal
control) is an inherent advantage of the orthotopic model and
allows correcting for potential confounding factors. Therefore,
in further comparative analyses, we focused on the differential
gene expression between paired TIDCs and peritumoral DCs,
focusing on the dominating CD11bC subset. We FAC-sorted
pools of CD11chigh/MCHIIhigh/CD11bC leukocytes from peri-
tumoral lung tissue (n D 8) and paired lung tumor tissue
(n D 7), and hybridized the extracted RNA to an exon micro-
array (Fig. 3A). We identified significantly downregulated or
upregulated genes using a cut-off of p < 0.001 in combination
with a fold-change cut-off of jlog2(foldchange)j >1. We used
a stringent p-value < 0.001 as a form of correcting for multi-
ple testing.13 Compared to peritumoral lung CD11bC DCs, 37
genes were upregulated and 103 genes were downregulated in
CD11bC TIDCs (full expression data available under accession
number GSE85044) (Fig. 3B). A volcano plot of Limma-esti-
mated log2-ratios versus minus the log10 p-value assisted us in
highlighting a set of top modulated transcripts and orienting
further analysis in terms of relevant biological processes
(Fig. 4A). Among the 37 transcripts significantly upregulated
in CD11chighMHCIIhighCD11bC TIDCs, 23 were typically
expressed by M2-polarized and TAMs (matrix metallopepti-
dase 9, matrix metallopeptidase 8, chemokine C–C motif
ligand 8, macrophage scavenger receptor-1, arginase 1, and
cathepsin K) in addition to a number of generic macrophage
genes such as Fc-gamma receptor 1b (CD64) and the macro-
phage transcription factor Tcfec, both of which also highly
expressed in inflammatory monocytes (www.immgen.org).
A total of 8 out of the 37 transcripts directly or indirectly
reflected response to hypoxia (EGLN3/prolyl hydroxylase 3, 50-
ectonucleotidase, Blc2-and-19kD interacting protein 3, pyruvate
dehydrogenase kinase 1, CCL8, and Cathepsin K). Four of
which (Mmp9, CCL8, MSR1, and CTSK) are also macrophage-
associated genes (Fig. 4B). Among the transcripts downregulated
in lung TIDCs compared with peritumoral DCs were factors
involved in promoting T helper 1 immune responses (IL-12b,
IL18R1), the mouse homolog of the antigen-uptake receptor

DC-SIGN (CD209b), angiotensin-converting enzyme (ACE;
shown to inhibit MDSC development)14 and Gpcr5a (known to
suppress inflammation-associated lung carcinogenesis).15

Based on the phenotypical, functional, and transcriptomic find-
ings, we then proceeded to interrogate the expression data via
gene-set enrichment analysis (GSEA16). To that end, we first gener-
ated comprehensive gene lists focusing on (1) DC immunogenicity,
(2) M2-polarized and TAM features, and (3) cellular response to
hypoxia (Table S1). Comparative GSEA of lung TIDC versus peri-
tumoral lung DC transcriptomes showed a strong downregulation
of features required for optimal DC immunogenicity and the
capacity to induce type-1-polarized T-cell responses. In parallel,
there was a marked enrichment for genes related to TAM andM2-
polarized macrophage biology, and a distinct enrichment signature
reflecting response to hypoxia (Fig. 4C).

Additional information can be aceessed from the transcrip-
tomic data by looking at activities of motifs belonging to gene
promoters and the network of corresponding transcription fac-
tors (TFs). Applying Integrated Motif Activity Response Analy-
sis (ISMARA17) on the tumor-free lung DC—peritumoral lung
DC—lung TIDC dataset highlighted a list of significantly modu-
lated motif activities (Fig. 5A and Table S2). Sorted by Z-score
(i.e., the average squared ratio between fitted activities and their
standard deviations), the ETS1,2.p2 motif emerged on top, with
a strong downregulation of its activity in TIDCs as compare
with peritumoral CD11bC DCs or DCs from tumor-free lungs.
Two TFs, Ets1 & Ets2, are associated with ETS1,2.p2. However,
only Ets1 showed a significant correlation between motif activity
and mRNA expression of the TF itself (Pearson correlation coef-
ficient D 0.69, p-value D 0.0004; Fig. 5B). Gene Ontology (GO)
analysis on the top predicted targets of Ets1 yielded processes
exclusively related to positive regulation of immune response,
antigen presentation, and T-cell activation (Fig. 5C). In addition,
ISMARA predicts a loss of STAT4 transcription activity in
TIDCs, which is in line with the downregulation of IL12b tran-
scripts in these cells.18,19 Thus, genome-wide prediction of tran-
scription factor activity converges with our functional data as
well GSEA on lung TIDCs to indicate a decreased antigen-pre-
senting capacity, while also predicting an impaired potential to
induce type-1-polarized T-cell responses. Remarkably, motifs
associated with TFs regulating response to hypoxia as well as
ER-stress were situated among the top 10% in terms of activity
significance (Z-score) (Fig. 5A). These included NFE2, ATF4,
XBP1, NRF1, and HIF1A, the activities of which are all predicted
to be upregulated in TIDCs as compared with peritumoral lung
DCs. Of additional interest is the relative loss of PPARg activity
in TIDCs. Known to suppress myeloid cell induced systemic
inflammation, immune suppression, and tumorigenesis.20

PPARg is also known to be negatively regulated by hypoxia. As
a whole, the predicted transcriptional signature of hypoxia expo-
sure is again in line with the GSEA.

