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Abstract: Cisplatin (CDDP) is the drug of choice against different types of cancer. However, tumor
cells can acquire resistance to the damage caused by cisplatin, generating genetic and epigenetic
changes that lead to the generation of resistance and the activation of intrinsic resistance mechanisms
in cancer cells. Among them, we can find mutations, alternative splicing, epigenetic-driven expression
changes, and even post-translational modifications of proteins. However, the molecular mechanisms
by which CDDP resistance develops are not clear but are believed to be multi-factorial. This article
highlights a description of cisplatin, which includes action mechanism, resistance, and epigenetic
factors involved in cisplatin resistance.
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1. Introduction

Cancer is an important cause of morbidity and mortality worldwide, in every region,
and irrespective of the level of human development. It has been reported that in 2020,
about 9.9 million cancer deaths occurred worldwide. Studies indicate that new cancer
cases will increase from 19.3 to 28.4 million by 2040 [1,2]. Cancer pathology has genetic,
inflammatory, and metabolic components, which are presented by the sequential accu-
mulation of mutations in the genome and lead to the acquisition of the tumor phenotype
characterized by metabolic alterations, high proliferation rates, resistance to apoptosis, and
growth factor independence, among others [3]. Cancer originates from gathering molecular
alterations of genetic and/or epigenetic origin. These can be initiated by the accumulation
of genetic DNA damage, affecting the DNA sequence (such as mutations and chromosomal
rearrangements) or modifications in DNA, histones, and non-coding RNA that do not lead
to a change in the original sequence (epigenetic modifications) [4].

Cisplatin (cis-diamminedichloroplatinum (II), CDDP) is currently the treatment of
choice for many types of cancer [5–11]. Cisplatin exerts anticancer activity via multiple
mechanisms. Its most acceptable mechanism involves the formation of DNA–platinum
adducts by interacting with purine bases, activating several signal transduction pathways,
and silencing or activating several genes which finally leads to apoptosis. However,
side effects and drug resistance are the two inherent challenges of cisplatin that limit
its application and effectiveness. The reduction of drug accumulation inside cancer cells,
inactivation of drugs by reacting with glutathione and metallothioneins, and faster repairing
of DNA lesions are responsible for cisplatin resistance [12].

In addition, several studies have demonstrated the relationship between chemother-
apeutic resistance and the epigenetic processes associated with DNA and histone mod-
ifications, and gene expression regulation. This review summarizes the mechanism of
action and resistance to cisplatin, and the epigenetic factors associated with it, given the
importance of finding new biomarkers for chemotherapeutic resistance.
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2. Cisplatin: Mechanism of Action

Cisplatin is a neutral coordination complex with a central platinum (II) atom bonded
to two chloride atoms and two ammonia molecules in the cis position. The coordinated
covalent bonds of platinum with nitrogen are virtually irreversible, but their bonds with
chloride ligands, in aqueous media and under certain pH and temperature conditions, are
highly labile [13].

Cisplatin’s mechanism of action is initiated by the activation of the complex in the
intracellular medium by the hydrolysis of chloride molecules. The cisplatin molecule
hydrolyzes in the cytoplasm, and acts as a potent electrophilic agent, reacting with nucleic
acids and sulfhydryl groups of proteins [14,15]. However, the therapeutic target of this drug
is genomic and mitochondrial DNA. The covalent binding of CDDP to DNA via platinum
atoms, by intercalating between base pairs (mainly purines), generates so-called cisplatin–
DNA adducts. Platinum binds mainly through nitrogen at position 7 of the imidazole ring
of the guanine and adenine of the corresponding DNA nucleotides (2′-deoxyadenosine
5′-monophosphate, dAMP; and 2′-deoxyguanosine 5′-monophosphate, dGMP) since these
are the atoms with the highest electron density, and are most accessible to electrophilic
attack by cisplatin. Moreover, binding is particularly favored with guanines located in the
major groove of the DNA double helix [14,16,17]. As a consequence of the formation of
these DNA adducts, the DNA replication mechanisms will be inhibited and therefore effect
its transcription processes [13]. In response to this cellular damage, signaling pathways
will be activated that will lead in the first instance to cell cycle arrest through the action
of the tumor suppressor protein p53 in an attempt to repair the damaged DNA [18,19].
Subsequently, cell death by apoptosis occurs mediated by proteins such as Bcl-2 if the DNA
damage is not repaired [14,18].

