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Internalization of bacteria into mammalian host cells has
been studied extensively in the past two decades. These
studies have highlighted the amazingly diverse
strategies used by bacterial pathogens to induce their
entry in non-phagocytic cells. The roles of actin and
of the whole cytoskeletal machinery have been
investigated in great detail for several invasive
organisms, such as Salmonella, Shigella, Yersinia and
Listeria. Recent results using Listeria highlight a role for
the endocytosis machinery in bacterial entry, suggesting
that clathrin-dependent endocytic mechanisms are also
involved in internalization of large particles. This
contrasts with the generally accepted dogma but agrees
with previous studies of bacterial and viral infections
and also of phagocytosis.

Introduction
The plasma membrane is a dynamic structure that sepa-
rates the intracellular compartment from the extracellular
milieu and enables communication between the cell and its
environment. Ions and small molecules, such as amino
acids and sugars, can traverse the plasma membrane
through membrane channels. Macromolecules and larger
structures enter cells by endocytosis, which is defined as
the uptake by invagination and pinching-off of portions of
the plasma membrane containing lipids and membrane
proteins, extracellular ligands and/or soluble molecules
[1–3]. Several types of endocytosis have been described,
differing in the size of the endocytic vesicle, the nature of
the cargo and the mechanism of vesicle formation. They
include phagocytosis, macropinocytosis, clathrin-mediated
endocytosis, caveolin-mediated endocytosis and clathrin-
and caveolin-independent endocytosis [1].

Phagocytosis is restricted to ‘professional phagocytes’,
such as neutrophils, macrophages or dendritic cells,
whereas the other internalization events occur in almost
all cell types. Both phagocytosis and macropinocytosis
produce extensions of the plasma membrane, driven by
actin polymerization, whereby cells engulf particles and/or
extracellular fluid. The other entry processes have long
been considered to be actin-independent events.

Clathrin-mediated endocytosis is the major process by
which transmembrane proteins are internalized from the
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plasma membrane. It starts at the so-called coated pits,
which are formed by the assembly of clathrin on the cyto-
plasmic side of the plasma membrane. Transmembrane
proteins are selectively recruited to these coated pits by
binding to clathrin adaptors or other coat-associated pro-
teins. The coated pit then pinches off from the membrane
and forms a coated vesicle inside the cell [4]. Clathrin in
coated vesicles is structured as a triskelion, formed by three
heavy (192 kDa) and three light (25–29 kDa) chains that
bind to each other in a polyhedral lattice [5]. Data from
in vitro reconstitution studies and models of clathrin
triskelion suggest that clathrin can support the entry of
vesicles with a maximal diameter of 120 nm [6–8]. This led
to the dogma that particles with a diameter larger that
120 nm cannot enter cells by clathrin-mediated endocytosis
[1]. In addition to enabling the entry of macromolecules
(e.g. low density lipoprotein, a2 macroglobulin or growth
factor receptors), clathrin-mediated endocytosis is a well
documented portal of entry for a large number of viruses
(e.g. influenza viruses, adenoviruses, vesicular stomatitis
virus (VSV), reoviruses, Semliki forest virus, Ebola virus,
SARS coronavirus or hepatitis B and C viruses) to invade
host cells [9–14].

Invasive bacteria, like viruses, induce their own uptake
by non-phagocytic host cells. In this intracellular niche,
bacteria are protected from hostile events occurring in the
extracellular environment, such as complement deposition
or antibody binding. They can then multiply and invade
neighbouring cells after direct cell-to-cell spread or after
cell lysis. Invasive bacteria can be separated into two well-
differentiated groups on the basis of their entry mechan-
isms, the ‘zipper’ and the ‘trigger’ mechanisms (Box 1). The
entry of Listeria monocytogenes, Yersinia pseudotubercu-
losis and other pathogenic bacteria that invade host cells
by the zipper mechanism is triggered by the interactions
between bacterial surface-exposed proteins and cellular
receptors. For example, the Listeria proteins InlA and
InlB interact with cellular E-cadherin (an adhesion pro-
tein) and Met (also known as hepatocyte growth factor
(HGF) receptor), respectively, and Yersinia invasin binds
to b1-integrins. These interactions induce signalling
cascades that result in the activation of the actin cytoske-
leton and relatively small membrane extensions that zip
around the bacterium and engulf it [15]. Salmonella and
Shigella are the paradigms of bacteria that use the second
d. doi:10.1016/j.tcb.2006.08.005
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Box 1. The zipper and trigger models