A distinct pattern of microRNA expression distinguishes
CD11bC lung tumor-infiltrating from peritumoral lung DCs

In parallel to exon analysis, RNA samples from purified
lung peritumoral and intratumoral CD11bC DCs were also
processed for genome-wide RT-qPCR-based expression
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profiling of miRNAs. We found 17 mature miRNAs to be
differentially expressed in TIDCs compare with peritumoral
lung DCs (p < 0.05; Fig. 6A). MiR-31-5p, miR-31-3p, miR-
193b, miR-214-3p, and miR-127 were consistently

upregulated in TIDCs, whereas miR-126-5p, miR-126-3p,
miR-218, miR-455, miR-30a-3p, miR-497, miR-9-3p, miR-
138, miR-9-5p, miR-146a, miR-145, and miR-150 were
downregulated in TIDCs.

Figure 3. Differential gene expression in CD11bC TIDCs from lung tumor bearing mice. (A) Workflow for the generation and preparation of samples for gene expression
profiling. (B) Heatmap displaying the normalized differentially expressed genes in CD11bC peritumoral lung DCs and lung tumor DCs as identified by exon array (absolute
value of log>1 and p< 0.001) and hierarchical clustering of the samples. There are 7–8 replicates from two independent experiments, each replicate consisting of a pool
of DCs of tumor or lung tissue from 6 to 8 mice. Rows represent modulated probes (gene name or probeID). Colors denote log2-fold expression levels.
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Remarkably, miR-31 emerged as the differentially expressed
miRNA with the greatest magnitude of upregulation in lung
TIDCs compare with peritumoral DCs (Fig. 6B). We detected
upregulated expression of both miR-31 transcripts by RT-
qPCR on FAC-sorted DCs from a separate cohort of lung
tumor-bearing hosts (Fig. 6C).

Hypoxia drives intrinsic miR-31 expression in myeloid DCs

MiR-31 is known to be implicated in cellular responses to hyp-
oxia by targeting FIH (factor inhibiting HIF) to de-repress
HIF-1a This, together with indications derived from the
mRNA expression analyses, prompted us to verify whether
DCs infiltrating orthotopic lung tumors were indeed exposed
to hypoxic zones. In vivo administration of pimonidazole
allows us to specifically label hypoxic tissue regions. Using
immunofluorescence labeling, we visualized the relationship
between intratumoral pimonidazole staining distribution and

infiltration with CD11c-expressing cells. Imaging by confocal
microscopy could consistently demonstrate co-localization of
dendritic-shaped CD11cC cells within intratumoral hypoxic
areas (Fig. 7A and B). Next, we wondered whether hypoxia
could in itself induce miR-31 expression in DCs. We derived
DCs from GM-CSF-supplemented bone marrow cell suspen-
sions, as this generates a mixed population of CD11bC cDCs
and macrophage-like DCs that are analogous to the in vivo
TIDC cluster in our model.21,22 Exposure to 1% oxygen tension,
especially in combination with TLR stimulation, was sufficient
to trigger a robust increase in intrinsic expression of both miR-
31 transcripts in these myeloid DCs (Fig. 7C).

MicroRNA-31 and hypoxia endow myeloid DCs
with tumor-supporting properties

We used GM-CSF-supplemented bone marrow cultures to fur-
ther dissect the biological impact of miR-31 overexpression on

Figure 4. (A) Volcano plot of differential gene expression between lung tumor-infiltrating versus peritumoral lung DCs. Limma-estimated log2-ratios versus log10 p-value.
(B) Functional grouping of transcripts upregulated in CD11bC tumor-infiltrating DCs versus peritumoral lung DCs. (C) Gene set enrichment analysis (GSEA, www.broadinsti
tute.org/gsea/) performed on the transcriptomic data, using comprehensive gene lists pertaining to DC immunogenicity (in particular the capacity to induce type-1-polar-
ized immune responses), tumor-associated/alternatively activated macrophage features, and cellular responses to hypoxia (see also Table S1).
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CD11bC myeloid DCs. Unexpectedly, transfection of in vitro
generated DCs with miR-31-5p or ¡3p mimics had no measur-
able impact on cardinal features of these cells, be it surface
expression levels of T-cell co-stimulatory/co-inhibitory mole-
cules or stimulation of antigen-specific T-cell proliferation
(data not shown). Given the fact that miR-31 is involved in
pro-angiogenic and pro-metastatic pathways, we thus hypothe-
sized that miR-31 upregulation might endow CD11bC DCs
with tumor-supporting properties. Using a collagen type I inva-
sion assay, we observed that conditioned medium of miR-31-3p
overexpressing DCs induces loss of cellular sphericity and the
appearance of filopodia-like protrusions in lung carcinoma
cells, i.e., shape changes that are indicators of invasive behav-
ior23 (Fig. 8A and B). This effect was not observed with condi-
tioned medium of miR-31-5p overexpressing DCs. DC-
conditioned medium was subsequently analyzed using a multi-
plex protein biomarker assay focusing on soluble factors
belonging to pro-angiogenic and pro-invasive pathways. Out of
17 protein analytes in the assay, 8 were reliably detected
(S100A8, S100A9, VEGF, MMP-9, HGF, osteopontin, PDGF,

and lipocalin-1). Of these, only the release of S100A8, S100A9,
and VEGF by DCs was boosted by miR-31-3p overexpression
and a hypoxic environment alike (Fig. 9A and B).

