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Abstract
Background: LncRNAs	play	a	variety	of	roles	in	the	tumor	microenvironment	and	can-
cer	immune	responses.	Determining	the	significance	of	bladder	cancer	(BLCA)-	related	
genes	to	predict	the	prognostic	and	therapeutic	response	of	BLCA	is	important.
Methods: IrlncRNA/	frlncRNA	pairs	were	determined	using	univariate	analysis.	The	
signature	was	constructed	based	on	this	pairs.	Finally,	analysis	and	internal	validation	
were performed from several aspects.
Results: We	identified	60	immune-		and	ferroptosis-	related	lncRNA	pairs,	among	which	
12	were	included	in	the	Cox	proportional	hazards	model.	Patients	in	low-	risk	group	
survived for significantly longer. Survival and riskScore analyses showed that the low- 
risk group had a significantly better clinical outcome. ROC curve analysis showed that 
AUC	of	OS	values	were	more	than	0.75	in	the	training	set	and	the	whole	cohort.	As	
assessed using Cox analysis, the riskScore was an independent prognostic predictor 
in the training, testing set and the whole cohort. The areas under the multi- index ROC 
in	the	training	set,	the	testing	set,	and	the	whole	cohort	were	0.777,	0.692,	and	0.748,	
respectively. High- risk group was positively associated with most of tumor- infiltrating 
immune	cells.	High-	risk	Scores	correlated	positively	with	high	expression	of	CD274,	
but	not	with	PD-	1.	Low	riskScores	correlated	positively	with	high	expression	 levels	
of	the	genes	ERBB2	and	nectin-	4.	High-	risk	Score	was	associated	with	a	lower	IC50	
value	for	Docetaxel,	cisplatin,	and	Pazopanib,	while	there	was	an	opposite	result	for	
metformin.
Conclusions: The	signature	constructed	by	pairing	irlncRNAs	and	frlncRNAs	showed	
a notable clinical predictive value.
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1  |  INTRODUC TION

Bladder	cancer	(BLCA)	is	the	10th	most	commonly	diagnosed	can-
cer	worldwide,	with	approximately	573,000	new	cases	and	213,000	
deaths in 2020 and is also the fourth most prevalent cancer in 
men.1,2	Nonmuscle-	invasive	bladder	cancer	 (NMIBC)	and	a	part	of	
muscle-	invasive	 bladder	 cancer	 (MIBC)	 comprise	 non-	metastatic	
bladder	cancer.	About	a	quarter	of	patients	with	BLCA	suffer	from	
MIBC	or	metastatic	foci.3,4	Moreover,	the	recurrence	rate	of	BLCA	is	
high,	and	after	surgery,	approximately	50%	of	patients	suffer	relapse	
and develop metastases.5,6	 Patients	 with	 BLCA	 have	 benefitted	
markedly from adjuvant chemotherapy and new immune checkpoint 
inhibitors	(ICIs).7–	12 However, there is still a considerable proportion 
of patients who do not respond to immunotherapy at all stages of 
BLCA	because	of	tumor	immune	evasion.13

Lipid peroxidation- mediated and iron- dependent cell death is 
termed ferroptosis, which differs from autophagy, necrosis, and 
apoptosis.14	 Ferroptosis	 is	 involved	 in	 many	 diseases,	 including	
cancer.15,16 In a recent study, researchers found that CD8+ T cells 
participate in the regulation of tumor ferroptosis during cancer 
immunotherapy.17	 Another	 study	 showed	 that	 immunotherapy-	
promoted tumor ferroptosis and the effects of combination immu-
notherapy were enhanced using iron oxide- loaded nanovaccines 
(IONVs).18	For	bladder	cancer,	 recently	studies	 indicate	 that	PGE2	
metabolism affects variety of immune cells function and eventually 
lead to immune evasion.19	 In	 addition,	 the	 release	 of	 PGE2	 could	
induct ferroptosis in cancer cells.20	Altogether,	these	data	 indicate	
that ferroptosis is closely related to the antitumor immunity of blad-
der cancer.