The zipper mechanism

Listeria (Figure Ia, top), Neisseria and Yersinia are examples of

bacteria that enter using the zipper mechanism. These bacteria

express proteins on their surfaces that interact with cellular receptors,

initiating signalling cascades that result in close apposition of the

cellular membrane around the entering bacteria (Figure 1a, bottom).

Actin polymerization and modest membrane extensions finally lead

to bacterial internalization. For example, the listerial protein InlB

interacts with Met, promoting Met auto-phosphorylation, the recruit-

ment of the protein adaptors Gab1, Cbl and Shc and activation

phosphatidylinositol 3-kinase (PI 3-kinase) and the small GTPase

Rac, which in turn promotes actin polymerization through the

actin-binding Arp2/3 and Wave complexes. This interaction of InlB

with Met also promotes ubiquitination of the receptor and the

recruitment of the clathrin-dependent endocytic machinery, including

clathrin and dynamin, to the bacterial entry site. Finally, bacteria are

endocytosed in a clathrin-coated vesicle. It is possible that actin

polymerization is also associated with the endocytic machinery in an

Arp2/3-independent manner, as it has been shown that the actin-

binding protein cortactin and CD2AP are important for Listeria

internalization.

The trigger mechanism

Shigella (Figure Ib, top) and Salmonella are the best-studied

examples of bacteria entering cells using the trigger mechanism.

These bacteria bypass the necessity to bind to a cellular receptor and

use type III secretion systems to inject protein effectors that interact

with the actin cytoskeleton. Type III secretion systems are complex

protein machineries that enable the secretion of bacterial effectors

directly from the bacterial cytoplasm into the cellular cytosol. The

injected bacterial effectors promote massive actin polymerization and

formation of macropinocytic membrane extensions loosely attached

to the bacteria, and which eventually lead to bacterial internalization.

For example, the Shigella protein IpaC triggers actin polymerization

directly or in a manner dependent on the small GTPases Cdc42 and

Rac. The Shigella effector VirA, which binds to tubulin hetero-

oligomers and inhibits microtubule formation, can indirectly promote

actin polymerization. Shigella infection also promotes the activation

of the kinases Abl and Arg and phosphorylation of the adaptor protein

Crk, which can activate Cdc42 and Rac in a process similar to that

observed in filopodia formation. Another Shigella effector, IpgD,

hydrolyzes phosphatidylinositol (4,5)bisphosphate (PIP2) to phospha-

tidylinositol (5) phosphate (PIP) and disconnects cortical actin from the

membrane [74].

Figure I. (a) A scanning electron microscopy image (top) of a L. monocytogenes bacterium entering an epithelial cell. Reproduced with permission from [73]. The

diagram below shows a model of the signalling produced by the interaction of listerial protein InlB with Met. (b) A scanning electron micrograph (top) of a Shigella

bacterium entering into an epithelial cell. The diagram below is a representation of the signalling cascades produced during Shigella invasion. Green circles represent

actin.
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mechanism of entry, the trigger mechanism. Bacteria in
this group actively inject effectors into the host cytoplasm
using a specialized secretory apparatus, the type III secre-
tion system. Some of these bacterial effectors modulate the
actin cytoskeleton, producing massive polymerization of
actin and membrane ruffling. This results in the formation
of pseudopods loosely attached to bacteria, that enable
bacterial internalization in a process similar to macropi-
nocytosis [15,16]. The two entry pathways share a require-
ment for actin polymerization.

