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MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene

expression at post-transcriptional level. Alterations of miR-186 expression were

demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion,

metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor

suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as

an oncomir. The contradictory role in cancers may impede the application of miR-186,

as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This

review emphasizes the alterations and functions of miR-186 in cancers and discusses

the mechanisms behind the contradictory findings. Among these, target abundance

and dose-dependent effects of miR-186 are highlighted. The paper aims to review

the challenges involved in developing diagnostic and therapeutic strategies for cancer

treatment based on dual-functional miRNAs.
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INTRODUCTION

MicroRNAs (miRNAs), about 22 nucleotides in length, are non-coding RNAs which regulate gene
expression at a post-transcriptional level, mediating they target mRNAs translation inhibition
or degradation via binding to the 3′-untranslated regions (UTR) (1). MiRNAs are essential in
a number of pathways related to physiological and pathological processes, including cell cycle,
proliferation, migration, and apoptosis. Recently, dysregulation of miRNAs in cancers has become
a focus of research (2).

MiR-186 (also known asmiR-186-5p) was first identified from the human Saos-2 cell line in 2003
(3). The MiR-186 gene is located on chromosome 1, within intron 8 of the ZRANB2 (zinc finger
RANBP2-type containing 2) gene. (4). ZRANB2, a widely expressed spiceosomal protein found in
a variety of tissues, is important for alternative splicing of transcripts. Antoniou et al. found that
miR-186 displayed a similar expression profile to ZRANB2 during differentiation of muscle cells.
That is to say, miR-186 was transcribed with its host gene ZRANB2 synchronously (5). The level of
miR-186 in cancer cells may be dysregulated at a transcriptional level by the DNAmethylation stage
of the host gene promoter or the transcription factors (which bind with the promoter or other cis-
elements).More commonly, it may be regulated by LncRNAs post-transcriptionally. It was reported
that LncRNA PVT1 served as a sponge containing a complementary nucleotide sequence to miR-
186, downregulatingmiR-186 expression in gastric cancer cells (6), liver cancer cells (7), and glioma
vascular endothelial cells (8), so that it attenuated the function of miR-186.
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There were 108 original articles about “miR-186” in the
field of cancer research from 2008-2019 year in PubMed,
and a large proportion of these publications emerged during
2016-2019(85/108). Alterations of miR-186 expression were
demonstrated in numerous cancers. The function of miR-186 was
most investigated in lung cancer, colorectal cancer, hepatocellular
carcinoma, prostate cancer, and gastric cancer (Figure 1). The
majority of targets were revealed in lung cancer, hepatocellular
carcinoma, and prostate cancer (Table 1), indicating that miR-
186 may be applied as a potential therapeutic target in these
cancers. In patients with non-small cell lung cancer (NSCLC)
(14) and breast cancer (39), downregulation of miR-186 in tissues
predicted a poor survival rate, suggesting miR-186 may act as a
diagnostic and prognostic marker. MiR-186 was documented as a
tumor suppressor miRNA in the majority of studies, while some
reports verified miR-186 as an oncomir. The contradictory role
in cancers may impede the application of miR-186 as a diagnostic
and therapeutic target, and it is of great importance to explore the
possible mechanisms behind the contradictory findings.

ALTERED EXPRESSIONS OF miR-186 IN
DIFFERENT CANCERS

Alterations of miR-186 expression were demonstrated in

numerous cancer tissues or cell lines, which played a vital role in
oncogenesis, invasion, metastasis, apoptosis, and drug resistance.
In endometrial cancer tissues and squamous cell carcinoma
tissues, miR-186 was significantly upregulated in comparison
with relative non-cancerous tissues. MiR-186 was verified to play

FIGURE 1 | The counts of original articles about miR-186 in various malignancies from 2008 to 2019 year in PubMed.

a role as an oncomir which enhanced proliferation andmigration
and repressed apoptosis. However, the majority of studies
showed that miR-186 was decreased in solid cancers, including
gastric cancer, oral squamous cell carcinoma, hepatocellular
carcinoma, breast cancer, glioblastoma multiforme, esophageal
squamous cell carcinoma, pituitary tumors, follicular thyroid
carcinoma, retinoblastoma, osteosarcoma, cholangiocarcinoma
and blood malignancy multiple myeloma, and CML, and that
miR-186 served as a tumor suppressor miRNA. Notably, there
were conflicting reports of miR-186 alterations in NSCLC,
bladder cancer, prostate cancer, colorectal cancer, and pancreatic
cancer (Table 1).

