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Abstract: As a promising third-generation semiconductor, β-Ga2O3 is facing bottleneck for its p-type
doping. We investigated the electronic structures and the stability of various Cu doped structures of
β-Ga2O3. We found that Cu atoms substituting Ga atoms result in p-type conductivity. We derived
the temperature and absolute oxygen partial pressure dependent formation energies of various
doped structures based on first principles calculation with dipole correction. Then, the critical
thermodynamic condition for forming the abovementioned substitutional structure was obtained.
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1. Introduction

Wide-bandgap semiconductors, also known as third-generation semiconductors, are
the future trend of material development. As a popular type of these semiconductors,
Gallium Oxide (β-Ga2O3) features a direct band gap of 4.9 eV [1], an absorption edge
of 250 nm [2], and a breakdown field of 8 MV/cm [3], which indicates a promising can-
didate in the fields of light-emitting diodes [4], deep-ultraviolet detectors [5], and the
integrated circuit [6,7]. While theoretical and experimental studies on n-type β-Ga2O3 are
relatively sufficient [1,8,9], the p-type doping is far away from successful, leading to major
impediment for application, which attracts great attention of researchers.

In order to obtain ideal p-type doping of β-Ga2O3, researchers have tried a variety of
impurity elements. Guo et al. studied the electronic structures of 10 non-metal elements
doped β-Ga2O3, such as C, N and F [10]; Kyrtsos et al. selected 9 metal element such as
Li, Na, K as a single substitution for a Ga atom [11], and results of these 2 works showed
that it was difficult to obtain the desired shallow acceptor dopant. Neal et al. carried out
experiments on four elements doping: Si, Ge, Fe, Mg. It was found that the doping of Si and
Ge could form shallow donors, while the doping of Fe and Mg formed deep acceptors [12].
Other similar studies also show that it is hardly possible to form p-type doping, when a
simple doping configuration is tried [13].

In view of this, researchers began to investigate the possibility of co-doping. In
β-Ga2O3 crystal, there are two different Ga-substituted sites, in addition to three different
interstitial sites, which indicates very diverse doped structures, especially when there
are more than one impurity atoms. Ma et al. studied five structures of Al-N, In-N co-
doping, and N doping, and found that the acceptor level of InGa − 2NO structure was the
lowest [14]. Li et al. investigated eight configurations of N-P co-doping and N or P doping,
and found that their defect energy level positions were obviously different, among them
the N1P2Ga2O3 configuration had the most potential to form p-type [15].

In the above N-P co-doping study, researchers also found that the gallium-rich environ-
ment was conducive to co-doping [15]. Stephan Lany studied the Si doping and Ge doping
β-Ga2O3, and found that doping concentrations and properties depended on temperature
and oxygen partial pressure [16]. Researchers usually assess the thermodynamic stability
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by calculating formation energy [17] or binding energy [18], and it means that chemicals
with lower formation energy (or higher binding energy) are easier to produce [19]. In
the research of ZnO, facing the similar dilemma with β-Ga2O3, Hou et al. calculated
formations of 16 structures of ZnO with Li doping to find the most stable one [20]; Jin et al.
studied eight structures of Li-doped ZnO, by considering the temperature and absolute
oxygen partial pressure dependent chemical potential, and found the p-type structure and
the required thermodynamic conditions, which is consistent with experiments [21].

Therefore, it is essential to consider different doping structures to find p-type structures
and analyze their thermodynamic stability. It is necessary to find the condition (temperature
and partial pressure of relevant gases) for these p-type structures to form, in order to be
helpful for experimentalists. Cu is most likely suitable for doping β-Ga2O3 because the
size of the Cu ion is close to that of the Ga atom. In this paper, we use the density functional
theory (DFT) to study Cu-doped β-Ga2O3. We consider different substitutional sites,
interstitial sites, and their coupling. We calculated their electronic structures to find the
p-type structure. Then, we calculated their formation energies as functions of temperature
and absolute oxygen partial pressure to compare the stabilities of these structures, and thus
find the thermal dynamic condition for the p-type structure to form.