3. Resistance to Cisplatin Treatment
3.1. Mechanisms of Cisplatin Resistance

The development of chemotherapeutic resistance is a problem of great importance
despite great advances in understanding the molecular mechanisms of cancer [20,21]. It has
been observed that 50% of patients treated with cisplatin either go on to develop intrinsic
resistance or acquire multidrug resistance rapidly [13,22,23]. In both cases, the mechanisms
of resistance are based on a reduction in the accumulation of cytotoxic compounds in the
cytosol of cancer cells, together with the activation of DNA repair mechanisms that protect
cancer cells from potentially lethal stresses caused by chemo drugs [24].

A cell population is considered to be resistant when it increases its baseline tolerance,
managing to proliferate in a medium with twice, or more than twice, the drug concentration
tolerated by the parental line, for which mechanisms are activated that allow it to avoid
drug-induced cell death, which is related to morphological variations described as an
increase in cell size, increase in the nucleus–cytoplasmic ratio, irregularities in the cell
membrane borders, or an increase in cytoplasmic granules [25–27].

Resistance to CDDP and other chemo drugs are directly related to the stage of tumor
progression because cancer cells acquire additional genetic and epigenetic alterations that
confer growth advantages, such as proliferation, and consequently, the expected cytotoxic
or cytostatic effect does not occur [28]. Both mutations and changes in gene expression
and post-translational modifications of proteins are some of the alterations that have been
associated with the acquisition of resistance to these drugs [27,29,30].

Several factors are involved in cisplatin resistance and can be classified as pre-target
resistance, on-target resistance, post-target resistance, and off-target resistance [16,31].

3.1.1. Pre-Target Resistance

Pre-target resistance is related to the reduction of CDDP entry into the cell or to a more
significant expulsion of CDDP into the extracellular space [16,31]. CDDP is a very polar
molecule and enters cells relatively slowly compared to other molecules used for cancer
treatment. CDDP entry into the cell is influenced by the concentrations of sodium and
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potassium ions, pH, the presence of reducing agents, and the action of transporters and
channels, which are coupled to the passive diffusion mechanism [16]. Among the proposed
transporters, the organic cation transporters (OCT) and the copper transporter protein CTR1
(copper transport protein 1) stand out. It was observed that cisplatin causes a decrease in
the expression of these transporter proteins, decreasing the concentration of the drug inside
the cells as a mechanism of resistance [32–36]. On the other hand, some studies suggest that
the transporter proteins ATP7A and ATP7B and the multidrug resistance-associated protein
MRP2 may also be involved in CDDP resistance by increasing the flux of CDDP out of the
cell [35,37–39]. Another “pre-target” mechanism refers to the intracellular inactivation of
cisplatin by the formation of complexes with compounds present in the cell cytosol, mainly
those containing thiol groups such as reduced glutathione (GSH) or metallothioneins. This
process occurs in the cytoplasm where cisplatin is a potent electrophilic agent that acts with
these nucleophilic groups and thus decreases drug interactions with DNA [40,41].