The miRNA signature of lung tumor-infiltrating DCs has a
marked prognostic impact in human lung adenocarcinoma

miRNA sequences are known to possess a high degree of target
conservation among mammals. This offered us an opportunity
to explore whether the miRNA signature contained in a “cor-
rupt” lung tumor-associated DC population confers prognostic
information in lung cancer patients. We retrieved RNA-
sequencing data of non-small cell lung cancer (NSCLC) cohorts
from The Cancer Genome Atlas (TCGA) portal and applied
algorithms allowing to extract non-coding RNA expression
information. The TCGA clinical annotation database was
downloaded and updated to the latest (seventh) TNM staging
system for lung cancer where necessary. A follow-up of 5 y was
considered for the survival analysis and patients having devel-
oped a secondary cancer were excluded. First, our analysis

Figure 5. In silico prediction of dominant transcription factor activity. Integrated System for Motif Actitivity Response Analysis (ISMARA, Swiss Institute of Bioinformatics)
was applied to the gene expression dataset. (A) Tabular overview of transcription factor activity showing (from left to right) motif name, activity significance (Z), functional
data (source: http://www.ncbi.nlm.nih.gov/gene) and a graphical representation of differential regulation: CD11bC DCs from (1) lungs of tumor-free hosts, (2) peritumoral
lung tissue, and (3) lung tumor tissue. The list is sorted by activity significance with a lower cut-off of Z D 1.5 (for a full list, see Table S2). (B) Focus on ETS1, 2, the motif
with highest activity significance, showing (top left) motif logo, (top right) Pearson correlation plot of motif activity versus mRNA expression, which was only significant
for ETS1/Ets1. (C) Gene Ontology analysis of ETS1 targets by process category.
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confirmed previous reports that suggested a negative prognos-
tic impact of miR-31 expression on overall survival in NSCLC
(across all stages) (Fig. 10A). However, the strength of the full
TIDC miRNA signature showed an even greater effect on prog-
nosis, with a median overall survival not reached in patients
with low signature strength, versus 3.4 y in the early stage
patient group with high signature strength. Of particular inter-
est, the TIDC miRNA-signature specifically segregated lung
cancer patients with nodal invasion (N1 and N2) into two
groups with dramatically different outcome (Fig. 10B). Detailed

numerical data on median overall survival, 5-y survival rate
and hazard ratio for death can be found in Table 1. These
effects on outcome were only observed in the non-squamous
subtype, which makes up the majority of NSCLC cases.

Discussion

In contrast to more widely used subcutaneous transplantable
tumor models, orthotopic tumor inoculation uniquely allows
us to perform differential analysis of cell populations across

Figure 6. Differential miRNA expression in tumor-infiltrating and hypoxia-exposed DC. (A) Heatmap of normalized RT-qPCR values showing mature miRNA levels differen-
tially expressed in CD11bC DCs directly isolated from lung tumor versus peritumoral lung tissue (four replicates from one experiment, each replicate the result of pooling
DCs FACSorted from lung or tumor of 6–8 mice). (B) Statistical analysis comparing relative expression levels between intra- and peri-tumoral DCs, expressed as fold
change and 95% confidence interval. Rank products test with percentage of false positives < 5%. (C) Separate analysis delivering RT-qPCR-based expression levels of
miR-31-5p and miR-31-3p relative to reference genes (snoRNA202 and U6) in CD11bC TIDC versus peritumoral lung tissue DCs FACSorted 28 d post-implantation of LLC
cells. Data pooled from two experiments with 2–4 replicates per group, each replicate containing pooled RNA from FAC-sorted DCs of 7–19 mice.
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adjacent tissue compartments within the same organ. In this
study, we took advantage of this opportunity to dissect how the
lung TME affects the pulmonary DC compartment.