2. Theory and Computational Details

In this paper, the DFT calculations are performed with Vienna Ab initio Simulation Pack-
age (VASP) [22], using the Generalized Gradient Approximation (GGA) exchange−correlation
functional [23], and Projector Augmented-Wave (PAW) method [24]. The cut-off energy for
the plane-wave expansion is set to 520 eV. Full relaxation of magnetization was performed
for spin-polarized calculations. All ions are relaxed till all forces acting on ions are smaller
than 0.001 eV/A and the total energy change between electronic self-consistent loops is
smaller than 10−4 eV. We use Monkhorst–Pack mesh K-points that vary from 5 × 5 × 5 to
2 × 2 × 2 depending on supercell size, in structure optimization and static energy calcu-
lation. When calculating density of states, we use a 15 × 15 × 15 K-points for 1 × 2 × 2
supercell. The symmetry of doped structures is assumed to be P1.

2.1. Dopant Formation Energy

The formation energy of the doped structure is:

Ef= Ed − Ep+nGa
(
EGa+µGa

)
−nCu

(
ECu+µCu

)
, (1)

where nGa (nCu) is the number of Ga (Cu) atoms removed from (added to) the supercell.
Ed (Ep) is the total energy of the doped (pure) β-Ga2O3. EGa (ECu) is the average energy
of each Ga (Cu) atom in bulk Ga (Cu). The above total energies and average energies are all
calculated with DFT. Chemical potential of Ga atom µGa is determined by that of O2 and Ga2O3:

µGa

(
T, pO2

)
=

1
2

µGa2O3

(
T, p0

)
− 3

4
µO2

(
T, pO2

)
, (2)

where:

µO2

(
T, pO2

)
= µO2

(
T, p0

)
+kBT ln

(
pO2

p0

)
, (3)

where p0= 1 bar, pO2 is the absolute oxygen partial pressure.

µGa2O3

(
T, p0

)
and µO2

(
T, p0

)
can be looked up in the references [25–27], coming

from experiment measurement. µCu(T) can also be looked up in the references [25–27], as
it varies with temperature. The chemical potential of Cu atom µCu is not relevant because
we fixed nCu = 2 in all the doped supercells, which means there are always two Cu atoms
in the supercell: either one substitutional Cu atom plus one interstitial Cu atom or two
substitutional Cu atoms or two interstitial Cu atoms.



Materials 2021, 14, 5161 3 of 9

2.2. Electric Dipole Correction

As the periodic boundary condition is applied in the DFT calculation, the long-range
electrostatic interactions among supercells will be counted into system energies, while this
interaction in real doped structures should be close to zero because the dopant concentra-
tion is very low in the experiments. Therefore, it is necessary to correct the electric dipole
interactions [21]. The interaction energy between two electric dipole moments is:

U =

⇀
p i·

⇀
p j − 3

(
⇀
p i·r̂ij

)(
⇀
p j·r̂ij

)
4πε0r3

ij
, (4)

where
⇀
p i·

(
⇀
p j

)
is the electric dipole moment of the i-th (j-th) supercell, r̂ij =

⇀
r /r is the

unit vector pointing from dipole i to dipole j, ε0 is the dielectric constant of vacuum.
In our dipole correction work, we assume that the dipole in each supercell is the same
(
⇀
p i =

⇀
p j =

⇀
p ), and we calculate the sum of interaction energies among supercells in the

501 × 501 × 501 range around the central one, in order to correct the system energy.

3. Results and Discussion

Ga atoms in a β-Ga2O3 cell are located at two different sites, which are named sites
1 and 2, respectively, and a Cu atom will be named Cu1 (Cu2) when it substitutes at site
1 (2), as illustrated in Figure 1a,b. There are three different interstitial sites which are
named sites A, B, and C, respectively, and an interstitial Cu atom is named CuA, CuB, or
CuC, respectively, when the Cu atom occupies these interstitial sites. There are two Cu
doping atoms near (N) or separated (S) with each other in each supercell.

Materials 2021, 14, x FOR PEER REVIEW 3 of 9 
 

 

in the supercell: either one substitutional Cu atom plus one interstitial Cu atom or two 
substitutional Cu atoms or two interstitial Cu atoms. 