NSCLC, which accounts for 70–80% of lung cancer, is one of
the most common malignancies globally. Feng et al. confirmed
miR-186 significantly upregulated in lung adenocarcinoma
samples and cells, in comparison with the adjacent non-
cancerous samples and normal lung epithelial cells BEAS-IB
(13). However, several groups reported that the levels of miR-
186 were markedly decreased in NSCLC samples and cells (14–
20). Prostate cancer is the most common non-skin cancer in
males, with there being ∼1.6 million cases worldwide annually
(60). One report showed the levels of miR-186 were increased
in metastatic prostate cancer cells compared to normal prostate
epithelial cells RWPE1 (21), while two groups demonstrated that
miR-186 was downregulated in prostate cancer tissues and cells
(22, 23). Bladder cancer is the seventh most common cancer
in females and the fourth most common in males worldwide
(61). Yang and his colleagues concluded that the upregulation
of miR-186 in bladder cancer tissue samples in comparison
with corresponding para-cancerous samples after a TCGA data
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TABLE 1 | Alterations of miR-186 and verified targets in cancers.

Types of cancer/cells Alteration of

miR-186

Function of miR-186 Validated targets References

Endometrial cancer Upregulated Oncomir P2RX7, FOXO1 (9, 10)

Cutaneous squamous cell carcinoma Upregulated Oncomir APAF1, RETREG1 (11, 12)

Cervical cancer Upregulated Oncomir P2RX7 (9)

Non-small cell lung carcinoma Upregulated Oncomir PTEN (13)

Non-small cell lung carcinoma Downregulated Tumor suppressor miRNA CCND1, CDK2, CDK6, SIRT6,

ROCK1, MAP3K2, YY1, Cdc42,

CDK1

(14–19)

(20)

Prostate cancer Upregulated Oncomir AKAP12 (21)

Prostate cancer Downregulated Tumor suppressor miRNA Twist 1, GOLPH3, YY1,CDK6 (22–24)

Bladder cancer Upregulated Oncomir RETREG1 (25)

Bladder cancer Downregulated Tumor suppressor miRNA NSBP1, VEGF-C (26, 27)

Colorectal cancer Upregulated Oncomir FAM134B (28)

Colorectal cancer Downregulated Tumor suppressor miRNA ZEB1 (29)

Pancreatic ductal adenocarcinoma Upregulated Oncomir NR5A2 (30)

Pancreatic cancer Downregulated Tumor suppressor miRNA YAP1 (31)

Hepatocellular Carcinoma Downregulated Tumor suppressor miRNA YAP1, HMGA2,

MAP4K3, ROCK1, MCRS1

(7, 32, 33)

(34–36)

Gastric cancer Downregulated Tumor suppressor miRNA Twist1, NEK2 (37, 38)

Breast cancer Downregulated Tumor suppressor miRNA Twist1 (39)

Cholangiocarcinoma Downregulated Tumor suppressor miRNA Twist1 (40)

Ovarian cancer Downregulated tumor suppressor miRNA PIK3R3 (41)

Glioma vascular endothelial cells Downregulated Tumor suppressor miRNA Atg7, Beclin1 (8)

Glioma stem cells Downregulated Tumor suppressor miRNA XIAP, PAK7 (42)

Glioblastoma multiforme Downregulated Tumor suppressor miRNA FGF2, RelA (43)

Pituitary tumors Downregulated Tumor suppressor miRNA SKP2 (44)

Esophageal squamous cell carcinoma Downregulated Tumor suppressor miRNA SKP2 (45)

Oral squamous cell carcinoma Downregulated Tumor suppressor miRNA SHP2 (46)

Follicular thyroid carcinoma Downregulated Tumor suppressor miRNA ST6GAL2 (47)

Multiple myeloma Downregulated Tumor suppressor miRNA Jagged1 (48)

CML Downregulated Tumor suppressor miRNA DDX43 (49)