For many years, drugs that interfere with the actin
cytoskeleton (e. g. cytochalasin D) have been used as tools
to distinguish between clathrin-dependent endocytosis and
phagocytosis. It was generally thought that clathrin-
mediated endocytosiswas actin-independent (see, for exam-
ple, Ref. [17]). As bacteria require the participation of the
actin cytoskeleton to enter into host cells [15,16], and as the
size of the vesicle harbouring a bacterium far exceeds the
maximal size expected for a clathrin-coated vesicle, the
hypothesis was that bacteria enter into non-phagocytic cells
by phagocytic-likemechanisms.However, receptors used by
zippering bacteria to enter into cells (e.g. Met, E-cadherin
and integrins) can be endocytosed by a clathrin-dependent
mechanism, and an increasing number of articles start to
point to the necessary role of actin cytoskeleton in clathrin-
mediated endocytosis [3,18,19]. The requirement of the
actin cytoskeleton was therefore not incompatible with
the participation of clathrin-dependent endocytosis in
bacterial entry. Challenging the dogma, it has been shown
that Listeria invade non-epithelial cells by hijacking the
clathrin-dependent endocytic machinery. There are also
data implicating clathrin-mediated uptake for several other
Figure 1. Localization of clathrin and dynamin at L. monocytogenes entry sites into He

red. (b) Extracellular bacteria are in blue, total bacteria and the cellular nucleus in gre

surrounding bacteria that are entering the cell. Reproduced with permission from Ref.
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bacteria. Here, we discuss the possible role of clathrin-
mediated endocytosis in bacterial entry.

A shift in paradigm, the Listeria model
Listeria monocytogenes is a Gram-positive bacterium
responsible for listeriosis, a severe human infection with
an overall 30%mortality rate. The clinical features include
severe gastroenteritis, mother-to-child infections and
central nervous system infections. L. monocytogenes can
cross the intestinal, blood–brain and placental barriers.
L monocytogenes is a facultative intracellular pathogen
and can invade and replicate in epithelial cells and macro-
phages [15,20]. As mentioned earlier, two bacterial pro-
teins involved in entry have been described: InlA, which
interacts with E-cadherin on epithelial cells, and InlB, a
surface protein that enables L. monocytogenes to enter into
most non-phagocytic cells by interaction with its cellular
receptor Met. Met belongs to the receptor tyrosine kinase
(RTK) family and is involved in diverse cellular functions,
such as scattering, invasion, proliferation, morphogenesis
and angiogenesis. It is also implicated in a large number of
human tumours, correlating closely with metastasis and
poor prognosis [21,22]. These tumorigenic activities occur
when Met is overexpressed or when Met signalling after
ligand (HGF) binding is not down-regulated [23]. The
normal way used by cells to stop signalling downstream
ofMet and other RTKs is the ligand-dependent endocytosis
and subsequent degradation of the activated receptor
[21,23].

Interaction of Met with soluble InlB results in the
clathrin-dependent endocytosis of Met [24,25]. As observed
by immunofluorescence, clathrin and dynamin, the major
La cells. (a) Extracellular bacteria are in blue, total bacteria in green and clathrin in

en and dynamin in red. The merged images clearly show clathrin and dynamin

[15].
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proteins involved in clathrin-dependent endocytosis [1],
localize at bacterial entry sites (Figure 1 and see the
supplementary material online) [25]. Cbl, the ubiquitin
ligase responsible for ubiquitination and subsequent
endocytosis of Met and other growth factors [26–29], also
localizes at bacterial entry sites [25]. The possible role in
bacterial entry of the major proteins involved in the cla-
thrin-dependent endocytosis of growth factor receptors,
including clathrin heavy chain, dynamin and Cbl, was
tested by small interfering RNA (siRNA), which resulted
in great reduction in bacterial entry [25]. Moreover, the
relevance of other components of the endocytic machinery,
such as growth factor receptor-binding protein (Grb2),
epidermal growth factor pathway substrate 15 (eps15),
Cbl-interacting protein of 85 kDa (CIN85) and CD2 asso-
ciated protein (CD2AP), all of which are proteins necessary
for ligand-induced endocytosis of receptor tyrosine kinases
[2,19,30,31] during bacterial entry was shown by siRNA
knock-down. Decreased expression of these proteins
strongly inhibited L. monocytogenes entry [25], demon-
strating a major role of the clathrin-dependent endocytic
machinery during L. monocytogenes infections.