Within the lung, the conventional DC system has been
shown to contain CD11bCCD103¡ and CD11b¡CD103C sub-
sets with dedicated immunogenic tasks.12 Here, we show that
within the intrapulmonary TME, the CD11chigh/MHCIIhigh/

CD11bC lung DC compartment becomes heavily infiltrated by
a myeloid population displaying canonical features of alterna-
tively activated, TAMs,24 both at the immunophenotypical and
transcriptomic levels. Our data are in line with a recent descrip-
tion of a CD11bC “DC1” being the dominant TIDC population
in several mouse tumor models, and likewise co-expressing sev-
eral markers belonging to TAMs such as the CD64, MMR, and
MerTK.25 The lung tumor TIDC in our model also shows strik-
ing similarity to the CSF-1-dependent, MMP-expressing “mac-
rophage-DCs” described in an MMTV-PyMT/c-fms-EGFP
mouse model of breast cancer.26

We did not address whether these tumor-induced shifts rely
on a plasticity of lung tissue resident conventional DCs, or on a
gradual replacement of this cellular compartment by newly
recruited macrophage-like cells. It was previously reported that
proliferating CD11cCMHCIIC cDCs derived from pre-cDCs
can acquire a regulatory macrophage-like phenotype when
exposed to tumor-conditioned media.27 However, these “DC-
derived macrophages,” which are also specifically enriched
within tumor beds (including ectopic LLC tumors), lose expres-
sion of CD11c and MHCII, in complete opposition to the
CD11bC TIDCs we described.

A striking feature of TIDCs in our model is the intense upre-
gulation of the inhibitory checkpoint molecule PD-L1 when
compared with matched peritumoral CD11bC DCs. High
expression of PD-L1 is also a prominent feature of DCs infil-
trating human non-small cell lung cancer specimen (see ref. 8
and our unpublished observations). It was previously reported
that monocyte-derived DCs use PD-L1 to cross-tolerize T cells
to antigens derived from apoptotic cells.28 Moreover, a recent
study performed in a mouse model of melanoma showed that
PD-L1 expression on TIDCs rather than on tumor cells con-
tributes to immune paralysis and mediates response to PD-L1
checkpoint blockade.29 This implies that DCs, which more
than any other cell excel in the recruitment of, and close inter-
action with T cells, could act as the main focus of immune
paralysis in the TME. Of note, PD-L1 on intratumoral immune
cells has been validated as a strong predictive biomarker of clin-
ical response to anti-PDL1 therapeutic antibodies across several
tumors, including lung cancer.30

Moving beyond immunophenotype, our work provides a
unique look into the transcriptome of DCs infiltrating
experimental lung tumors. Again, the comparison between
matched peri- versus intra-tumoral DC subpopulations
allows addressing the influence of the tissue micro-environ-
ment on the observed changes. GSEA corroborates the find-
ings obtained by surface expression analysis, pointing to the
acquisition of TAM/M2-related properties by tumor-infil-
trating CD11bC DCs. In addition, both GSEA and in silico
prediction of transcription factor activity (ISMARA) indi-
cate a loss of immunogenic/antigen-presenting function in
TIDCs compared with peritumoral counterparts. GSEA
reveals enrichment of TIDC transcriptomes with factors
such as Arginase 1 and IL-10, already known to mediate
active immune suppression in the LLC and other tumor
models.27,31 In line with this immunosuppresive signature,
lung CD11bC TIDC also upregulate macrophage scavenger
receptor 1 (MSR1) expression. MSR1 (SCARA1) was shown
to impair tumor-antigen presentation by a mechanism

Figure 7. Co-localization of DC infiltration and hypoxic regions within orthotopic
lung tumors. (A) Cryosection of orthotopic lung tumor from pimonidazole-injected
host stained for cell nuclei (DAPI, blue), pimonidazole-adducts (green), and CD11c
(red). (B) Higher power magnification focusing on a perivascular region, showing
hypoxic rim at a distance from a blood vessel, and dendritic-shaped CD11cC cells.
(C) Normalized RT-qPCR expression levels of miR-31-5p and miR-31-3p in day 8
bone marrow-derived DCs, exposed for 48 h to 1% O2 with or without 100 ng/mL
LPS for 12 h. Data pooled from two independent experiments, with each experi-
ment involving four mice per group.
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involving increased uptake and accumulation of lipids in
DCs.32

Another persistent pattern emerging from the lung TIDCs
transcriptomes is the enrichment of gene expression and tran-
scription factor activity reflecting in vivo exposure to hypoxia, a
common physiological feature in the TME. Our studies show

that TIDC effectively co-localize with hypoxic areas within
orthotopic LLC tumors. In DCs, hypoxia is known to induce
large-scale alterations in gene expression.33-35 The effects of
hypoxia on TIDC could either be direct by promoting HIF-1a
accumulation, or indirect through the release of hypoxia-
induced factors such as VEGF from surrounding cancer cells.

Figure 8. Conditioned medium from miR-31-3p overexpressing DCs induces pro-invasive lung cancer cell shape changes. (A) LLC cells seeded on a collagen type I mem-
brane were exposed to cell-free culture medium or DC-conditioned medium (DC-CM) obtained from control- or miR-31-transfected BMDCs as indicated. Collagen matrices
were fixed and stained for actin (red). Cell morphology parameters were computed using an automated image analysis algorithm. A drop in circularity index indicates cell
elongation and/or the appearance of protrusions or filopodia. (B) Low- (upper row) and high-power (lower row) micrograph obtained by confocal imaging of LLC cells
seeded on collagen type 1 matrices exposed to indicated DC-CM. DCs were generated from a pool of bone marrow cells from three mice to obtain sufficient conditioned
medium.
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Remarkably, the strongest upregulated genes in TIDCs in our
study included MMP8, MMP9, and Cathepsin K, all three of
which induced in pulmonary DCs when VEGF is overexpressed
in the lung.36 Also, in a LLC lung metastasis model, VEGF was
shown to be a powerful inducer of MMP9 production in lung
macrophages, thereby, promoting invasion of lung tissues by
tumor cells.37