3.1.2. On-Target Resistance

On-target resistance involves processes related to molecular damage caused by cis-
platin to DNA [16,31]. Once CDDP is bound to DNA, the cell can survive by activating
DNA repair mechanisms or by tolerance to genetic damage. Nucleotide excision repair is
the first pathway that begins to repair DNA in the face of cisplatin resistance. This repair
pathway is responsible for removing the bonds formed between platinum and DNA. Once
CDDP binds to DNA, the cell can survive by activating DNA repair mechanisms or by
tolerance to genetic damage. Within the DNA repair pathways, nucleotide excision repair
appears to play a key role in eliminating cisplatin damage. This repair pathway is respon-
sible for eliminating the bonds formed between platinum and DNA through the action
of ERCC1 (excision repair cross-complementing 1) and XPF (Xeroderma pigmentosum
complementation group F) proteins. These proteins form a heterodimer and act by cutting
the 5′ end of the area of the strand where the platinum has bound to the DNA to allow
subsequent elimination of the adduct. A relationship between increased expression levels
of ERCC1 endonuclease and CDDP resistance has been described in different cell lines
and patient samples [42–46]. In addition, increased tolerance to cisplatin-induced damage
may be related to a loss of function of the mispaired base repair (MMR) pathway. During
MMR, different proteins recognize intracatenary adducts, including MSH2 and MLH1,
which, together with other MMR proteins, detect damage and transmit proapoptotic signals.
MSH2 and MLH1 genes have been mutated or downregulated due to CDDP resistance,
resulting in the inhibition of apoptosis [16]. On the other hand, cisplatin induces inter-
catenary adducts that are usually repaired by the homologous recombination mechanism
(HRR). In breast and ovarian cancer, the BRCA1 and BRCA2 genes, which code for proteins
of the HRR system, have been found to be mutated [47]. In particular, cancers deficient
in the HRR system have a different phenotype and are often more sensitive to cisplatin
than their counterparts in which the HRR mechanism functions usually [48]. Finally, it
should be mentioned that damage tolerance is related to the replicative by-pass of CDDP-
induced injury that certain classes of polymerases, such as β, η, and ζ, can perform. This
results in DNA synthesis not being blocked and, consequently, apoptotic pathways are not
activated [16,49,50].

3.1.3. Post-Target Resistance

Post-target resistance includes mechanisms that affect signaling pathways leading to
cell death triggered by adducts [16,31]. Among these mechanisms is the inactivation of the
TP53 gene, which produces a loss of apoptotic activity and the appearance of resistance
in 50% of human cancers [51]. TP53 encodes for the p53 protein, which induces apoptosis
by activating the signaling cascade to effector molecules such as Bax (BCL2-associated
X protein). Similarly, the inactivation of caspases such as caspases 3, 8, and 9, of great
importance in apoptosis, has been associated with resistance to cisplatin in different types
of cancers such as head and neck, ovarian, breast, and others [52–56]. Cisplatin resistance
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is also caused by CYLD (CYLD lysine 63 deubiquitinase) downregulation, which triggers
the reduction of intracellular CDDP accumulation and the suppression of cell death via
NF-κB hyperactivation [57]. TNF-α also contributes to NF-κB activation in head and neck
cancer cells [58]. Even more, the inhibition of both NF-κB and MAPK/HO-1 signaling
pathways also reduce oxidative stress and CDDP-induced resistance in non-small cell lung
cancer [59] (Figure 1).
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Figure 1. Contribution of NF-κB to cisplatin resistance. Cisplatin resistance is caused by down-
regulation of CYLD lysine 63 deubiquitinase (CYLD), triggering the suppression of cell death via
NF-κB hyperactivation. TNF-α also contributed to NF-κB activation and cell resistance. Created with
Biorender.com.

3.1.4. Off-Target Resistance

Off-target resistance is related to alterations in signaling pathways that are not directly
related to cisplatin but interfere with cisplatin-induced proapoptotic events [16,31]. This
type of mechanism includes the overexpression of the proto-oncogene ERBB2 that encodes
for the HER2 (human epidermal growth factor receptor) protein, and the gene encoding
the DYRK1B (dual specificity tyrosine phosphorylation regulated kinase 1B) kinase. The
former is key to activating numerous signaling pathways that regulate functions such as
cell differentiation, growth, and survival [60]. The second facilitates cell survival by in-
creasing the activity of antioxidant enzymes such as ferroxidase and superoxide dismutase,
which constitute the defense of cells against oxidative stress [61]. There are also several
mechanisms associated with the organism’s response to stressful situations or poorly char-
acterized ones related to resistance to cisplatin, including autophagy (a cellular process
responsible for the degradation and recycling of damaged cellular components) [62,63].
In this sense, different studies postulate that the inhibition of autophagy can restore cell
sensitivity to cisplatin, at least in vitro [63].

