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Abstract
Background: LncRNAs play a variety of roles in the tumor microenvironment and can-
cer immune responses. Determining the significance of bladder cancer (BLCA)-related 
genes to predict the prognostic and therapeutic response of BLCA is important.
Methods: IrlncRNA/ frlncRNA pairs were determined using univariate analysis. The 
signature was constructed based on this pairs. Finally, analysis and internal validation 
were performed from several aspects.
Results: We identified 60 immune- and ferroptosis-related lncRNA pairs, among which 
12 were included in the Cox proportional hazards model. Patients in low-risk group 
survived for significantly longer. Survival and riskScore analyses showed that the low-
risk group had a significantly better clinical outcome. ROC curve analysis showed that 
AUC of OS values were more than 0.75 in the training set and the whole cohort. As 
assessed using Cox analysis, the riskScore was an independent prognostic predictor 
in the training, testing set and the whole cohort. The areas under the multi-index ROC 
in the training set, the testing set, and the whole cohort were 0.777, 0.692, and 0.748, 
respectively. High-risk group was positively associated with most of tumor-infiltrating 
immune cells. High-risk Scores correlated positively with high expression of CD274, 
but not with PD-1. Low riskScores correlated positively with high expression levels 
of the genes ERBB2 and nectin-4. High-risk Score was associated with a lower IC50 
value for Docetaxel, cisplatin, and Pazopanib, while there was an opposite result for 
metformin.
Conclusions: The signature constructed by pairing irlncRNAs and frlncRNAs showed 
a notable clinical predictive value.
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1  |  INTRODUC TION

Bladder cancer (BLCA) is the 10th most commonly diagnosed can-
cer worldwide, with approximately 573,000 new cases and 213,000 
deaths in 2020 and is also the fourth most prevalent cancer in 
men.1,2 Nonmuscle-invasive bladder cancer (NMIBC) and a part of 
muscle-invasive bladder cancer (MIBC) comprise non-metastatic 
bladder cancer. About a quarter of patients with BLCA suffer from 
MIBC or metastatic foci.3,4 Moreover, the recurrence rate of BLCA is 
high, and after surgery, approximately 50% of patients suffer relapse 
and develop metastases.5,6 Patients with BLCA have benefitted 
markedly from adjuvant chemotherapy and new immune checkpoint 
inhibitors (ICIs).7–12 However, there is still a considerable proportion 
of patients who do not respond to immunotherapy at all stages of 
BLCA because of tumor immune evasion.13

Lipid peroxidation-mediated and iron-dependent cell death is 
termed ferroptosis, which differs from autophagy, necrosis, and 
apoptosis.14 Ferroptosis is involved in many diseases, including 
cancer.15,16 In a recent study, researchers found that CD8+ T cells 
participate in the regulation of tumor ferroptosis during cancer 
immunotherapy.17 Another study showed that immunotherapy-
promoted tumor ferroptosis and the effects of combination immu-
notherapy were enhanced using iron oxide-loaded nanovaccines 
(IONVs).18 For bladder cancer, recently studies indicate that PGE2 
metabolism affects variety of immune cells function and eventually 
lead to immune evasion.19 In addition, the release of PGE2 could 
induct ferroptosis in cancer cells.20 Altogether, these data indicate 
that ferroptosis is closely related to the antitumor immunity of blad-
der cancer.

Long non-coding RNAs (lncRNAs) are non-coding transcripts 
with a length >200 nucleotides.21 LncRNAs comprise almost 80% of 
the human transcriptome and play a key role in post-transcriptional 
regulatory processes related to mRNA translation, stability, or 
splicing.22 A recent study also showed that lncRNAs are critical to 
regulate genes encoding proteins that participate in cancer immu-
nity.23 LncRNAs are also important for immune-cell infiltration into 
tumors.24