The mRNA expression data also supports a link between
hypoxia exposure and the alteration of DC immunogenicity
within the TME. For instance, TIDC show a significant upregu-
lation of a prototypical hypoxia-related gene, 50-nucleotidase
(50-NT, CD73).38 As a membrane-bound enzyme, 50-NT
(CD73) catalyzes the breakdown of ATP in the extracellular
space to generate adenosine, which is known to promote toler-
ance and immunosuppression through diverse autocrine and
paracrine effects on DCs and/or T cells.39 Moreover, PD-L1
upregulation, one of the most striking features of TIDCs in our
model, was also shown to be induced by hypoxia in DCs, be it
directly in a HIF-1a-dependent manner or indirectly through
the action of tumor-secreted VEGF.40,41 Remarkably, in silico
prediction of dominant transcription factor motifs indicates
increased activity of two key TFs involved in endoplasmatic
reticulum stress response and cellular responses to hypoxia, i.e.,
XBP-1 and ATF-4.42 This finding is also in line with a recent
study, highlighting the role of ER-stress response in ovarian
cancer infiltrating DCs.43 In that particular study, increased
activity of the ER-stress response TF XBP-1 leads to lipid accu-
mulation in TIDCs, impaired antitumor immunity, and accel-
erated tumor progression. Collectively, these and our results

warrant investigations on the potential therapeutic impact of
ER-stress modulation in the myeloid compartment of the lung
cancer stroma.

Our study is the first to perform genome-wide mRNA and
miRNA expression analysis in parallel on matched ex vivo puri-
fied peritumoral and TIDCs. Using the same preclinical lung
cancer model, we previously demonstrated that a subset of DCs
transporting lung tumor antigens to the draining lymph nodes
expresses a set of miRNAs that sabotages the capacity to induce
T helper 1 responses.44 Here, we report on the microRNome of
the lung tumor resident DC population and reveal the forceful
upregulation of miR-31 transcripts when compared with peri-
tumoral DC counterparts. In lung cancer, miR-31 is associated
with poor survival, lymph node metastasis, resistance to che-
motherapy and perturbation of cell cycle by targeting DNA
mismatch repair genes.45-49 MiR-31 expression is closely associ-
ated with hypoxia-responsive pathways, as it targets FIH to de-
repress HIF-1a activity, thus, boosting transcription of hyp-
oxia-responsive genes (e.g., pro-angiogenetic factors). Although
intratumoral overexpression of miR-31 relative to matched
non-cancerous tissue has been described in human and animal
models of lung cancer50 upregulation of this oncomir within a
critical cell of the immune compartment of a tumor has not
been documented before. Our finding supports a concept ele-
gantly put forward in a study by Hanahan et al., in which
miRNA signatures associated with different stages of tumor
progression were shown to originate from the leukocytic infil-
trate, rather than from the cancer cells themselves.51 As we
found that hypoxia is by itself a major driver of miR-31

Figure 9. Hypoxic conditions and miR-31-3p overexpression trigger release of tumor-supporting soluble factors from myeloid DCs. DC-CMs obtained under the indicated
culture conditions were analyzed for the presence of soluble factors using an multiplex analyte panel covering pro-metastatic and pro-angiogenic processes. (A) Data are
expressed as log2 of fold-changes relative to control culture condition or control transfection reagent respectively. (B) Quantitative measurement of soluble factors in DC-
CM co-regulated by hypoxia and miR-31 overexpression alike, illustrating miR-31 transcript-specific effects. Data are obtained from proteomic analysis of supernatant
pooled from separate BMDC cultures as described in Fig. 8.
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expression in CD11bC DCs, we propose that reprogramming of
miRNA expression in myelomonocytic cells contributes to the
tumor-supporting effects of hypoxia. Indeed, we observed that
conditioned medium of DCs overexpressing miR-31-3p could

induce lung cancer cell shape changes indicative of increased
invasive behavior. In particular, the observed appearance of
filopodia-like protrusions was shown by Weinberg et al. to be a
strong indicator of metastatic potential.23 Remarkably, we

Figure 10. Prognostic impact of miR-31 expression and tumor-infiltrating DC-derived miRNA signature in non-squamous non-small cell lung cancer (n D 368 patients).
(A). TCGA clinical dataset analyzed using Cox-proportional hazard regression as well as Kaplan–Meier statistics, all TNM stages. For miR-31-5p and miR-31-3p, the highest
expression quartile segregated patients with significantly worse overall survival. For the miRNA signature, patients with a ranked sum above the mean (strong signature)
demonstrate a worse outcome. (B) Differential impact of TIDC signature strength according to lymph node invasion stage. Patients were divided into two groups based
on mean (N1/N2) or highest rank sum quartile (N0).

Table 1. Kaplan–Meier and Cox-proportional hazards statistics derived from non-squamous non-small cell lung cancer survival data (The Cancer Genome Atlas, https://
tcga-data.nci.nih.gov), as a function of miR-31 and TIDC expression strength.