Long	 non-	coding	 RNAs	 (lncRNAs)	 are	 non-	coding	 transcripts	
with a length >200 nucleotides.21	LncRNAs	comprise	almost	80%	of	
the human transcriptome and play a key role in post- transcriptional 
regulatory	 processes	 related	 to	 mRNA	 translation,	 stability,	 or	
splicing.22	A	recent	study	also	showed	that	 lncRNAs	are	critical	to	
regulate genes encoding proteins that participate in cancer immu-
nity.23	LncRNAs	are	also	important	for	immune-	cell	infiltration	into	
tumors.24

Previous	 studies	 have	 focused	 on	 signatures	 of	 immune-		 or	
ferroptosis-	related	lncRNAs,	or	on	immune-		and	ferroptosis-	related	
mRNAs.25–	28	Although	these	studies	demonstrated	excellent	value	
for the prediction and prognosis for cancer diagnosis, evaluation, 
and treatment, the roles of immune-  and ferroptosis- related ln-
cRNA	pairs	are	rarely	studied.	Therefore,	the	present	study	aimed	
to	employ	a	novel	algorithm	to	develop	an	immune-	related	lncRNA	
(irlncRNA)	and	ferroptosis-	related	lncRNA	(frlncRNA)	signature	that	
does	 not	 rely	 on	 specific	 lncRNA	 expression	 levels	 and	 expected	
that it could more accurately predict the prognosis of patients and 
the response to immunotherapy in patients with bladder cancer. Its 
predictive	value	was	estimated	for	patients	with	BLCA,	and	its	che-
motherapy efficacy, diagnostic effectiveness, immune checkpoint- 
related genes, and antibody- drug conjugate- related genes were 
determined.

2  |  MATERIAL S AND METHODS

2.1  |  Transcriptome data retrieval, analysis of 
differential expression, and intersection analysis

We	 downloaded	 the	 human	 BLCA	 transcriptome	 profile	 (RNA	 se-
quencing	data),	harmonized	as	fragments	per	kilobase	of	transcript	per	
million	mapped	reads	(FPKM),	from	The	Cancer	Genome	Atlas	(TCGA:	
https://tcga- data.nci.nih.gov/tcga/)	 for	 follow-	up	 analysis.	 To	 distin-
guish	 the	 lncRNAs	 from	mRNAs,	we	also	downloaded	gene	 transfer	
format	 (GTF)	 files	 from	 Ensembl	 (http://asia.ensem bl.org).	 Then,	 we	
downloaded a list containing recognized immune- related genes (ir- 
genes)	 from	the	 ImmPort	database	 (http://www.immpo rt.org),	which	
was	used	in	co-	expression	analysis	to	identify	irlncRNAs.	Similarly,	co-	
expression analysis using a list of 288 recognized ferroptosis- related 
genes	 (fr-	genes),	 downloaded	 from	 the	FerrDb	dataset	 (http://www.
zhoun an.org/ferrd b/),	 was	 used	 to	 identify	 frlncRNAs.	 A	 correlation	
coefficient of more than 0.4 and a p- value <0.01 were used as the cri-
teria	to	identify	irlncRNAs	and	frlncRNAs.	To	identify	the	differentially	
expressed	DEirlncRNAs	and	DEfrlncRNAs,	the	R	package	 limma	was	
used,	with	 thresholds	of	 log	 fold	 change	 (FC)	>2 and a false discov-
ery	 rate	 (FDR)	<0.05.	Venny	2.1	 (https://bioin fogp.cnb.csic.es/tools/ 
venny/ index.html)	was	used	to	complete	the	gene	intersection	analysis.

2.2  |  DE- IFRLs pairing

The	DE-	IFRLs	were	cyclically	matched,	and	a	0-	or-	1	matrix	was	con-
structed	supposing	that	C	was	a	DE-	IFRLs	pair	composed	of	lncRNA	
A	and	lncRNA	B;	If	lncRNA	A	has	a	higher	expression	than	lncRNA	B,	
C was defined as 1; otherwise, C was defined as 0. Then, we further 
screened the established 0- or- 1 matrix. The relationship between 
pairs	was	not	considered	if	the	expression	level	of	an	lncRNA	pair	was	
0 or 1. The reason was that pairs could not predict patient survival 
outcome properly unless they had a certain rank. It was considered an 
effective	matching	if	the	number	of	lncRNA	pairs	with	an	expression	
level	of	0	or	1	accounted	for	more	than	20%	of	the	total	pairs.