Retinoblastoma Downregulated Tumor suppressor miRNA DIXDC1,

ATAD2

(50)

(51)

Osteosarcoma Downregulated Tumor suppressor miRNA TBL1XR1, FOXK1 (52)

(53)

Renal Cell Carcinoma Downregulated Tumor suppressor miRNA SENP1 (54)

Cisplatin-resistant glioblastoma cells Downregulated Reverse resistance YY1 (55)

Cisplatin-resistant ovarian cancer/ cells Downregulated Reverse resistance Twist1, ABCB1 (56, 57)

Taxol-resistant ovarian cancer cells Downregulated Reverse resistance ABCB1 (57)

Paclitaxel-resistant non-small cell

lung cancer

Downregulated Reverse resistance MAPT (58)

MTX-resistant colorectal cancer Downregulated Reverse resistance CPEB2 (59)

analysis, further verified upregulation of miR-186 in bladder
cancer cells in comparison with normal human uroepithelial
cells (25). However, two groups reported downregulation of
miR-186 in bladder cancer tissues and cells (26, 27). Colorectal
cancer is the third most common cancer in the world (62).
Islam et al. revealed miR-186 was significantly upregulated in
colorectal cancer tissues and cells, in comparison with the
corresponding normal tissues and normal colonic epithelial cells

(28), while Li et al. reported a significant downregulation of miR-
186 in colorectal cancer tissues and cells (29). Pancreatic ductal
adenocarcinoma (PDAC) is one of the deadliest malignancies
(63). Zhang et al. found upregulation of miR-186 in PDAC tissues
and cells related to the adjacent normal pancreatic samples and
human pancreatic ductal epithelium cells (30), whereas Niu et al.
found miR-186 was significantly downregulated in pancreatic
cancer tissues (31).
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THE DUAL ROLE OF miR-186 IN CANCERS

The consequences of altered expressions of miR-186 were related
to enhanced or repressed cell proliferation, invasion, metastasis,
and apoptosis, as well as drug resistance in cancers. MiR-186 may
serve as an oncomir or a tumor suppressor miRNA. Researchers
validated 48 targets of miR-186 in 25 types of cancer tissues or
cancer cells (Table 1). The expression profiles of the majority of
targets were verified to be negatively correlated with miR-186,
such as Twist1, RETREG1, ROCK1, GOLPH3, NSBP1, APAF1,
SHP2, and so on.

miR-186 as an Oncomir
Some reports showed that miR-186 was upregulated in several
cancers, and served as an oncomir, which both promoted
cell proliferation and migration, and inhibited apoptosis by
repressing several targets (Figure 2).

In endometrial cancer tissues and squamous cell carcinoma
tissues, miR-186 served as an oncomir by suppressing targets
P2RX7, FOXO1, APAF1, and RETREG1. The P2X7 receptor
(P2RX7) was a coordination channel binding on the membrane,
activation of which induced stomata formation on the cell
membrane and mediated the apoptosis of epithelial cells. Zhou

et al. reported miR-186 at a higher level in endometrial cancer
tissues induced the degradation of P2RX7 (9). Myatt et al.
reported that miR-186 repressed FOXO1 expression by targeting
the 3′-UTR of FOXO1, thus promoting proliferation and viability
of endometrial cancer cells. FOXO1, as a tumor suppressor
and a transcription factor of the FOXO family, activated the
transcription of FOXO downstream targets, some of which
displayed vital roles in cell cycle and apoptosis (10). APAF1, a
critical component of the apoptosome to promote endogenous
apoptotic process, was verified to be a functional target of miR-
186 in tissues and cells of squamous cell carcinoma (cSCC).
Enforced overexpression of miR-186 in cSCC cells significantly
increased cell growth, invasion, andmigration, and apoptosis was
significantly increased when miR-186 expression was inhibited
(11). RETREG1, also known as FAM134B, was another target
of miR-186 in increasing proliferation and inhibiting apoptosis
in cSCC. RETREG1 contributed to the normal functioning of
endoplasmic reticulum (ER). Inhibition of RETREG1 led to the
errors in folding of proteins in ER, resulting in impaired protein

balance and disease (12).
In the five types of controversial cancers (NSCLC, bladder

cancer, prostate cancer, colorectal cancer, pancreatic cancer),
several reports showed miR-186 served as an oncomir by