Median OS (years) 5-y survival rate HR for death [95% CI] Cox PH p-value

miR-31-5p expression (cut-off: upper quartile of normalized expression)
Low 4.4 45.8% 1.72 [1.12–2.59] 0.00972
High 3.1 37.1%

miR-31-3p expression (cut-off: upper quartile of normalized expression)
Low 4.4 46.1% 1.89 [1.25–2.85] 0.00234
High 3.0 35.3%

TIDC miR signature strength
Low N.R. 51.3% 1.71 [1.15–2.54] 0.00859
High 3.4 35.5%

N0 (cut-off: upper quartile of rank-sum)
Low N.R 62.8% 1.41 [0.77–2.58] 0.547
High N.R 50.8%

N1 (cut-off: median of rank-sum)
Low 2.74 31.7% 3.13 [1.39–7.92] 0.0247
High 1.72 16.7%

N2 (cut-off: median of rank-sum)
Low 3.47 17,4% 2.33 [1.00–5.44] 0.0991
High 1.31 16,0%

HR D hazard ratio, CI D confidence interval, PH D proportional hazard, N.R. D not reached.
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found that DCs specifically overexpressing miR-31-3p or
exposed to hypoxia released high amounts of the tumor-sup-
porting factors S100A8, S100A9. An earlier report by Hiratsuka
and coworkers showed that tumor-derived VEGF is a major
stimulus for S100A8 secretion by CD11bC leukocytes.52 In
these studies, the strong chemotactic activity of S100A8
emerged as a common pathway critical for the recruitment of
both pro-tumorigenic CD11bC leukocytes as well as lung can-
cer cells toward intrapulmonary niches. Moreover, S100A8 was
shown to induce foci of vascular hyperpermeability within the
lungs, thereby, creating a milieu conducive for intrapulmonary
tumor establishment.53 In a recent study, S100A8/A9 proteins
secreted by tumor-associated DCs was implicated in breast can-
cer chemoresistance.54 Moreover S100A9 was shown to skew
haematopoietic stem cell differentiation away from DCs, favor-
ing expansion of immature myeloid cells with T-cell suppres-
sive activity.55 Accordingly, advanced lung cancer patients
show an increase in S100A9-expressing inflammatory mono-
cytes that suppress T-cell responses and are associated with
worse prognosis.56 S100-protein release may only partially con-
tribute to the pro-tumoral effects of miR-31 upregulation in
myeloid DCs. Future in vivo studies, either using conditional
ablation of the miR-31 gene in monocytes or specific DC sub-
sets or administration of DC-targeted anti-miRs, will provide
additional mechanistic evidence for the importance of DC-
derived miR-31 in promoting lung tumor progression.

Accumulating evidence indicates that the status of DCs in
the lung TME can impact on patient outcome in lung cancer
(see Introduction section for references). Hence, we explored
whether the miRNA signature extracted from “corrupt” tumor-
associated DCs could have a negative effect on prognosis in this
disease. Not only were we able to confirm the negative prognos-
tic impact of miR-31 in lung cancer as suggested by previous
reports, but also we could observe that the strength of the
TIDC-derived miRNA-signature as a whole negatively affects
overall survival in this disease. Over a follow-up period of 5 y,
patients with high signature strength had a 70% relative
increase in risk of death, with a median overall survival of 3.4 y,
which is worse than expected for this group of resectable (i.e.,
“early stage”) lung cancer cases. In patients with low signature
strength, median overall survival was not reached over the 5-y
horizon. Remarkably, the TIDC-derived miRNA signature had
a dramatic impact on prognosis once nodal invasion was pres-
ent. For resected lung cancer with N1 status (first lymph node
station invaded by carcinoma), there was a 3-fold risk for death
in the group with high TIDC signature strength, with a 5-y sur-
vival rate comparable to the more advanced N2 (stage III)
patients. We believe this observation might reflect a clinically
relevant skewing of DC biology from an immunogenic to a
metastasis-supporting stromal cell, and warrants a prospective
validation of this miRNA signature in non-small cell lung can-
cer. Also, the fact that the prognostic effects were only observed
in adenocarcinoma and not in squamous cell lung cancer
should draw our attention to differences in immune contexture
among lung cancer histological subtypes.

In summary, although our study confirms the generally
accepted view of tumor-induced DC “corruption,” we also pro-
vide evidence for a unique reverse effect in which a DC-intrin-
sic miRNA signature links exposure to intratumoral hypoxia

with the acquisition of tumor-supporting properties. It is now
clear that modulating the immune balance in the TME is estab-
lishing itself as a remarkably efficacious therapeutic strategy
against several solid tumors, including lung cancer.57 As DCs
are central orchestrators of immune responses, we believe that
efforts to reverse the corruption of these cells in the tumor envi-
ronment may ultimately enrich the growing arsenal of success-
ful cancer immunotherapeutics.