Previous studies have focused on signatures of immune-  or 
ferroptosis-related lncRNAs, or on immune- and ferroptosis-related 
mRNAs.25–28 Although these studies demonstrated excellent value 
for the prediction and prognosis for cancer diagnosis, evaluation, 
and treatment, the roles of immune- and ferroptosis-related ln-
cRNA pairs are rarely studied. Therefore, the present study aimed 
to employ a novel algorithm to develop an immune-related lncRNA 
(irlncRNA) and ferroptosis-related lncRNA (frlncRNA) signature that 
does not rely on specific lncRNA expression levels and expected 
that it could more accurately predict the prognosis of patients and 
the response to immunotherapy in patients with bladder cancer. Its 
predictive value was estimated for patients with BLCA, and its che-
motherapy efficacy, diagnostic effectiveness, immune checkpoint-
related genes, and antibody-drug conjugate-related genes were 
determined.

2  |  MATERIAL S AND METHODS

2.1  |  Transcriptome data retrieval, analysis of 
differential expression, and intersection analysis

We downloaded the human BLCA transcriptome profile (RNA se-
quencing data), harmonized as fragments per kilobase of transcript per 
million mapped reads (FPKM), from The Cancer Genome Atlas (TCGA: 
https://tcga-data.nci.nih.gov/tcga/) for follow-up analysis. To distin-
guish the lncRNAs from mRNAs, we also downloaded gene transfer 
format (GTF) files from Ensembl (http://asia.ensem​bl.org). Then, we 
downloaded a list containing recognized immune-related genes (ir-
genes) from the ImmPort database (http://www.immpo​rt.org), which 
was used in co-expression analysis to identify irlncRNAs. Similarly, co-
expression analysis using a list of 288 recognized ferroptosis-related 
genes (fr-genes), downloaded from the FerrDb dataset (http://www.
zhoun​an.org/ferrd​b/), was used to identify frlncRNAs. A correlation 
coefficient of more than 0.4 and a p-value <0.01 were used as the cri-
teria to identify irlncRNAs and frlncRNAs. To identify the differentially 
expressed DEirlncRNAs and DEfrlncRNAs, the R package limma was 
used, with thresholds of log fold change (FC) >2 and a false discov-
ery rate (FDR) <0.05. Venny 2.1 (https://bioin​fogp.cnb.csic.es/tools/​
venny/​index.html) was used to complete the gene intersection analysis.

2.2  |  DE-IFRLs pairing

The DE-IFRLs were cyclically matched, and a 0-or-1 matrix was con-
structed supposing that C was a DE-IFRLs pair composed of lncRNA 
A and lncRNA B; If lncRNA A has a higher expression than lncRNA B, 
C was defined as 1; otherwise, C was defined as 0. Then, we further 
screened the established 0-or-1 matrix. The relationship between 
pairs was not considered if the expression level of an lncRNA pair was 
0 or 1. The reason was that pairs could not predict patient survival 
outcome properly unless they had a certain rank. It was considered an 
effective matching if the number of lncRNA pairs with an expression 
level of 0 or 1 accounted for more than 20% of the total pairs.

2.3  |  Patients’ clinical data

The clinical data for patients with BLCA was retrieved from the 
BLCA project of the TCGA. Effective data were obtained by exclud-
ing repeated data and data with a follow-up of less than 30 days.

2.4  |  Developing a risk model to 
evaluate the riskscore

First, we performed single factor analysis. Second, the patients 
were randomly divided into the training and testing sets at a ratio 
of 3:2 (237, 158) and we used least absolute shrinkage and selection 

https://tcga-data.nci.nih.gov/tcga/
http://asia.ensembl.org
http://www.immport.org
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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operator (LASSO) regression in the training set, with a p-value of 
0.05 and 10-fold cross validation. 1000 cycles of LASSO regression 
were run, and 1000 simulations were set for each cycle. Third, we 
recorded the frequency of each pair in the LASSO regression model. 
Fourth, Cox proportional hazard regression analysis was performed 
for pairs with a frequency >100, which were also used to construct 
the model. The following formula was then used to evaluate the 
riskScore for the constructed risk model for all the clinical cases:

Clef (i) and E(i) represent the regression coefficient of the mul-
tivariate Cox analysis for the DEfirlncRNA pairs and the expression 
value of each DEfirlncRNA pair, respectively. Finally, patients in the 
training set were classified into low- and high-risk groups according 
to the median riskScore. The testing set and the whole cohort were 
also grouped using the same the median riskScore.