2.2. Electric Dipole Correction 
As the periodic boundary condition is applied in the DFT calculation, the long-range 

electrostatic interactions among supercells will be counted into system energies, while this 
interaction in real doped structures should be close to zero because the dopant concentra-
tion is very low in the experiments. Therefore, it is necessary to correct the electric dipole 
interactions [21]. The interaction energy between two electric dipole moments is: 

U=
pሬ⃑ i.pሬ⃑ j−3൫pሬ⃑ i.r̂ij൯ ቀpሬ⃑ j.r̂ijቁ

4πεorij
3 , (4) 

where pሬ⃑ i (pሬ⃑ j) is the electric dipole moment of the i-th (j-th) supercell, r̂ij = r⃑/r is the unit 
vector pointing from dipole i to dipole j, ε0 is the dielectric constant of vacuum. In our 
dipole correction work, we assume that the dipole in each supercell is the same (pሬ⃑ i = pሬሬ⃑ j = 
pሬ⃑ ), and we calculate the sum of interaction energies among supercells in the 501 × 501 × 
501 range around the central one, in order to correct the system energy. 

3. Results and Discussion 
Ga atoms in a β-Ga2O3 cell are located at two different sites, which are named sites 

1 and 2, respectively, and a Cu atom will be named Cuଵ (Cuଶ) when it substitutes at site 
1 (2), as illustrated in Figure 1a,b. There are three different interstitial sites which are 
named sites A, B, and C, respectively, and an interstitial Cu atom is named CuA, CuB, or 
CuC, respectively, when the Cu atom occupies these interstitial sites. There are two Cu 
doping atoms near (N) or separated (S) with each other in each supercell. 

Firstly, we calculated 36 doped structures in an 80-atom supercell, and selected 18 struc-
tures with lower energy to perform calculations in larger supercells. Then, we sorted them 
into three types: two substitutional atoms, one substitutional atom plus one interstitial atom, 
and two interstitial atoms. For further investigation, we chose the most stable structure in each 
type: Cu2 + Cu2 − N (Figure 1c), CuB + Cu1 − N (Figure 1e) and CuC + CuC − N (Figure 
1f). 

 
Figure 1. The most stable and representative doping structures: (a) Cu1, (b) Cu2, (c) Cu2 + Cu2 −
N, (d) CuC, (e) CuB + Cu1 − N and (f) CuC + CuC − N. The red, green, and blue balls represent O, 
Ga, and Cu atoms, respectively. 

Figure 1. The most stable and representative doping structures: (a) Cu1, (b) Cu2, (c) Cu2+Cu2 − N,
(d) CuC, (e) CuB +Cu1 − N and (f) CuC+CuC − N. The red, green, and blue balls represent O, Ga,
and Cu atoms, respectively.

Firstly, we calculated 36 doped structures in an 80-atom supercell, and selected 18
structures with lower energy to perform calculations in larger supercells. Then, we sorted
them into three types: two substitutional atoms, one substitutional atom plus one in-
terstitial atom, and two interstitial atoms. For further investigation, we chose the most
stable structure in each type: Cu2+Cu2 − N (Figure 1c), CuB+Cu1 − N (Figure 1e) and
CuC+CuC − N (Figure 1f).
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3.1. Formation Energies vs. Supercell Size

We constructed 1 × 2 × 2, 1 × 3 × 2, 1 × 4 × 2, 2 × 3 × 2 and 2 × 4 × 2 supercells,
which correspondingly consist of 80, 120, 160, 240, and 320 atoms. In the case of one
substitutional Cu atom doping, the dopant concentrations are 1.25 at %, 0.83 at %, 0.62 at
%, 0.42 at %, and 0.31 at %, respectively.

Figure 2 shows the formation energies of some structures at 0 K (i.e., µGa= µCu= 0).
Obviously, the formation energies perform an overall trend that decreases with the de-
crease of dopant concentrations in the low concentration region. The formation energy of
interstitial doping changes more significantly with the concentration than the substitutional
one, and their dipole correction energies are also larger, especially for the CuC+CuC − N
structure. After electric dipole correction, we can find that the formation energy tends
to be constant in the low concentration region, which can be extended to the infinite size
supercell.
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Figure 2. Formation energies at 0 K with (open) or without (filled) dipole correction of two substi-
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and two interstitial Cu doped structures (c). Those of the structures with higher energy are shown
without dipole correction. The dotted line represents extending to the concentration of 0%.