Materials and methods

Cell culture and transfection experiments

The murine Lewis lung carcinoma (LLC-A) cell line on C57Bl/6
background was provided by M. Bracke (Ghent University,
Belgium) and maintained in DMEM (Gibco, Invitrogen), sup-
plemented with 10% fetal bovine serum (Sigma-Aldrich) and
1000 U/mL penicillin/streptomycin (Gibco, Invitrogen). Bone
marrow derived DCs were generated as described previously.58

Briefly, murine bone marrow cell suspensions were cultured for
a total of 8 d in RPMI 1640 supplemented with 5% iFBS, L-Glu-
tamine, gentamycin (2.8 mL), 5 £ 10¡5 M ß-mercaptoethanol
(Life Technologies), and 20 ng/mL mouse recombinant GM-
CSF (gift from K. Thielemans, Free University of Brussels, Bel-
gium). Fresh medium with cytokines was added on day 3 and
on day 6. For hypoxia experiments, day 6 DCs were placed
under low environmental oxygen conditions (1% O2) for 48 h.
Twelve to sixteen hours before harvest, the cells were stimu-
lated with 100 ng/mL LPS (Invivogen). In transfection experi-
ments, day 6 BMDCs were seeded in 24-well ultra-low
attachment plates (Corning, Inc.). Thereafter, 100 nM of a
mimic or inhibitor of miR-31-3p, miR-31-5p, or control
mimic/inhibitor (all from Ambion) was transfected using 1 mL
RNAiMax lipofectamine (Invitrogen). Cy3-labeled control
anti-miRNA (Ambion) was used to determine transfection
efficiency.

Orthotopic lung tumor model and in vivo imaging

Seven- to eight-week-old female wild-type C57BL/6 mice (Har-
lan) were housed at Ghent University (Ghent, Belgium) animal
facility in individually ventilated cages. The Animal Ethics
Committee of Ghent University approved all in vivo manipula-
tions. Mice were anesthetized with ketamine (65 mg/kg, Ceva)
and xylazine (6.5 mg/kg, Verdifarm). Sterile saline solution
(70 mL) containing 1.5 £ 10E6 LLC or luciferase expressing
LLC cells was transferred into the airways using a non-invasive
supralaryngeal instillation technique. For cross-sectional end-
point experiments, mice were sacrificed and analyzed at 28–32
d post-implantation. For survival experiments, animals were
euthanized at �15% weight loss or at signs of illness (as per
Canadian Council on Animal Care guidelines).

Flow cytometry and cell sorting

Lung tumors and peritumoral lung tissues were harvested from
LLC bearing mice. Cell suspensions were prepared as described
before.44 Single-cell suspensions were incubated with anti-
mouse monoclonal antibody combinations for 30 min at 4 �C
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in the presence of Fcg III/II receptor antibody (clone 2.4G2) to
block non-specific binding. Antibodies used for staining are
described in Table S1. Samples were acquired on an LSRII and
LSRFortessa cytometer (BD Biosciences) and data were ana-
lyzed using FlowJo software (Tree Star, Inc.). Surface marker
data were expressed as relative mean fluorescence intensity cal-
culated as the ratio of geometrical mean fluroescence intensity
(geo-MFI) of the specific staining antibody over geo-MFI of
matched isotype control. For fluorescence-activated cell sorting
(FACS) experiments, CD3¡/CD19¡/low auto-fluorescent/
CD45C/MHCIIC/CD11cC/CD11bC DCs were sorted from
lungs or tumor from tumor-bearing and control mice on a
FACS Aria II and III cytometer (BD Biosciences). Sort purity
was consistently more than 90%.

Gene expression analysis of FAC-sorted DCs

For mouse gene expression analysis of tumor-exposed DCs,
DCs were FAC-sorted from tumor and peritumoral lung tissues
from tumor-bearing mice. Total RNA was extracted from DCs
using the miRNeasy kit (Qiagen) according to manufacturer’s
instruction. Quality checks were performed on an Experion
automated electrophoresis system (RQI). The Affymetrix
mouse gene ST1.0 array was used with 100 ng total RNA as
input. Analysis of the microarray data was performed in the R
programming environment, in conjunction with the packages
developed within the Bioconductor project (http://www.biocon
ductor.org). The analysis was based on the RMA expression
levels of the probe sets, as obtained with the xps-package. Dif-
ferential expression was assessed with the limma-package via
Smyth’s moderated t-statistic, taking into account that the data
were paired. Genes were selected by means of the criterion used
in the MAQC-I study,13 based on p-value < 0.001, further con-
strained to genes with an absolute log2-ratio > 1. Data have
been deposited in Gene Expression Omnibus under accession
number GSE85044 and can be viewed at http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?accDGSE85044.

In silico functional transcriptome analysis

Further in silico exploration of differential gene expression was
performed using Gene Set Enrichment Analysis,59,60 using
comprehensive, curated gene lists for biological processes rele-
vant in this model (see Table S1). Prediction of transcription
factor activity driving the observed differential gene expression
was performed using Integrated System for Motif Activity
Response Analysis (ISMARA17), which is a web-based algo-
rithm that infers a regulator’s activity by the behavior of its tar-
gets (without relying directly on the expression levels of a
transcription factor).