2.5  |  Risk model validation

Univariate and multivariate Cox analysis were utilized to vali-
date the lncRNA pairs in the model. Then, Kaplan–Meier analysis, 
time-dependent receiver-operating characteristic (ROC) analysis, 
riskScore analysis, and survival outcome analysis was used to dem-
onstrate the survival difference of patients in the low- or high-risk 
groups. Next, R tools were used to visualize the results above by 
using the R packages of survival, survminer, and survivalROC.

Finally, to verify that the model could be used as an independent 
clinical prognostic predictor, multi-index ROC analysis, and univar-
iate and multivariate Cox regression analyses were performed be-
tween the riskScore and the clinicopathological characteristics. The 
results are presented using a forest plot and ROC curve. These anal-
yses used the R package survival.

2.6  |  Tumor-infiltrating immune cell, immune 
checkpoint-related genes, and antibody-drug 
conjugate-related genes

To analyze the relationship between the riskScore and immune-cell 
characteristics, the immune infiltration status of the BLCA sam-
ples from the TCGA project were evaluated using CIBERSORT,29,30 
MCPcounter,31 QUANTISEQ,32,33 EPIC,34 TIMER,35,36 XCELL,37,38 
and CIBERSORT-ABS.39 The relationship between the riskScore val-
ues and the immune infiltrated cells was determined using Spearman 
correlation analysis and a lollipop diagram was used to display the 
result. Then, the Wilcoxon signed-rank test was used to analyze the 
differences in immune checkpoint- and antibody-drug conjugate-
related genes among the different groups; the results of which are 
shown in a box chart. A p-value <0.05 was set as the significance 
threshold. The R limma, scales, ggtext, ggplot2, and ggpubr pack-
ages were used to perform these procedures.

2.7  |  Determining the model's significance in 
clinical treatment

The BLCA dataset was mined for the half-maximal inhibitory con-
centration (IC50) values of commonly used chemotherapeutic 
drugs, with the aim of assessing the clinical significance of the 
model for BLCA treatment. The commonly used drugs comprised 
cisplatin, pazopanib, and docetaxel. Recent studies have sug-
gested the therapeutic efficacy of metformin in certain cancers; 
therefore, we also explored the relationship between metformin 
and the model. The Wilcoxon signed-rank test was used to com-
pare the differences in IC50 among the groups. The analysis was 
carried out using pRRophetic and ggplot2 of R and the results are 
presented using box plots.

3  |  RESULTS

3.1  |  Identification of differentially expressed 
irlncRNAs (DEirlncRNAs), frlncRNAs (DEfrlncRNAs) 
and determining the intersection of the two sets of 
DElncRNAs

Figure 1 shows the flowchart of the study. First, the BLCA tran-
scriptome profile data were downloaded from the TCGA data-
base, comprising 19 normal samples and 411 tumor samples. 
The ir-genes list was obtained from the IMMPORT Shared Data. 
Then, a list of 288 recognized ferroptosis-related genes (fr-genes) 
were downloaded from the FerrDd dataset. The data were then 
annotated according to the GTF files and used for co-expression 
analysis between the lncRNAs and the ir-genes. This analysis 
identified 1270 irlncRNAs, 109 of which were found to be dif-
ferentially expressed (DEirlncRNAs), with 94 being upregulated 
and 15 being downregulated (Figure 2A). The same analysis was 
used for the fr-genes and lncRNAs, which identified 60 of them as 
DEfrlncRNAs, with 49 being upregulated and 11 being downregu-
lated (Figure 2B). The intersection of the two DElncRNAs datasets 
is shown in Figure 2C.