FIGURE 2 | The role of miR-186 as an oncomir or a tumor suppressor miRNA. Blue boxes display tumor suppressor genes among the targets of miR-186, black

boxes display oncogenes among the targets of miR-186. MiR-186 is involved in regulation of cell proliferation and growth, migration and invasion, apoptosis, and

resistance to chemotherapeutic drugs by suppressing multiple targets.
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suppressing targets PTEN, PPM1B, RETREG1, AKAP12, or
NR5A2. Feng et al. confirmed miR-186 significantly enhanced
cell proliferation and migration of lung adenocarcinoma by
targeting PTEN (phosphatase and tensin homolog) directly
(13). PTEN, serving as a tumor suppressor, negatively regulated
the PI3K signaling pathway which contributed to a variety
of cellular processes, such as cell differentiation, proliferation,
survival, motility, and invasion (64). Yang and his colleagues
verified that upregulation of miR-186 significantly enhanced the
growth rates of bladder cancer cells by targeting PPM1B, which
consequently promoted expression of p21Cip1 and p27Kip, while
decreasing cyclin D1 expression level, which facilitated G1-S
phase transition (25). Islam et al. revealed that miR-186 increased
proliferation and migration of colorectal cancer cells by targeting
RETREG1 (28), which regulated proteostasis by the turnover of
endoplasmic reticulum. AKAP12, a scaffold protein, regulated
cytoskeletal remodeling and mitogenic signals by combining
multiple signal molecules. AKAP12 was a verified target of miR-
186 (65). Jones et al. found downregulation of endogenous miR-
186 with an inhibitor upregulated the expression of AKAP12
in prostate cancer cells, thus repressing anchorage-independent
growth as well as invasion of prostate cancer cells (21). Zhang
et al. found overexpression of miR-186 enhanced proliferation
and migration of pancreatic ductal adenocarcinoma (PDAC)
cells via targeting NR5A2 (30). NR5A2 (also called LRH-1),
a transcription factor abundant in the cytoplasm and nucleus,
interacted with both Hedgehog and Wnt/β-catenin. When
NR5A2 interacted with β-catenin, it affected the expression of cell
cycle genes such as CCND1 and CCNE1 genes, as well as MYC
genes (66).

miR-186 as a Tumor Suppressor miRNA
The majority of reports showed that miR-186 was downregulated
in a variety of cancers and served as a tumor suppressor miRNA
which repressed proliferation and migration, and facilitated
apoptosis by targeting multiple targets (Figure 2).

Epithelial-mesenchymal transition (EMT) describes the
change from epithelial cells (immotile) to mesenchymal
cells (motile), with gene expression and phenotypic alterations
facilitating tumormetastases. EMT is vital for tumor progression,
as well as chemotherapeutic resistance (67). Twist 1 (the Twist
family bHLH transcription factor 1), a well-known transcription
factor in regulation of EMT (68), was shown to be a target of
miR-186 in several types of cancers such as prostate cancer (24),
gastric cancer (37), breast cancer (39), and cholangiocarcinoma
(40). Overexpression of miR-186 in these cancer cells inhibited
proliferation, EMT, and migration via suppressing Twist 1.
YAP1 was one important effector of the Hippo pathway and had
crosstalk with other pathways, regulating the expression of genes
which were involved in proliferation and EMT (69). By targeting
YAP1, miR-186 inhibited proliferation, migration, and invasion
of pancreatic cancer (31) and hepatocellular carcinoma cells (32).
Moreover, miR-186 repressed invasion and migration by directly
targeting TBL1XR1 and FOXK1 in osteosarcoma cells (52, 53), or
targeting FGF2 and RelA in glioblastoma multiforme cells (43).
MiR-186 inhibited proliferation of human pituitary tumor cells
through targeting SKP2, thus upregulating p27Kip1 expression, a

well-known negative regulator of G1 cell cycle progression (44).
Jagged1 (JAG1), as a member of oncogenes, activated the Notch
signal pathway related to tumorigenesis for some types of cancers
(70). MiR-186 repressed cell proliferation by targeting JAG1 in
multiple myelomas (48), or targeting HMGA2 in hepatocellular
carcinoma cells (33). Additional targets includingMCRS1 (which
promoted the nuclear β-catenin accumulation and activated
Wnt/β-catenin signaling) in hepatocellular carcinoma cells (36),
PIK3R3 (a regulatory subunit of PI3K) in epithelial ovarian
cancer cells (41), DIXDC1 in retinoblastoma cells (50), and
SENP1 in renal cell carcinoma cells (54), were involved in the
inhibitory effects of miR-186 on cell proliferation and invasion.