Figure 2 summarizes the mechanisms of resistance to cisplatin and, although they
have been grouped into several groups for better study and understanding, they should
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not be considered as isolated events but depend on the simultaneous activation of several
molecular mechanisms that ultimately lead to chemoresistance.
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Figure 2. Mechanisms of resistance to cisplatin. Pre-target resistance related to the control of the
entry or exit of cisplatin into the cell; on-target resistance implicates mechanisms involved in DNA
damage; post-target resistance includes mechanisms that interfere with cell death caused by DNA
adducts; and off-target resistance is related to cisplatin-induced proapoptotic events. Blue circle:
cisplatin. Created with Biorender.com (https://biorender.com/, accessed on 1 August 2022).

4. Epigenetics and Resistance to Treatment

Cisplatin resistance is multifactorial and cannot be explained by the deregulation of a
single molecular mechanism. This is a major obstacle to avoiding cisplatin resistance, and
one of the main problems associated with its use. However, current studies suggest that
resistance to cisplatin treatment may also be mediated by epigenetic factors that modify
the expression of genes important in the response to the drug (Table 1).

Epigenetics refers to heritable changes in gene expression that are not attributable to
variations in DNA sequence. In other words, epigenetics is based on the study of DNA
methylation, histone modifications, and the regulation of gene expression by non-coding
RNAs as epigenetic mechanisms [64–67].

4.1. Epigenetic Mechanisms Associated with Pre-Target, on-Target, and Post-Target Resistance

The importance of studying the relationship that seems to exist between the epigenetic
modifications of the promoters of non-coding RNAs and the development of phenotypes
resistant to chemotherapeutic drugs, such as cisplatin, has grown enormously in recent
years. Among regulatory mechanisms of miRNAs expression, we found silencing due

https://biorender.com/
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to the methylation of their regulatory regions resulting in the overexpression of their
target genes [68,69]. An example of how miRNAs are related to the pre-target resistance
mechanism is found with miR-38. The inhibition of miR-38 desensitizes breast cancer
cells to cisplatin through the expression of ABCB1/MDR1 mRNA. ABCB1/MDR1 are
cytoplasmic membrane transporter proteins related to resistance to chemotherapeutics by
preventing the intracellular concentration of this drug [70]. Similarly, miR-148a inhibits the
expression of ATP7A, another transporter protein involved in cisplatin resistance, which
may accelerate chemotherapy-induced apoptosis in breast cancer cells [12]. A lncRNA,
ROR, has also been found to be related to cisplatin transport in osteosarcoma, regulating
miR-153-3p/ABCB1 expression [71], whereas deletion of miR-200c causes resistance to
platinum-derived drugs by targeting the DNA repair proteins ERCC3 and ERCC4 in gastric
cancer as a resistance mechanism related to DNA damage (on-target resistance) [72].

As mentioned above, post-target resistance mechanisms include processes that inter-
fere with cell death caused by the formation of cisplatin adducts. Hypermethylation of the
miR-200b promoter is an example of this fact. In bladder cancer, miR-200b methylation
increases the expression of genes associated with chemosensitivity and apoptosis such as
IGFBP3, ICAM1, and TNFSF10 genes, leading to cisplatin resistance. Therefore, miR-200b
could be a biomarker associated with chemoresistance and a therapeutic target for patients
who develop resistance in this type of cancer [73]. Shindo et al. demonstrated that in
ovarian tumors, miR-100 and miR-214 have been negatively regulated, the latter targeting
the tumor suppressor gene PTEN associated with platinum resistance. miR-214 inhibits
PTEN transduction and activates the Akt pathway, inducing cell survival and cisplatin
resistance [74]. A similar mechanism is shared by ROR where drug resistance occurs via
apoptosis, but in this case, ROR is a negative regulator of p53 and the PI3K/Akt/mTOR
signaling pathway in nasopharyngeal and lung carcinoma, respectively [75,76]. Likewise,
SNHG15, p53-regulated lncRNA can suppress cisplatin-induced apoptosis through miR-
335-3p [77]. Another potential therapeutic target in the treatment of cisplatin-resistant
ovarian cancer is miR-335-5p, which enhances the sensitivity to the chemotherapeutic by
increased expression of BCL2L2 when miRNA is overexpressed [78].