3.2  |  Establishing IFRL pairs and the risk 
assessment model

An iteration loop and a 0-or-1 matrix were used to screen 55 IFRLs, 
among which 1220 valid IFRL pairs were identified. A single factor 
test extracted 60 IFRL pairs, followed by modified LASSO regression 
analysis (Figure 3A,B). The stepwise method resulted in twelve of 
these IFRL pairs (LINC02195|AP003071.4, LINC02195|NR4A1AS, 
LINC02154|AC112721.1, AC007128.1|AC010331.1, AC091182.2|​
AC010789.1, LINC01767|AC106875.1, LINC01767|AC114489.2, 
AP005432.2|AL161772.1, AC012645.4|AC010331.1, MYOSLID|AC0​
10331.1, AL513218.1|ZNF710-AS1, AC073195.2|AATBC) being in-
cluded in a Cox proportional hazards model (Figure 3C,D).

RiskScore =

∑n

i=1
Coef(i) ∗ E(i)
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3.3  |  Clinical evaluation using the risk 
assessment model

According to Kaplan–Meier analysis, the patients in the low-risk 
group survived for significantly longer than the patients in the 
high-risk group (Figure 4A–C). The riskScores and survival of these 
cases are shown in Figure 4G–I and 4J–L. The results showed that 
the low-risk group had a significantly better clinical outcome 
than the high-risk group. Next, in the time-dependent ROC curve 

analysis, the area under the curve (AUC) of OS for 1, 3, and 5 years 
was 0.777, 0.827, and 0.866 in the training group (Figure  4D); 
0.692, 0.681, and 0.675 (Figure 4E) in the testing group; and 0.748, 
0.763, and 0.781 (Figure  4F) in the whole cohort, respectively, 
which further confirmed the validity of our results. Finally, univari-
ate (Figure 5A–C) and multivariate Cox regression analyses in both 
the training and validation groups showed that age and riskScore 
were independent prognostic predictors of OS in the training set 
and the whole cohort (Figure 5D,5F), but only the riskScore was 

F I G U R E  1 Workflow of the present study

F I G U R E  2 Identification of differentially expressed immune-related lncRNAs (DEirlncRNAs) and ferroptosisrelated lncRNAs 
(DEfrlncRNAs) from TCGA data and Ensembl-based annotation. (A) DEirlncRNAs shown on a volcano plot (B) DEfrlncRNAs shown on a 
volcano plot. (C) Intersection of the two sets of DElncRNAs
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an independent prognostic predictor in the testing set (Figure 5E). 
Multi-index ROC analysis was performed for further validation 
(Figure 5G–I). The areas under the curves in the training set, the 
testing set, and the whole cohort were 0.777, 0.692, and 0.748, 
respectively.

3.4  |  Analyses of tumor-infiltrating immune cells, 
immunosuppressive molecules, and ADC targets 
using the risk assessment model

Immune-related genes and lncRNAs are interrelated; therefore, 
we explored the association between the model and the tumor 
immune microenvironment. The “infiltration_estimation_for_tcga.
csv” data file was downloaded from Timer database. We then 

performed correlation analysis utilizing Spearman analysis. The 
results showed that the high-risk group was positively associ-
ated with tumor-infiltrating immune cells, including monocytes, 
fibroblasts, and macrophages, but negatively related to CD4+ T 
cells and CD8+ T cells (Figure 6A). ICIs comprise very important 
treatments for patients with BLCA in clinical practice; therefore, 
we assessed whether the model was associated with ICI-related 
biomarkers. The results showed that high-risk Scores correlated 
positively with high expression levels of the gene encoding CD274 
(also known as PD-L1) (p < 0.05, Figure 6B); however, there was 
no significant relation between the riskScores and the expression 
levels of PDCD1 (also known as PD-1) (Figure 6C). Antibody-drug 
conjugates represent a class of emerging therapeutics; therefore, 
we also investigated whether the model associated with relevant 
biomarkers. The results showed that low riskScores correlated 

F I G U R E  3 Establishment of the Risk Assessment Model using DE-IFRL Pairs (A, B) The 60 pairs of prognostic lncRNAs were used to 
construct a LASSO Cox regression model, and the partial likelihood deviance incorporating 10-fold cross-validation was used to derive the 
tuning parameter (λ). In the plot, the vertical black line indicates an optimal log λ. (C, D) Results of (C) univariate and (D) multivariate Cox 
regression analyses of lncRNA pairs involved in the model
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positively with high expression levels of the gene encoding Erb-
B2 receptor tyrosine kinase 2 (ERBB2, also known as HER-2) 
(p < 0.001, Figure 6D) and nectin-4 (p < 0.001, Figure 6E).