XIAP (X-linked inhibitor of apoptosis, a class of anti-
apoptotic proteins), and PAK7 (also known as PAK5, an
evolutionarily conserved serine/threonine protein kinase), were
highly expressed in glioma cells. MiR-186 inhibited the
proliferation, migration, and invasion of glioma stem cells
and promoted apoptosis via targeting XIAP and PAK7, thus
regulating the expression levels of downstream target proteins
such as caspase 3, BAD, cyclin D1, and MARK2 (42). Moreover,
miR-186 suppressed cell proliferation and induced apoptosis
by targeting either: MAP4K3 in hepatocellular carcinoma
(34), NEK2 in gastric cancer cells (38), SKP2 in esophageal
squamous cell carcinoma cells (45), SHP2 in oral squamous
cell carcinoma cells (46), or targeting DDX43 (also known as
HAGE, a cancer/testis antigen) in CML cells (49). In addition,
miR-186 suppressed the proliferation, migration, invasiveness,
and angiogenesis by targeting ST6GAL2 in follicular thyroid
carcinoma cells (47), or targeting ATAD2 in retinoblastoma cells
(51), and inhibited autophagy by targeting the autophagy-related
proteins Atg7 and Beclin1 in glioma microvascular endothelial
cells (8).

In the five types of controversial cancers, there were many
reports that miR-186 served as a tumor suppressor miRNA
by target multiple oncogenes, which was contradictory to
the previous statements. In NSCLS, miR-186 inhibited cell
proliferation by targeting CCND1 (coding cyclins D1), CDK2,
CDK6 (14), CDK1 (20), SIRT6 (15), and ROCK1 (16), inhibited
migration and invasion via targeting ROCK1 (16), MAP3K2
(17), YY1 (18), and Cdc42 (19), and induced cell apoptosis
via targeting SIRT6 (15). The cyclin-CDK complexes promotes
cellular proteins phosphorylation, then drive the progress of cell
cycle, which is essential in tumorigenesis (71). ROCK1 (Rho-
associated protein kinase 1), could promote actin cytoskeleton
reorganization during cell motion and invasion (72). MAP3K2
(Mitogen-activated protein kinase kinase kinase 2), could
enhance the MAPK signal pathway by activation of c-JNK and
ERK5. YY1 (Yin Yang 1), a relatively conserved transcription
factor, is essential in embryonic development, differentiation,
proliferation, migration, and invasion of solid tumors. Cdc42,
belonging to the Rho-GTPase family, is vital for the establishment
and persistence of cell migration. In prostate cancer, miR-
186 repressed cell proliferation via targeting YY1 and CDK6
(23) or GOLPH3 (22). Downregulation of GOLPH3 enhanced
p21 expression and repressed the expression of Cyclin B1
and CDK1/2, thus blocking G1/S transition (73). MiR-186
repressed invasion and migration of prostate cancer cells by
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targeting Twist 1 (24). In bladder cancer, miR-186 markedly
repressed cell proliferation and metastasis by targeting NSBP1
(also known as HMGN5) (26), which can bind to nucleosomes
with its nucleosomal-binding domain to make chromatin unfold,
regulating the expression of many genes (74). VEGF-C was also a
target through which miR-186 repressed invasion and migration
of bladder cancer cells (27). In colorectal cancer, Li et al. reported
that miR-186 repressed cell proliferation, EMT, and migration by
targeting ZEB1, a key member of the ZEB family, which were
important in regulation of EMT in various cancer cells (29). In
pancreatic cancer, Niu et al. verified that miR-186 inhibited cell
proliferation, migration, and invasion by targeting YAP1 (31).