2.3  |  Patients’ clinical data

The	 clinical	 data	 for	 patients	 with	 BLCA	 was	 retrieved	 from	 the	
BLCA	project	of	the	TCGA.	Effective	data	were	obtained	by	exclud-
ing repeated data and data with a follow- up of less than 30 days.

2.4  |  Developing a risk model to 
evaluate the riskscore

First,	 we	 performed	 single	 factor	 analysis.	 Second,	 the	 patients	
were randomly divided into the training and testing sets at a ratio 
of	3:2	(237,	158)	and	we	used	least	absolute	shrinkage	and	selection	

https://tcga-data.nci.nih.gov/tcga/
http://asia.ensembl.org
http://www.immport.org
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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operator	 (LASSO)	 regression	 in	 the	 training	 set,	with	 a	p- value of 
0.05	and	10-	fold	cross	validation.	1000	cycles	of	LASSO	regression	
were run, and 1000 simulations were set for each cycle. Third, we 
recorded	the	frequency	of	each	pair	in	the	LASSO	regression	model.	
Fourth,	Cox	proportional	hazard	regression	analysis	was	performed	
for	pairs	with	a	frequency	>100, which were also used to construct 
the model. The following formula was then used to evaluate the 
riskScore for the constructed risk model for all the clinical cases:

Clef	(i)	and	E(i)	represent	the	regression	coefficient	of	the	mul-
tivariate	Cox	analysis	for	the	DEfirlncRNA	pairs	and	the	expression	
value	of	each	DEfirlncRNA	pair,	respectively.	Finally,	patients	in	the	
training set were classified into low-  and high- risk groups according 
to the median riskScore. The testing set and the whole cohort were 
also grouped using the same the median riskScore.

2.5  |  Risk model validation

Univariate and multivariate Cox analysis were utilized to vali-
date	 the	 lncRNA	pairs	 in	 the	model.	Then,	Kaplan–	Meier	analysis,	
time-	dependent	 receiver-	operating	 characteristic	 (ROC)	 analysis,	
riskScore analysis, and survival outcome analysis was used to dem-
onstrate the survival difference of patients in the low-  or high- risk 
groups. Next, R tools were used to visualize the results above by 
using the R packages of survival, survminer, and survivalROC.

Finally,	to	verify	that	the	model	could	be	used	as	an	independent	
clinical prognostic predictor, multi- index ROC analysis, and univar-
iate and multivariate Cox regression analyses were performed be-
tween the riskScore and the clinicopathological characteristics. The 
results are presented using a forest plot and ROC curve. These anal-
yses used the R package survival.

2.6  |  Tumor- infiltrating immune cell, immune 
checkpoint- related genes, and antibody- drug 
conjugate- related genes

To analyze the relationship between the riskScore and immune- cell 
characteristics,	 the	 immune	 infiltration	 status	 of	 the	 BLCA	 sam-
ples	from	the	TCGA	project	were	evaluated	using	CIBERSORT,29,30 
MCPcounter,31	 QUANTISEQ,32,33	 EPIC,34	 TIMER,35,36 XCELL,37,38 
and	CIBERSORT-	ABS.39 The relationship between the riskScore val-
ues and the immune infiltrated cells was determined using Spearman 
correlation analysis and a lollipop diagram was used to display the 
result. Then, the Wilcoxon signed- rank test was used to analyze the 
differences in immune checkpoint-  and antibody- drug conjugate- 
related genes among the different groups; the results of which are 
shown	 in	a	box	chart.	A	p- value <0.05	was	set	as	 the	significance	
threshold. The R limma, scales, ggtext, ggplot2, and ggpubr pack-
ages were used to perform these procedures.

2.7  |  Determining the model's significance in 
clinical treatment

The	BLCA	dataset	was	mined	for	the	half-	maximal	inhibitory	con-
centration	 (IC50)	 values	 of	 commonly	 used	 chemotherapeutic	
drugs, with the aim of assessing the clinical significance of the 
model	for	BLCA	treatment.	The	commonly	used	drugs	comprised	
cisplatin, pazopanib, and docetaxel. Recent studies have sug-
gested the therapeutic efficacy of metformin in certain cancers; 
therefore, we also explored the relationship between metformin 
and the model. The Wilcoxon signed- rank test was used to com-
pare	the	differences	in	IC50	among	the	groups.	The	analysis	was	
carried out using pRRophetic and ggplot2 of R and the results are 
presented using box plots.