3.5  |  Analysis of the correlation between the risk 
model and chemotherapeutics

We attempted to discover the association between the riskScore 
and the efficacy of commonly used chemotherapeutic and targeted 
drugs. The results showed that a high-risk Score was associated with 
a lower IC50 value for Docetaxel (p < 0.001), cisplatin (p < 0.001), 

and Pazopanib (p  <  0.001), which suggested that the developed 
model could be used to predict chemotherapeutic drug sensitivity 
(Figure 7A–C). In the case of metformin, the IC50 in the low-risk group 
was lower than that in the high-risk group (p < 0.001, Figure 7D).

4  |  DISCUSSION

Immunotherapy of a considerable proportion of patients with BLCA 
is limited by immune invasion. In fact, recent studies have shown 
that, in vitro, macrophages effectively engulf ferroptotic cancer cells, 
supporting the existence of "find me" and "eat me" signals.40,41 The 

F I G U R E  4 Validation of the Risk Assessment Model (A, B, C) Kaplan–Meier tests in training set (A), the testing set (B), and the whole 
cohort (C). (D, E, F) time-dependent ROC analysis of risk scores based on 1-, 3-, and 5-year OS in the raining set (D), the testing set (E), and 
the whole cohort (F). (G-L) Risk scores of each case and Survival outcome of each case in the training set (G, J), testing set (H, K), and the 
whole cohort (I, L)



    |  7 of 11LI et al.

critical steps in the interaction between ferroptotic cancer cells and 
the immune system are phagocytosis, migration, maturation, antigen 
processing, and cross-presentation by DCs.42 Previous research in-
dicated that PGE2 metabolism in the bladder cancer promoted the 
formation of immunosuppressive tumor-supporting microenviron-
ment and could induct ferroptosis in cancer cells.19,20 Therefore, we 
speculate that ferroptosis that happened in the tumor microenviron-
ment has a negative impact on the antitumor immunity of bladder 
cancer patients and the model constructed by ferroptosis/immune 
lncRNA would have better prediction ability for the prognosis of pa-
tients and the response of medicine.

Recently, to assess the prognosis of patients with tumors, re-
searchers have focused on establishing signatures based on cod-
ing genes, non-coding RNAs, and non-coding RNA pairs,25–28,43–54 
most of which are based on the quantification of gene expression 
levels. Moreover, most of them were associated with either immune-
related or ferroptosis-related RNAs. Herein, we used a strategy of 
immune-related and ferroptosis-related lncRNA pairing to construct 

a valuable model that does not depend on their detailed expression 
level. The results are basically consistent with our expectations 
above.

First, TCGA raw data were used to identify DEirlncRNAs 
and DEfrlncRNAs. After determining the intersection of the two 
DElncRNAs sets, an improved method comprising a 0-or-1 matrix 
and cyclical single pairing was utilized to validate the lncRNA pairs. 
Second, univariate analysis together with modified LASSO regres-
sion (including random simulation, multiple repeats, and cross val-
idation) were used to determine the intersecting pairs. Third, the 
obtained formula was used to evaluate the riskScores, and cases 
were divided into low-and high-risk groups according to the median 
riskScore. Subsequent reassessment and validation of the survival 
outcome and analysis of clinicopathological characteristics showed 
that the developed model worked well.