3.2. Electronic Structure

We calculated the Band Structure (BS) and Projected Density of States (PDOS) of
Cu2+Cu2 −N, CuB+Cu1 −N and CuC+CuC −N, as well as those of the intrinsic β-Ga2O3.
The calculated intrinsic band gap is 2.30 eV, which is consistent with previous theoretical
results by standard DFT [28] and far from the experimental results [29], GGA + U [30,31]
or hybrid DFT. It is very common that band gap is underestimated by DFT, and it can
be improved by hybrid exchange-correlation functional or exchange-correlation energy
whose derivative of the density (or density matrix) with respect to the number of electrons
is discontinued at integers [32]. Our work focused on the relative positions of defect
levels among different structures of Cu doped β-Ga2O3, which always show a similar
conductivity type when different methods are used [33,34].

As shown in Figure 3a, the VBM of intrinsic β-Ga2O3 is mainly contributed by O-2p
orbit, while the VBMs (defect levels) of the doped structure (Cu2+Cu2 − N) are mainly
contributed by Cu-3d and O-2p orbit (Figure 3b). Pure β-Ga2O3 is nonmagnetic. According
to the PDOS (Figure 3b) and BS (Figure 4) of the Cu2+Cu2 −N structure, there are four spin
down defect levels above the Fermi level near the VBM. These defect levels are acceptors,
which implies the p-type conductivity.
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Figure 4. The band structure of the Cu2+Cu2 − N structure. The red and blue lines represent two
spin states, and the dashed line represents the Fermi level.

Figure 3c shows PDOS of the CuB + Cu1 − N structure. It has four defect levels of
spin up (all occupied) and four of spin down (two occupied). We can find many defect
levels that almost occupy the whole forbidden band, among which the one with the highest
energy is only 0.223 eV away from the CBM. So, it is impossible to form p-type or n-type
conductivity in this structure, due to the compensation between acceptors and donors.
As for the CuC+CuC − N structure (Figure 3d), which is nonmagnetic, the Fermi level is
raised to the conduction band, which shows that this structure is n-type.
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3.3. Critical Thermodynamic Conditions

Through the calculation of the electronic structures, we found that the p-type con-
ductivity can be obtained only in the Cu2+Cu2 − N structure. Therefore, it is of great
significance to calculate and analyze the thermodynamic stability of these structures in dif-
ferent conditions. We calculated the formation energies of Cu2 +Cu2 − N, CuB+Cu1 − N
and CuC+CuC − N structures, as a function of the absolute oxygen partial pressure, at
every 100 ◦C from 300 ◦C to 1500 ◦C, which is shown in Figure 5.
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As shown in Figure 5, at very low absolute oxygen partial pressure, the formation
energy of CuC +CuC − N (red line) is the lowest. CuB+Cu1 − N (black line) is the most
stable in a large range near the standard atmospheric pressure, which indicates that it will
become the dominant product under regular growth conditions. When the absolute oxygen
partial pressure is high enough, the Cu2 +Cu2 − N structure (blue line) is formed. It is
owed to the changes of chemical potential of Ga and O2. At a constant temperature, µO2

increases with the increase of absolute oxygen partial pressure (from the kBT ln
(

pO2 /p0)
term in Equation (3), and it means µGa decreases, which prompts the substitutional doping.