3  |  RESULTS

3.1  |  Identification of differentially expressed 
irlncRNAs (DEirlncRNAs), frlncRNAs (DEfrlncRNAs) 
and determining the intersection of the two sets of 
DElncRNAs

Figure 1	shows	the	flowchart	of	the	study.	First,	 the	BLCA	tran-
scriptome	 profile	 data	 were	 downloaded	 from	 the	 TCGA	 data-
base, comprising 19 normal samples and 411 tumor samples. 
The	 ir-	genes	 list	was	obtained	from	the	 IMMPORT	Shared	Data.	
Then,	a	list	of	288	recognized	ferroptosis-	related	genes	(fr-	genes)	
were	downloaded	 from	 the	FerrDd	dataset.	The	data	were	 then	
annotated	according	to	the	GTF	files	and	used	for	co-	expression	
analysis	 between	 the	 lncRNAs	 and	 the	 ir-	genes.	 This	 analysis	
identified	 1270	 irlncRNAs,	 109	 of	 which	 were	 found	 to	 be	 dif-
ferentially	 expressed	 (DEirlncRNAs),	 with	 94	 being	 upregulated	
and	15	being	downregulated	 (Figure 2A).	The	same	analysis	was	
used	for	the	fr-	genes	and	lncRNAs,	which	identified	60	of	them	as	
DEfrlncRNAs,	with	49	being	upregulated	and	11	being	downregu-
lated (Figure 2B).	The	intersection	of	the	two	DElncRNAs	datasets	
is shown in Figure 2C.

3.2  |  Establishing IFRL pairs and the risk 
assessment model

An	iteration	loop	and	a	0-	or-	1	matrix	were	used	to	screen	55	IFRLs,	
among	which	1220	valid	IFRL	pairs	were	identified.	A	single	factor	
test	extracted	60	IFRL	pairs,	followed	by	modified	LASSO	regression	
analysis (Figure 3A,B).	The	 stepwise	method	 resulted	 in	 twelve	of	
these	 IFRL	 pairs	 (LINC02195|AP003071.4,	 LINC02195|NR4A1AS,	
LINC02154|AC112721.1,	 AC007128.1|AC010331.1,	 AC091182.2|	
AC010789.1,	 LINC01767|AC106875.1,	 LINC01767|AC114489.2,	
AP005432.2|AL161772.1,	AC012645.4|AC010331.1,	MYOSLID|AC0	
10331.1,	AL513218.1|ZNF710-	AS1,	AC073195.2|AATBC)	being	 in-
cluded in a Cox proportional hazards model (Figure 3C,D).

RiskScore =

∑n

i=1
Coef(i) ∗ E(i)
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3.3  |  Clinical evaluation using the risk 
assessment model

According	 to	Kaplan–	Meier	analysis,	 the	patients	 in	 the	 low-	risk	
group survived for significantly longer than the patients in the 
high- risk group (Figure 4A–	C).	The	riskScores	and	survival	of	these	
cases are shown in Figure 4G–	I	and	4J–	L. The results showed that 
the low- risk group had a significantly better clinical outcome 
than the high- risk group. Next, in the time- dependent ROC curve 

analysis,	the	area	under	the	curve	(AUC)	of	OS	for	1,	3,	and	5	years	
was	 0.777,	 0.827,	 and	 0.866	 in	 the	 training	 group	 (Figure 4D);	
0.692,	0.681,	and	0.675	(Figure 4E)	in	the	testing	group;	and	0.748,	
0.763,	 and	 0.781	 (Figure 4F)	 in	 the	 whole	 cohort,	 respectively,	
which	further	confirmed	the	validity	of	our	results.	Finally,	univari-
ate (Figure 5A–	C)	and	multivariate	Cox	regression	analyses	in	both	
the training and validation groups showed that age and riskScore 
were independent prognostic predictors of OS in the training set 
and the whole cohort (Figure 5D,5F),	but	only	the	riskScore	was	