miR-186 in Reversal of Drug Resistance
Chemotherapy is a fundamental treatment for cancer. However,
drug resistance makes it not as efficient as expected. Cisplatin,
taxol, and methotrexate (MTX) are common drugs used in
chemotherapy. MiR-186 was downregulated in drug resistant
cancer tissues and cells, including glioblastoma cells with
cisplatin resistance, ovarian cancer tissues and cells with cisplatin
resistance, ovarian cancer cells and NSCLC tissues with taxol
resistance, and colorectal cancer tissues with MTX resistance.
miR-186 was also observed to reverse resistance to cisplatin,
taxol, andMTX (Table 1). MiR-186 increased cisplatin sensitivity
by degrading YY1 in glioblastoma cells U87MG-CR (55).
Overexpression of miR-186 in cisplatin-resistant cells of ovarian
cancer induced the reversal of the EMT phenotype, cell cycle
arrest, and cell apoptosis enhancement, so that the sensitivity
to cisplatin was increased by miR-186. Twist 1 and ABCB1
were two functional targets of miR-186 in reversal of cisplatin
resistance (56, 57). Otherwise, miR-186 was downregulated in
ovarian cancer cells A2780/Taxol and in NSCLC tissues which
were resistant to paclitaxel. Overexpression of miR-186 sensitized
A2780/Taxol cells to taxol by targeting ABCB1 (57), as well
as sensitized NSCLC cells A549 and H1299 to paclitaxel in
vitro and in A549 xenografts by targeting MAPT (microtubule
associated protein tau), which promoted microtubule assembly
and leads to microtubule stabilization, by binding to the surfaces
of microtubules outside and inside, interfering with the action
of taxanes since they also bind to the inside surfaces (58).
Moreover, miR-186 was decreased in MTX-resistant colorectal
cancer. Overexpression of miR-186 promoted colorectal cancer
cells more sensitive to MTX by targeting CPEB2 (cytoplasmic
polyadenylation element binding protein 2) (59).

All in all, miR-186 may serve as an oncomir or a tumor
suppressor miRNA in cancers. The dual role of miR-186 and
biological functions of the verified targets are summarized
in Figure 2.

THE MECHANISMS BEHIND THE
CONTRADICTORY FINDINGS

The Contradictory Alterations of miR-186
In NSCLS, bladder cancer, prostate cancer, colorectal cancer, and
pancreatic cancer, it was controversial that the levels of miR-
186 were higher or lower than the match-adjacent tissues. Some

proved miR-186 was at a higher level, while others reported miR-
186 was at a lower level in the same cancer. We consider the
following two aspects may contribute to the conflict.

The Amount of the Samples and the
Heterogeneity
Islam et al. found that 70% (88/126) of colorectal cancer tissues
exhibited high levels of miR-186, while 30% (38/126) exhibited
low levels in patients with colorectal cancer. Nearly 69% (24/35)
of lymphatic-infiltrated samples showed high levels of miR-
186, while 31% (11/35) showed low levels of miR-186 (28). It
revealed the alterations of miR-186 may be different due to the
heterogeneity and the clinical stage of the patients even when
they were affected by the same type of cancer. If we take a small
number of samples, it could appear as though miR-186 is up-
regulated in all cancer tissue samples in comparison with the
matched-adjacent non-cancerous tissues, however the opposite
results may be true when all of the samples are examined. That
is, it is more reliable if more samples are analyzed. In order
to increase the number of samples, we searched the expression
levels of miR-186 in the five controversial cancers in the database
(starbase V2.0), and we analyzed and summarized the data in a
graphical form (Figure 3). It revealed the levels of miR-186 were
increased in NSCLC (including lung adenocarcinoma and lung
squamous cell carcinoma), prostate adenocarcinoma, bladder
urothelial carcinoma, and colon adenocarcinoma tissues, and
decreased in pancreatic adenocarcinoma tissues, in comparison
with the corresponding normal tissues (Figure 3).