Bacteria might therefore use the clathrin-dependent
endocytosis machinery to enter non-phagocytic cells, chal-
lenging established ideas about the maximum size per-
mitted for a clathrin-coated vesicle. Note that Listeria is a
bacillus reaching 2–6 mm in length.

Clathrin and other bacteria
Several other pathogenic bacteria entering by the zipper
mechanism recognize membrane receptors that are sus-
ceptible to being endocytosed. A possible role of clathrin in
the entry of such bacteria had been suggested, reinforcing
the data obtained with Listeria and leading to the conclu-
sion that a role for clathrin-dependent endocytosis in
bacterial entry is probably the rule rather than the
exception.

Yersinia pseudotuberculosis

Yersinia pseudotuberculosis, a Gram-negative enteroinva-
sive bacterium, enters nonphagocytic cells by the interac-
tion between a bacterial surface protein called invasin and
host b1-integrins [32]. Expressing the inv gene (encoding
invasin) confers to non-pathogenic Escherichia coli (E. coli
inv+) the ability to enter into non-phagocytic cells, mimick-
ing the entry of Y. pseudotuberculosis [33]. Electron micro-
scopy (EM) studies show that invasion of epithelial cells by
E. coli inv+ occurs through electron dense structures
resembling clathrin-coated vesicles [34]. In addition, potas-
sium depletion, which has been shown to inhibit clathrin-
mediated endocytosis [35], also inhibits bacterial entry
[34]. Moreover, microinjection into host cells of antibodies
against clathrin or AP2 (the major clathrin adaptor in the
plasma membrane [36]) also inhibits bacterial entry [34].
Together, these results point to a role for the endocytosis
machinery in Yersinia invasion.

Rickettsiae

Rickettsiae are obligate intracellular Gram-negative bac-
teria with a life cycle that includes an arthropod vector and
mammalian hosts. The ubiquitous protein Ku70 has been
www.sciencedirect.com
recently identified as a cellular receptor used by Rickettsia
conorii to infect mammalian host epithelial cells [37]. In
the same study, the ubiquitin ligase Cbl was shown to
localizewithR. conorii during entry. Knocking downCbl by
siRNA inhibits bacterial internalization, suggesting a role
for clathrin-dependent endocytosis in R. conorii invasion
similar to that observed in L. monocytogenes.

Other bacteria

Data coming from studies using drugs inhibiting endocy-
tosis and microscopy studies also suggest a possible role of
clathrin-dependent endocytosis in the entry of E. coli [38–
41], Staphylococcus aureus [42,43], Streptococcus pneumo-
niae [44,45], Streptococcus dysgalactiae [46], Ehrlichia
risticii [17,47], Brucella abortus [48], Klebsiella pneumo-
niae [49], Legionella pneumophila [50], Campylobacter
jejuni [51] andCitrobacter freundii [51].More controversial
is the role of clathrin-dependent endocytosis in Neisseria
and Chlamydia invasion.

Neisseria gonorrhoeae, the etiologic agent of the sexu-
ally transmitted disease gonorrhoea, can infect epithelial
cells by binding to the asialoglycoprotein receptor (ASGPR)
[52]. Endocytosis of ASGPR is clathrin-dependent and
bacteria localize with clathrin and ASGPR during entry.
In addition, monodansylcadaverine, which inhibits cla-
thrin-dependent endocytosis, inhibits bacterial entry in
such cells [53]. However, other studies show that treat-
ment of epithelial cells with monodansylcadaverine had
very weak or no effect on N. gonorrhoeae entry, and no
clathrin was observed in the N. gonorrhoeae entry sites
[54].