F I G U R E  1 Workflow	of	the	present	study

F I G U R E  2 Identification	of	differentially	expressed	immune-	related	lncRNAs	(DEirlncRNAs)	and	ferroptosisrelated	lncRNAs	
(DEfrlncRNAs)	from	TCGA	data	and	Ensembl-	based	annotation.	(A)	DEirlncRNAs	shown	on	a	volcano	plot	(B)	DEfrlncRNAs	shown	on	a	
volcano	plot.	(C)	Intersection	of	the	two	sets	of	DElncRNAs
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an independent prognostic predictor in the testing set (Figure 5E).	
Multi-	index	 ROC	 analysis	 was	 performed	 for	 further	 validation	
(Figure 5G–	I).	The	areas	under	the	curves	in	the	training	set,	the	
testing	 set,	 and	 the	whole	cohort	were	0.777,	0.692,	and	0.748,	
respectively.

3.4  |  Analyses of tumor- infiltrating immune cells, 
immunosuppressive molecules, and ADC targets 
using the risk assessment model

Immune-	related	 genes	 and	 lncRNAs	 are	 interrelated;	 therefore,	
we explored the association between the model and the tumor 
immune microenvironment. The “infiltration_estimation_for_tcga.
csv” data file was downloaded from Timer database. We then 

performed correlation analysis utilizing Spearman analysis. The 
results showed that the high- risk group was positively associ-
ated with tumor- infiltrating immune cells, including monocytes, 
fibroblasts, and macrophages, but negatively related to CD4+ T 
cells and CD8+ T cells (Figure 6A).	 ICIs	comprise	very	 important	
treatments	for	patients	with	BLCA	in	clinical	practice;	therefore,	
we assessed whether the model was associated with ICI- related 
biomarkers. The results showed that high- risk Scores correlated 
positively	with	high	expression	levels	of	the	gene	encoding	CD274	
(also	known	as	PD-	L1)	 (p <	0.05,	Figure 6B);	however,	there	was	
no significant relation between the riskScores and the expression 
levels	of	PDCD1	(also	known	as	PD-	1)	(Figure 6C).	Antibody-	drug	
conjugates represent a class of emerging therapeutics; therefore, 
we also investigated whether the model associated with relevant 
biomarkers. The results showed that low riskScores correlated 

F I G U R E  3 Establishment	of	the	Risk	Assessment	Model	using	DE-	IFRL	Pairs	(A,	B)	The	60	pairs	of	prognostic	lncRNAs	were	used	to	
construct	a	LASSO	Cox	regression	model,	and	the	partial	likelihood	deviance	incorporating	10-	fold	cross-	validation	was	used	to	derive	the	
tuning parameter (λ).	In	the	plot,	the	vertical	black	line	indicates	an	optimal	log	λ.	(C,	D)	Results	of	(C)	univariate	and	(D)	multivariate	Cox	
regression	analyses	of	lncRNA	pairs	involved	in	the	model
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positively with high expression levels of the gene encoding Erb- 
B2	 receptor	 tyrosine	 kinase	 2	 (ERBB2,	 also	 known	 as	 HER-	2)	
(p < 0.001, Figure 6D)	and	nectin-	4	(p < 0.001, Figure 6E).

3.5  |  Analysis of the correlation between the risk 
model and chemotherapeutics

We attempted to discover the association between the riskScore 
and the efficacy of commonly used chemotherapeutic and targeted 
drugs. The results showed that a high- risk Score was associated with 
a	 lower	 IC50	value	for	Docetaxel	 (p <	0.001),	cisplatin	 (p <	0.001),	

and	 Pazopanib	 (p <	 0.001),	 which	 suggested	 that	 the	 developed	
model could be used to predict chemotherapeutic drug sensitivity 
(Figure 7A–	C).	In	the	case	of	metformin,	the	IC50	in	the	low-	risk	group	
was lower than that in the high- risk group (p < 0.001, Figure 7D).