The DNA methylation process in tumor cells inhibits specific genes necessary under
normal conditions for proper cell function [79]. Platinum-based chemotherapy was found
to contribute to the modification of DNA methylation in cancer [80]. The loss of IGFBP-3
(insulin-like growth factor binding protein-3) gene expression in NSCLC (non-small cell
lung cancer) can activate the IGF-IR/PI3K/AKT survival pathway, as an effect produced
by CDDP administration. The silencing of this gene is produced by the hypermethylation
of its promoter in cisplatin-resistant cell phenotypes, indicating that the methylation of the
IGFBP-3 promoter is mediating the emergence of resistance to this drug [81].

4.2. Epigenetic Mechanisms Associated with Off-Target Resistance

In off-target cisplatin resistance, we also found epigenetic mechanisms that are re-
lated to drug-induced proapoptotic events. Multiple studies confirm that cancer cells take
advantage of stem cell properties to form cancer stem cells through DNA methylation pro-
cesses [82–84]. In NSCLC, cancer stem cells are associated with resistance to chemotherapy
and in particular to cisplatin [84,85]. An example of this is Gli1, whose drug resistance is
due to the upregulation of Sox2, favoring self-renewal in NSCLC cancer stem cells [86].
Studies of forkhead box F1 (FOXF1) link its decreased expression with advancing tumori-
genesis [87,88]. In A549/DDP cells treated with cisplatin, FOXF1 transcription is favored
by demethylation of the regulatory region of the FOXF1 gene. In turn, FOXF1 promotes
drug resistance by promoting cancer stem cell properties in NSCLC [89]. In metabolic
enzymes, the effect of DNA methylation has also been studied, demonstrating its alter-
ation in cisplatin-resistant cells. The enzymes spermidine/spermine N1-acetyltransferase
(SAT1) and argininosuccinate synthase 1 (ASS1), in T24 bladder cancer cells, are decreased
due to epigenetic silencing of the genes encoding it (genes for polyamine and amino acid
metabolism catalysts, respectively) [90]. As another example, there is the enzyme NAGA (α-
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N-acetylgalactosaminidase), responsible for the activation of the Gc macrophage activating
factor (GcMAF), whose promoter hypermethylation produces resistance to cisplatin [91].

Alterations in the expression of histone deacetylases and demethylases also con-
tribute to developing resistance to cisplatin in certain types of cancer. An example of
this occurs in NSCLC, in which the increased expression of these enzymes, specifically
histone-deacetylase-6 (HDAC6), generates resistant phenotypes and decreases apoptosis
in these cells [92]. On the other hand, oxidative stress caused by cisplatin also induces
changes at the level of histone demethylases, which alter histone methylation patterns and
constitute a gene silencing mechanism in some types of cancer [93].

Dysregulation of miR-7, miR-132, and miR-148a has also been associated with cisplatin
resistance in ovarian tumor cells and also in lung cancer. MiR-7 directly regulates the
action of MAFG (the musculoaponeurotic fibrosarcoma oncogene family, protein G), which
is overexpressed in platinum resistance in cancer cell lines. MAFG is associated with
detoxification in the face of oxidative stress, protecting against free radicals generated by
the cell when cisplatin is administered [94]. Meanwhile, miR-132 and miR-148a target
TGF-β1 and WNT10b, respectively, regulating migration and invasion in cisplatin-resistant
oral squamous cell carcinoma and colorectal cancer [95,96].