Chlamydiae are Gram-negative obligate intracellular
bacteria involved in a wide spectrum of human and other
vertebrate diseases. EM studies show that Chlamydia
psittaci and Chlamydia trachomatis enter epithelial cells
using clathrin-coated pits [55–57]. In these studies, the
infective forms of Chlamydia, called elementary bodies,
were observed at coated pits and coated vesicles, and anti-
clathrin immunostaining indicated the presence of clathrin
at the bacterial entry sites [56]. However, EM studies of
Chlamydia invasion failed to find clathrin-coated pits
associated with entry of the bacterium, and monodansyl-
cadaverine had no effect on invasion [58].Moreover, in cells
expressing mutants of dynamin (dynamin I K44A) and of
Eps15 (Eps15 D95–295) [59], which inhibit clathrin-depen-
dent endocytosis [60,61], the entry of C. trachomatis
remained unaffected [59], suggesting a clathrin-indepen-
dent entry. These conflicting reports on the role of clathrin-
dependent endocytosis suggest that Neisseria and
Chlamydia could use different and alternative entry path-
ways; some of these could be clathrin-dependent and some
not, probably depending on the receptor engaged.

Conclusion
Taken together, these data indicate that bacteria can use
clathrin-dependent endocytosis as a mechanism to enter
host cells. Thus, endocytosis clearly supports entry of
particles larger than 1 mm, an observation that has broad
implications for cell biology, immunology and infectious
disease processes. The fact that clathrin can enable the
entry of large vesicles was supported by EM studies of viral



Figure 2. Image of a bead being phagocytosed revealing a large clathrin

basketwork immediately below the advancing lip of a nascent phagosome. The

scale bar represents 0.2 mm. Reproduced with permission from Ref. [65].
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infections of epithelial cells, showing viral particles
(VSV, influenza, parvovirus) in clathrin-coated pits or
vesicles larger that 120 nm [62–64].

The role of clathrin in the internalization of large
particles was also pointed out many years ago in studies
of latex bead internalization in macrophages using the
deep-etch replica technique [65,66]. These studies clearly
showed clathrin lattices surrounding phagocytosed beads
(Figure 2). However, the role of clathrin-mediated endocy-
tosis in phagocytosis has remained controversial, and no
role for clathrin was found in the phagocytosis of immu-
noglobulinG-coated particles larger than 3 mm [67].

Our view on endocytosis is continuously changing, and
further studies of pathogen–host interactions will probably
contribute to a better understanding of how cells commu-
nicate with their environment. Bacteria, or beads coated
with ligands of cellular receptors, could be used as tools to
understand the basic mechanisms of endocytosis. As bac-
teria or coated beads are larger than soluble macromole-
cules, they can be detected easily and the proteins involved
can be spatially and temporally followed.

Given that the interactions between bacterial proteins
with their cellular receptors are highly specific, the pre-
sence of the receptors determines which cell types and
species are susceptible to a given pathogen. The efficiency
of invasion processes, as well as the exact mechanism of
uptake used by each bacterium, depends mainly on the
specific receptor engaged, which is unknown for the major-
ity of pathogens. The shape of the pathogen could also have
a role in bacterial endocytosis, as has been shown during
phagocytosis [68].

In agreement with results showing that the time
required to complete the assembly of the endocytic complex
is proportional to the size of cargo molecules [69], Listeria
using the InlB-Met pathway or InlB-coated beads take
www.sciencedirect.com
4 min to enter epithelial cells (our unpublished results),
which is longer than the endocytosis of macromolecules. It
is thus possible that other bacteria that are far larger than
macromolecules also take more time to enter into host
cells. This prolonged internalization time, versus a tran-
sient signal, could affect the signalling and trafficking of
the internalized particle.

The key issue that remains unsolved is the architecture
of clathrin around entering bacteria. It is known that in
endosomes there are zones of flat or irregular clathrin [70–
72]. Thus, it could be possible that clathrin assembles as
flat layers at the entry sites of bacteria and then cover the
invaginating membrane, as previously shown for entering
beads (Figure 2) [65]. This point deserves further
investigation.

Supplementary material
Supplementary videos associated with this article can be
found online at doi:10.1016/j.tcb.2006.08.005.
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