4  |  DISCUSSION

Immunotherapy	of	a	considerable	proportion	of	patients	with	BLCA	
is limited by immune invasion. In fact, recent studies have shown 
that, in vitro, macrophages effectively engulf ferroptotic cancer cells, 
supporting the existence of "find me" and "eat me" signals.40,41 The 

F I G U R E  4 Validation	of	the	Risk	Assessment	Model	(A,	B,	C)	Kaplan–	Meier	tests	in	training	set	(A),	the	testing	set	(B),	and	the	whole	
cohort	(C).	(D,	E,	F)	time-	dependent	ROC	analysis	of	risk	scores	based	on	1-	,	3-	,	and	5-	year	OS	in	the	raining	set	(D),	the	testing	set	(E),	and	
the	whole	cohort	(F).	(G-	L)	Risk	scores	of	each	case	and	Survival	outcome	of	each	case	in	the	training	set	(G,	J),	testing	set	(H,	K),	and	the	
whole	cohort	(I,	L)
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critical steps in the interaction between ferroptotic cancer cells and 
the immune system are phagocytosis, migration, maturation, antigen 
processing, and cross- presentation by DCs.42	Previous	research	in-
dicated	that	PGE2	metabolism	in	the	bladder	cancer	promoted	the	
formation of immunosuppressive tumor- supporting microenviron-
ment and could induct ferroptosis in cancer cells.19,20 Therefore, we 
speculate that ferroptosis that happened in the tumor microenviron-
ment has a negative impact on the antitumor immunity of bladder 
cancer patients and the model constructed by ferroptosis/immune 
lncRNA	would	have	better	prediction	ability	for	the	prognosis	of	pa-
tients and the response of medicine.

Recently, to assess the prognosis of patients with tumors, re-
searchers have focused on establishing signatures based on cod-
ing	genes,	non-	coding	RNAs,	 and	non-	coding	RNA	pairs,25–	28,43–	54 
most	of	which	are	based	on	 the	quantification	of	gene	expression	
levels.	Moreover,	most	of	them	were	associated	with	either	immune-	
related	or	ferroptosis-	related	RNAs.	Herein,	we	used	a	strategy	of	
immune-	related	and	ferroptosis-	related	lncRNA	pairing	to	construct	

a valuable model that does not depend on their detailed expression 
level. The results are basically consistent with our expectations 
above.

First,	 TCGA	 raw	 data	 were	 used	 to	 identify	 DEirlncRNAs	
and	 DEfrlncRNAs.	 After	 determining	 the	 intersection	 of	 the	 two	
DElncRNAs	 sets,	 an	 improved	method	 comprising	 a	 0-	or-	1	matrix	
and	cyclical	single	pairing	was	utilized	to	validate	the	lncRNA	pairs.	
Second,	univariate	analysis	 together	with	modified	LASSO	regres-
sion (including random simulation, multiple repeats, and cross val-
idation)	were	 used	 to	 determine	 the	 intersecting	 pairs.	 Third,	 the	
obtained formula was used to evaluate the riskScores, and cases 
were divided into low- and high- risk groups according to the median 
riskScore.	Subsequent	 reassessment	and	validation	of	 the	 survival	
outcome and analysis of clinicopathological characteristics showed 
that the developed model worked well.

It is reported that the response to anti- checkpoint blockades is 
affected by the intertumoral infiltration of immune cells. To deter-
mine the relationship between tumor- infiltrating immune cells and 

F I G U R E  5 Use	of	the	risk	assessment	model	for	clinical	evaluation.	(A-	F)	Results	of	Univariate	Cox	and	Multivariate	Cox	analysis	showing	
the	relationship	of	the	risk	score	and	clinical	variables	including	age,	sex,	and	TNM	stage	to	overall	survival	(OS)	in	the	training	set	(A,	D),	the	
testing	set	(B,	E),	and	the	whole	cohort	(C,	F);	(G-	I)	multi-	index	ROC	curve	analysis	of	the	signature	demonstrated	that	the	areas	under	the	
curves	in	the	training	set,	the	testing	set,	and	the	whole	cohort	were	0.777,	0.692,	and	0.748,	respectively
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risk	scores,	seven	methods	were	used,	including	TIMER,	CIBERSORT,	
XCELL,	 QUANTISEQ,	 MCPcounter,	 EPIC,	 and	 CIBERSORT-	ABS.	
Comparisons among the algorithms are rarely performed because of 
their various limitations and complexities. Our results showed that 
the high- risk group was associated with certain tumor- infiltrating 
immune cells, including neutrophils, myeloid dendritic cells, macro-
phages, and monocytes.