Of lncRNAs and their resistance to cisplatin, it has recently been known that differen-
tial expression in response to therapy is more frequent in cis-acting lncRNAs compared to
overlapping ones, whereas significantly altered methylation profiles were more commonly
associated with overlapping lncRNAs. Another rationale is that overlapping lncRNAs
present a higher amount of CpG islands (CGIs) shared with most of their associated coding
genes [97]. Similarly, studies have described the relationship between the expression of
lncRNAs and the occurrence of resistance in different tumors. Studies show that the lncRNA
HOTTIP, a regulator of the transcription of genes of the HOXA family, is associated with re-
sistance to chemotherapy in osteosarcoma [98,99]. UCA1 is another lncRNA associated with
resistance to platinum-derived compounds in bladder and tongue cancer. UCA1 may en-
hance cisplatin resistance in tongue cancer cells by regulating autophagy signaling [100,101].
Similarly, a study of the long non-coding RNA taurine-regulated gene 1 (TUG1) demon-
strated that upregulated TUG1 confers cisplatin resistance in esophageal squamous cell
carcinoma by epigenetically suppressing PDCD4 expression through EZH2 [102].

In summary, the main genetic and epigenetic factors related to cisplatin resistance can
be summarized in Table 1.

Table 1. Factors regulating genetic and epigenetic mechanisms during cisplatin resistance.

Type Cisplatin Resistance Molecule Involved Reference

Genetic
factors Pre-target Decreased CTR1 expression [32–36]

Enhanced ATP7A, ATP7B, and
MRP2 expression [35,37–39]

Intracellular inactivation of
cisplatin by GSH or
metallothioneins

[40,41]

On-target Enhanced ERCC1
endonuclease [42–46]

Downregulation of MSH2 and
MLH1 expression [16]

Enhanced homologous
recombination mechanism [48]

Augmented polymerases β, η,
& ζ activity [16,49,50]

Post-target Inactivation of TP53 gene [51]
Inactivation of caspases [52–56]
CYLD Lysine 63
deubiquitinase
downregulation

[57]
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Table 1. Cont.

Type Cisplatin Resistance Molecule Involved Reference

NF-κB hyperactivation [57]

Off-target

Overexpression of human
epidermal growth factor
receptor and dual specificity
tyrosine phosphorylation
regulated kinase 1B

[60]

Enhanced antioxidant enzymes
such as ferroxidase and
superoxide dismutase

[61]

Autophagy [62,63]
Epigenetic
factors Pre-target miR-38 (regulating

ABCB1/MDR1) [70]

miR-148a (regulating ATP7A) [12]
lncRNA ROR (targeting
miR-153-3p/ABCB1) [71]

On target miR-200c (targeting
ERCC3/ERCC4) [72]

Post-target
Methylation of miR-200b
enhances IGFBP3, ICAM1, and
TNFSF10 gene expression

[73]

Downregulation of miR-100
and miR-214 (targeting PTEN) [74]

LncRNA ROR (targeting TP53) [75,76]
miR-335-3p (regulates
apoptosis) [77]

Off-target
Demethylation of the
regulatory region of the FOXF1
gene

[89]

Epigenetic silencing of
spermidine/spermine
N1-acetyltransferase and
argininosuccinate synthase 1

[90]

Enhanced HDAC6 expression [92]
Dysregulation of miR-7,
miR-132, and miR-148a [94–96]

Overexpression of lncRNA
HOTTIP activates
Wnt/β-catenin pathway

[98,99]

LncRNA UCA1 promotes
autophagy [100,101]

LncRNA TUG1 suppress
PDCD4 expression [102]

5. Conclusions

Resistance to platinum-based drugs is not only a problem in the face of treatment with
chemotherapeutics, but also a break in the fight against cancer. However, the genes whose
promoters are hypermethylated in cancer and which are related to cisplatin resistance
as a consequence of the epigenetic silencing to which they are subjected are becoming
increasingly well known. Knowledge of epigenetic regulation in cancer drug resistance
will contribute to developing biomarkers and cancer therapies.
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