It is reported that the response to anti-checkpoint blockades is 
affected by the intertumoral infiltration of immune cells. To deter-
mine the relationship between tumor-infiltrating immune cells and 

F I G U R E  5 Use of the risk assessment model for clinical evaluation. (A-F) Results of Univariate Cox and Multivariate Cox analysis showing 
the relationship of the risk score and clinical variables including age, sex, and TNM stage to overall survival (OS) in the training set (A, D), the 
testing set (B, E), and the whole cohort (C, F); (G-I) multi-index ROC curve analysis of the signature demonstrated that the areas under the 
curves in the training set, the testing set, and the whole cohort were 0.777, 0.692, and 0.748, respectively
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risk scores, seven methods were used, including TIMER, CIBERSORT, 
XCELL, QUANTISEQ, MCPcounter, EPIC, and CIBERSORT-ABS. 
Comparisons among the algorithms are rarely performed because of 
their various limitations and complexities. Our results showed that 
the high-risk group was associated with certain tumor-infiltrating 
immune cells, including neutrophils, myeloid dendritic cells, macro-
phages, and monocytes.

In recent years, the role of ferroptosis in immunotherapy has 
aroused much interest. In one study of immunotherapy-associated 
cytokines, the authors observed that inducers of ferroptosis had 
impact on the differentiation of melanoma cells and affected the 
antitumor efficacy of immunotherapy.55 Certain physiological pro-
cesses induced by ferroptosis could, to some extent, activate innate 
immunity.56 Wu's study found that patients with bladder cancer in 
the high-risk group of the irlncRNA signature had high expression 

of MSH6 (MutS homolog 6) and MHL1 (MutL homolog 1), a low 
TMB, and low expression of programmed cell death 1 (PD-1) and 
programmed cell death 1 ligand 1 (PD-L1).27 Research on hepatocel-
lular carcinoma showed that the signature correlated with immune 
checkpoint-related biomarkers such as CTLA4 and HAVCR2, but 
not PD-1 and LAG3.57 Our study identified positive associations be-
tween the riskScore and PD-L1 gene expression. This suggested that 
the combined use of ferroptosis-related drugs with ICIs in the high-
risk group would benefit patients. Antibody-drug conjugates (ADCs) 
represent a new therapeutic modality in urothelial cancer58 . ADCs 
targeting nectin-4 were approved to treat bladder cancer in 2019 
by the FDA58 and an ADC targeting HER-2 was approved in 2021 
by the CSCO Guideline depending on the C005 research study59 . 
Recent research showed that the expression of Nectin-4 and HER-2 
are related to ferroptosis60–62 . Other studies have explored the 

F I G U R E  6 Use of the risk assessment model to estimate tumor-infiltrating cells, immunosuppressed molecules, and ADC targets. (A) 
Spearman correlation analysis showing that tumor-infiltrating immune cells such as neutrophils, monocytes, fibroblasts, and macrophages, 
were associated positively with patients in the high-risk group, whereas these patients were associated negatively associated with CD4+ T 
cells and fibroblasts. (B, C) The upregulated level of CD274 correlated positively with high-risk scores (C), whereas the expression level of 
PDCD1 was not different among the groups (B). (D, E) Upregulated level of ERBB2 (D) and nectin-4 (E) correlated positively with low-risk 
scores. *p < 0.05; **p < 0.01; ***p < 0.001
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design of PD-L1 ADCs63,64 . Our study indicated that the expression 
of Nectin-4 and HER-2 was increased significantly in the low-risk 
group compared with that in the high-risk group, which showed the 
ability of the model to predict the sensitivity of ADCs.

However, the present research had several limitations. First, the 
raw dataset, which was simply downloaded from the TCGA, was 
comparatively insufficient and we have only performed internal val-
idation. Hence, external validation and additional prospective inves-
tigations are needed to validate the predictive power of our model. 
Second, we did not retrieve datasets for the other information, such 
as clinicopathological characteristics, lncRNA expression levels, and 
survival outcomes at the same time. Third, although the signature 
was constructed using lncRNA pairs, fresh samples and prospec-
tive experimental research are required to validate these lncRNAs. 
Finally, the biological functions of the lncRNAs making up the prog-
nostic signature need to be explored in detail in bladder cancer.

5  |  CONCLUSION

In the present work, we constructed an irlncRNAs and frlncRNAs 
signature that was independent of the expression levels of lncRNAs. 
The signature could be used for prognosis prediction in patients 
with BLCA and could facilitate decisions regarding whether a pa-
tient might respond to BLCA immunotherapy and ADCs targeting 
Nectin-4 and HER-2.
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