Different Histological Subtypes
Different histological subtypes may contribute to contradictory
alterations of miRNAs in a specific cancer. For example,
Schmid et al. analyzed miR-34a expression in 133 tissue samples
of epithelial ovarian cancer, and they found miR-34a was
significantly downregulated in tissues of a histological subtype
serous, endometrioid and mucinous ovarian cancer, while no
significant alterations in tissues of a histological subtype clear
cell ovarian cancer were found, in comparison with 8 healthy
ovarian samples (75). This suggests that alterations of a certain
miRNA varied with different histological subtypes even in a
specific cancer. Similarly, diverse expression levels of miR-186
were observed in different histological subtypes of NSCLS, a
higher level in lung squamous cell carcinoma compared with lung
adenocarcinoma tissues (Figure 3). It is likely that the expression
levels of miR-186 vary with histological subtypes in other cancers,
such as bladder cancer, prostate cancer, colorectal cancer, and
pancreatic cancer.

The Contradictory Role of miR-186
In NSCLS, bladder cancer, prostate cancer, colorectal cancer,
and pancreatic cancer, some studies proved that miR-186 served
as an oncomir, while some reported that miR-186 served as a
tumor suppressor in the same cancer type in vitro and in vivo.
We consider the following three aspects may contribute to the
contradictory role of miR-186.
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FIGURE 3 | Relative expression levels of miR-186 in cancers (the data were obtained from starbase V2.0). Lung Adenocarcinoma (N = 512) vs. corresponding normal

tissues (N = 20); Lung Squamous Cell Carcinoma (N = 512) vs. corresponding normal tissues (N = 20); Lung Squamous Cell Carcinoma (N = 475) vs. corresponding

normal tissues (N = 38); Prostate Adenocarcinoma (N = 495) vs. corresponding normal tissues (N = 52); Bladder Urothelial Carcinoma (N = 408) vs. corresponding

normal tissues (N = 19); Colon Adenocarcinoma (N = 450) vs. corresponding normal tissues (N = 8); Pancreatic Adenocarcinoma (N = 174) vs. corresponding

normal tissues (N = 4). N indicates the number of tissue samples. ***P < 0.001, **P < 0.01.

SNP Either in miRNA or in the 3′-UTR of
Targets
MiRNAs exert their regulatory functions via binding to the 3′-
UTR of target mRNAs. The binding affinity can be increased
or decreased by single nucleotide substitutions either in DNA
sequences for miRNAs or targets, which is called single-
nucleotide polymorphisms (SNPs) (76). SNPs-rs66461782 in
miR-186 was detected in patients with breast cancer (77). Not
surprisingly, SNP may be detected in other types of cancer, so
it may affect the function of miR-186 on its potential targets.
The SNP related to target mRNAs was also one of concern
to researchers. Rs1062577 was one of the miRNA-related ESR1
SNPs. The A allele, substitution for T at the site (rs1062577A
allele), attenuated the binding of miR-186 to ESR1 mRNA due
to one hydrogen bond lost, then disturbed its negative regulatory
effect of miR-186 on ESR1 transcripts (78). In a word, the
function of miR-186 may be disturbed by SNP either in miR-186
or target mRNAs.

The Targets Abundance and Network
Each miRNA regulates numerous target mRNAs by base pairing.
MiR-186 can directly bind to target genes, affecting multiple
pathways simultaneously. Moreover, these targets can also be
regulated by other miRNAs besides miR-186. Although 48 targets
of miR-186 have been verified to date, it is still difficult to
reveal all the functional targets of miR-186 in cancers. Actually,
the abundance of available targets may account for the varied
outcomes of miRNAs. Aaron et al. found a significant correlation

between the concentration of predicted targets of transfected
miRNAs and the average expression of the target mRNAs. In the
study, the predicted targets of miR-155, which were relatively
few in number, were more downregulated than the targets of
miR-128, which were more numerous (79). In addition, the
abundance of a certain target may be involved in different
outcomes of miRNAs. Myatt et al. verified FOXO1 was a direct
target of 6 miRNAs (including miR-9, −27, −96, −153, −183,
and −186) in endometrial cancer cells, and transfection of the
anti-miRs effectively induced cell cycle arrest in Ishikawa cells
(endometrial cancer cells with FOXO1 at low level), but no
remarkable effects in HEC-1B cells (endometrial cancer cells with
FOXO1 abundant) were found (10). Ding et al. verified that
miR-204 inhibited the growth of prostatic adenocarcinoma cells,
whereas it stimulated the growth of neuroendocrine-like prostate
cancer cells via targeting XRN1, a dual regulator with variable
abundance of proteins in these cells (80).