The intersection points of different lines in Figure 5 indicates the critical absolute
oxygen partial pressure, at which the dominant product changes from a structure to
another. Figure 6 shows critical oxygen partial pressures as a function of temperature. It
is a phase diagram of Cu2 +Cu2 − N (p-type), CuB+Cu1 − N (I-type) and CuC+CuC − N
(n-type). I-type semiconductor means the semiconductor in which the acceptors and donors
compensate each other. The critical oxygen partial pressure between Cu2+Cu2 − N and
CuB +Cu1 − N increases and then decrease with temperature due to two competitive
effects: (1) The difference between the standard chemical potential of Ga2O3 and O2

( 1
2 µGa2O3

(
T, p0

)
− 3

4 µO2

(
T, p0

)
) and thus the chemical potential of Ga (µGa) increases with

temperature, which suppresses (promotes) substitutional (interstitial) doping at higher
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temperatures; (2) On the other hand, the chemical potential of O2 increases significantly
with temperature when the absolute oxygen partial pressure is larger than 1 bar due
to the kBT ln

(
pO2 /p0) term in Equation (3), which promotes (suppresses) substitutional

(interstitial) doping in higher temperature. The former effect is more significant than the
latter when the temperature is lower than 900 K. Therefore, the critical oxygen partial
pressure between Cu2 +Cu2 −N and CuB +Cu1 −N increases with temperature when the
temperature is lower than 900 K. The latter effect is more significant than the former when
the temperature is higher than 900 K. Therefore, the critical oxygen partial pressure between
Cu2+Cu2 − N and CuB+Cu1 − N decreases with temperature when the temperature
is higher than 900 K. This nonmonotonic critical oxygen partial pressure is distinctly
different from the monotonic critical oxygen partial pressure for p-type ZnO formed with
Li doping [21]. The standard chemical potential of Ga2O3 and O2, as well as critical oxygen
partial pressures, are listed in Table 1. The reaction condition of 300 ◦C and absolute oxygen
partial pressure of 802 bar is the most convenient condition to obtain the p-type structure,
without considering the reaction rate.
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Figure 6. The phase diagram of Cu doped β-Ga2O3. Blue dots and lines represent the critical absolute
oxygen partial pressure between CuB+Cu1 − N and Cu2+Cu2 − N structures, corresponding to the

intersection point of black and blue lines in Figure 5, and it is named p(rich)
O2

. Red dots and lines
represent the critical absolute oxygen partial pressure between CuC +CuC − N and CuB +Cu1 − N,

corresponding to the intersection point of red and black lines in Figure 5, and it is named p(poor)
O2

.

Table 1. The standard chemical potential of Ga2O3 and O2, and critical absolute oxygen partial

pressures of structure transition between CuB+Cu1 − N and Cu2+Cu2 − N (p(rich)
O2

), between

CuC +CuC − N and CuB+Cu1 − N (p(poor)
O2

).

T/K. µGa2O3 /eV µO2 /eV p(poor)
O2

/bar p(rich)
O2

/bar

300 −11.556 −0.638 1.45 × 10−102 802
400 −11.660 −0.856 3.10 × 10−75 1.12 × 104

500 −11.790 −1.081 6.14 × 10−59 4.30 × 104

600 −11.944 −1.313 3.79 × 10−48 8.91 × 104

900 −12.515 −2.039 2.08 × 10−30 1.71 × 105

1200 −13.218 −2.802 9.43 × 10−22 1.45 × 105

1500 −14.022 −3.593 1.09 × 10−16 9.65 × 104

This absolute oxygen partial pressure is much higher than that of conventional
β-Ga2O3 growth [1], and much lower than that of phase equilibrium pressure between
β-and β-Ga2O3 [35].
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4. Conclusions

Based on DFT, we calculated Cu-doped β-Ga2O3 supercells, containing from 80 to
320 atoms, and used dipole correction to eliminate the influence of long-range electrostatic
interaction. Considering different substitutional and interstitial sites and distances of
impurity atoms, we found that Cu2+Cu2 − N structure is a p-type semiconductor through
the analysis of band structure and PDOS.

The stabilities of different doped structures depend on temperature and absolute
oxygen partial pressure. We calculated the formation energies in different conditions,
and found that the CuB+Cu1 − N structure, which is a I-type, is the easiest to form in
non-extreme conditions. By calculating the critical absolute oxygen partial pressure at
which the CuB +Cu1 − N structure transforms to the Cu2+Cu2 − N one, we can conclude
that an extremely high absolute oxygen partial pressure is required to make the p-type
Cu2+Cu2 − N structure the dominant product. A relatively easier reaction condition is the
absolute oxygen partial pressure of 802 bar at the temperature of 300 K without considering
the reaction rate.
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