In recent years, the role of ferroptosis in immunotherapy has 
aroused much interest. In one study of immunotherapy- associated 
cytokines, the authors observed that inducers of ferroptosis had 
impact on the differentiation of melanoma cells and affected the 
antitumor efficacy of immunotherapy.55 Certain physiological pro-
cesses induced by ferroptosis could, to some extent, activate innate 
immunity.56 Wu's study found that patients with bladder cancer in 
the	high-	risk	group	of	 the	 irlncRNA	signature	had	high	expression	

of	MSH6	 (MutS	 homolog	 6)	 and	MHL1	 (MutL	 homolog	 1),	 a	 low	
TMB,	 and	 low	 expression	 of	 programmed	 cell	 death	 1	 (PD-	1)	 and	
programmed	cell	death	1	ligand	1	(PD-	L1).27 Research on hepatocel-
lular carcinoma showed that the signature correlated with immune 
checkpoint-	related	 biomarkers	 such	 as	 CTLA4	 and	 HAVCR2,	 but	
not	PD-	1	and	LAG3.57 Our study identified positive associations be-
tween	the	riskScore	and	PD-	L1	gene	expression.	This	suggested	that	
the combined use of ferroptosis- related drugs with ICIs in the high- 
risk	group	would	benefit	patients.	Antibody-	drug	conjugates	(ADCs)	
represent a new therapeutic modality in urothelial cancer58	.	ADCs	
targeting nectin- 4 were approved to treat bladder cancer in 2019 
by	the	FDA58	and	an	ADC	targeting	HER-	2	was	approved	 in	2021	
by	the	CSCO	Guideline	depending	on	the	C005	research	study59 . 
Recent research showed that the expression of Nectin- 4 and HER- 2 
are related to ferroptosis60–	62 . Other studies have explored the 

F I G U R E  6 Use	of	the	risk	assessment	model	to	estimate	tumor-	infiltrating	cells,	immunosuppressed	molecules,	and	ADC	targets.	(A)	
Spearman correlation analysis showing that tumor- infiltrating immune cells such as neutrophils, monocytes, fibroblasts, and macrophages, 
were associated positively with patients in the high- risk group, whereas these patients were associated negatively associated with CD4+ T 
cells	and	fibroblasts.	(B,	C)	The	upregulated	level	of	CD274	correlated	positively	with	high-	risk	scores	(C),	whereas	the	expression	level	of	
PDCD1	was	not	different	among	the	groups	(B).	(D,	E)	Upregulated	level	of	ERBB2	(D)	and	nectin-	4	(E)	correlated	positively	with	low-	risk	
scores. *p <	0.05;	**p < 0.01; ***p < 0.001
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design	of	PD-	L1	ADCs63,64 . Our study indicated that the expression 
of Nectin- 4 and HER- 2 was increased significantly in the low- risk 
group compared with that in the high- risk group, which showed the 
ability	of	the	model	to	predict	the	sensitivity	of	ADCs.

However,	the	present	research	had	several	limitations.	First,	the	
raw	 dataset,	 which	 was	 simply	 downloaded	 from	 the	 TCGA,	 was	
comparatively insufficient and we have only performed internal val-
idation. Hence, external validation and additional prospective inves-
tigations are needed to validate the predictive power of our model. 
Second, we did not retrieve datasets for the other information, such 
as	clinicopathological	characteristics,	lncRNA	expression	levels,	and	
survival outcomes at the same time. Third, although the signature 
was	 constructed	 using	 lncRNA	 pairs,	 fresh	 samples	 and	 prospec-
tive	experimental	research	are	required	to	validate	these	lncRNAs.	
Finally,	the	biological	functions	of	the	lncRNAs	making	up	the	prog-
nostic signature need to be explored in detail in bladder cancer.

5  |  CONCLUSION

In	 the	present	work,	we	 constructed	 an	 irlncRNAs	and	 frlncRNAs	
signature	that	was	independent	of	the	expression	levels	of	lncRNAs.	
The signature could be used for prognosis prediction in patients 
with	 BLCA	 and	 could	 facilitate	 decisions	 regarding	whether	 a	 pa-
tient	might	 respond	 to	BLCA	 immunotherapy	 and	ADCs	 targeting	
Nectin- 4 and HER- 2.
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