MiRNA expression analysis of FAC-sorted DCs and in silico
target gene prediction

For miRNA expression analysis of tumor-exposed DCs, the
same RNA as for the mouse exon array was used in high
throughput RT-qPCR based TaqMan miRNA assays (Applied
Biosystems) according to our previously described method.44,61

MiRNA expression data was normalized using the global mean

expression of all expressed miRNAs (based on a Cq-value cut-
off of 32 cycles).62 After normalization, missing miRNA expres-
sion data were imputed using the lowest expression for the
respective miRNA. Differentially expressed miRNAs were
selected using a rank product test (percentage false positives <
5). Hierarchical clustering was performed using R Bioconduc-
tor software (method Ward, distance Manhattan). Expression
of murine miR-31-3p and miR-31-5p expression was quantified
by RT-qPCR (TaqMan microRNA assay, Applied Biosystems)
with snoRNA202 and U6 as endogenous control RNA. Fold
changes were calculated using the DDCt method.

Tumor histology and immunofluorescence staining

Lungs of tumor-bearing mice were inflated with 1:1 solution of
OCT/PBS; in some experiments, animals were previously
injected intravenously with 60 mg/kg Hypoxyprobe (Hypoxyp-
robe Inc., Burlington). Frozen sections (6-mm thick) were fixed
in 4% formaldehyde for 10 min and stained with hematoxylin
and eosin. In some experiments sections were blocked for
30 min in Blocking Reagent (Roche) containing 10% normal
rabbit serum. After washing, slides were stained for 1 h at room
temperature with monoclonal antibodies against CD11c
(efluor660, clone N418, eBioscience), and pimonidazole (FITC,
Hypoxyprobe Inc., Burlington). After washing, slides were
incubated 1 h with alexa fluor 488-labeled anti-fluorescein anti-
body (Life Technologies) and DAPI nuclear counterstain.
Microscopic examinations were performed on a LSM710 con-
focal laser scanning microscope (Carl Zeiss, Inc.) and images
were analyzed using Imaris 5.0 software (Bitplane).

Collagen invasion assay

Type I collagen solution was produced as described previously63

and dispensed into six-well plates for gelification in a humidified
atmosphere of 10% CO2 in air at 37 �C for at least 1 h. 1£ 10E6
LLC cells were seeded in each well on top of the gel, and the
plates were placed for 24 h in a humidified CO2 incubator. Gels
were then fixed in a 3% formalin solution and stained with phal-
loidin-TexasRed (Sigma) with DAPI nuclear counterstain.
Images of the gels were acquired on confocal laser scanning
microscope at 20£ magnification. Images were subsequently
processed in ImageJ, using algorithms for cell contour detection
and calculation of the circularity shape index. The shape index is
a continuous variable between 0 and 1 and indicates deviation
from a perfect circular contour: a shape index of one indicates
perfect cellular sphericity, with lower values reflecting cell elon-
gation and/or the presence of cytoplasmic protrusions. Approxi-
mately 50–100 cells were analyzed per image, and five images
were acquired per experimental condition.

Proteomic analysis

Conditioned media from control versus miRNA-transfected
bone marrow-derived DCs were analyzed using a Luminex bio-
marker screening assay (R&D Systems), according to the man-
ufacturer’s instructions. The assay was custom-designed for the
simultaneous measurement of 17 analytes with pro-angiogenic
and/or pro-metastatic functions (KC/CXCL-1, Dkk-1, G-CSF,
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HGF, Lipocalin-2/N-GAL, Osteopontin, Periostin/OSF-2,
S100A8, S100A9, SDF-1a/CXCL12, EMMPRIN/CD147, GDF-
15, Leptin, MMP-9, PDGF-BB, Resistin, and VEGF).

TCGA data mining

The clinical expression analysis is based on genome-wide Illu-
mina miRNA-sequencing data from 521 patient lung adenocar-
cinoma and squamous cell carcinoma tumor samples, retrieved
from TCGA. Bam files were converted to fastq and remapped
using Bowtie (v.1.0.0). Mapped reads were annotated based on
miRBase 20. The expression levels of the selected miRNAs for
all patients were combined with clinical data available at TCGA
Data Portal [https://tcga-data.nci.nih.gov/tcga/]. The effect of
survival was examined with the Cox proportional hazard
regression model. The Wald test was used to test significance
(p-value less than 0.05). Patient survival curves were estimated
by the Kaplan–Meier method using the survival package
(2.38–3) in R (3.2.2). Patients were categorized into groups
with high and low expression for both miR-31 arms, based on
the 75% quartile, p-values were calculated using the log-rank
test. For the signature, a rank-sum was calculated and patients
were divided into two groups based on the median. We calcu-
lated the hazard ratio, median overall survival and 5 y survival
rate based on the cox proportional hazard regression model.

Statistical analysis

For all experiments except abovementioned genomic and sur-
vival analyses, differences between groups were analyzed using
the non-parametric Mann–Whitney U or Kruskal–Wallis test
with post-hoc Dunn’s test. Differences were considered statisti-
cally significant if p-value < 0.05 (�p < 0.05, ��p < 0.01,
���p< 0.001) with error bars representing SEM. Data were ana-
lyzed using GraphPad Prism v6.0 (GraphPad Software, Inc.).
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