More importantly, if opposite functional molecules with
different levels of abundance are the targets of a miRNA, then the
ultimate effects are determined by the network of these targets.
Niu et al. found miR-181a decreased the apoptosis of triple-
negative breast cancer cells upon doxorubicin treatment through
suppression of the pro-apoptotic protein BAX directly (81),
while another report showed miR-181a enhanced adriamycin-
induced apoptosis by targeting the anti-apoptotic protein Bcl-
2 in low-invasive breast cancer cells (82). MiR-494 targeted
both pro-apoptotic proteins (PTEN, ROCK1, and CaMKIIδ)
and anti-apoptotic proteins (FGFR2 and LIF), and the ultimate
consequence was cardioprotection (83). Obviously, many tumor
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FIGURE 4 | The dose-dependent effects of miRNAs and targets abundance may contribute to the contradictory role of miR-186.

suppressor genes and oncogenes were validated targets of miR-
186 in cancers (Figure 2). We believe the abundance of these
opposite functional targets may contribute to the contradictory
findings of miR-186 in cancers.

The Dose-Dependent Effects of miR-186
It was reported that the dose of miRNAs (miRNA abundance)
affected their functions. Bu et al. found miR-34a distributed at
high levels in differentiating progeny, whereas low levels of miR-
34a demarcated self-renewing colon cancer stem cells. Moreover,
both loss and gain of function of miR-34a altered the balance
between self-renewal vs. differentiation (84). Yang et al. found
that miR-181a significantly inhibited cell viability of breast cancer
cells (MCF-7), dose-dependently. However, with a miR-181a
dose higher than 50 nM, it promoted proliferation of several
types of cancer cells rather than producing inhibitory effects
(85). In addition, miRNA abundance affected the silencing of
targets. Some target sites required higher miRNA concentration
for silencing than others, since elevated miRNA levels could
compensate for a lack of complementarity outside the seed (86).
We suspect that different groups enhanced or inhibited miR-186
expression to varying degrees, leading to contradictory findings
regarding the role of miR-186 in a certain cancer or cell lines.

Based on the above, we propose that the dose-dependent
effects and targets abundance contribute to the contradictory role
of miR-186: a low dose of miR-186 mainly targets oncogenes
which is a more abundant target in cancers, playing a role as a
tumor suppressormiRNA; a high dose (excessive) of miR-186 can
also target tumor suppressor genes which is a less abundant target
in cancer, playing a role as a tumor suppressormiRNA (Figure 4).

CONCLUSION AND PERSPECTIVE

MiR-186 emerged as an essential miRNA involved in cell
proliferation, apoptosis, migration, and invasion in various
cancers. The majority of studies showed miR-186 serving as
a tumor suppressor miRNA in variable cancers. Some studies
verified that miR-186 played a role as an oncomir in endometrial
cancer and cutaneous squamous cell carcinoma. However, there

were conflicting reports in regards to NSCLC, bladder cancer,
prostate cancer, colorectal cancer, and pancreatic cancer. It was
controversial as to whether miR-186 served as an oncomir or a
tumor suppressor miRNA in these specific cancers. We explored
the possible mechanisms of the converse function of miR-186.
We proposed that targets abundance and dose-dependent effects
may contribute to the contradictory role of miR-186. To some
extent, it was not so satisfactory a conclusion due to a lack of
direct experimental data.

The following aspects deservemore attention in future studies:
(A) Previous small size samples might be insufficient to reach
a consistency in heterogeneous cancers, so a large cohort of
patients are needed to specialize the function of miR-186 in
each subtype of a specific cancer. (B) More targets of miR-186
related in tumorigenesis and metastasis are needed to be verified,
which may account for its diverse functions. (C) That the targets
abundance and the dose contributing to the final function ofmiR-
186 in cancers needs to be verified intensively. (D) Other factors
may disturb the function of miR-186 which can’t be ignored,
such as SNP either in miR-186 or the 3’UTR of the targets.
(E) The upstream molecular regulators of miR-186, which are
responsible for the altered expression of miR-186, such as Lnc
RNAs, methylation, and the acetylation stage of the promoter
of host gene ZRANB2, need to be explored. (F) More study is
needed for other dual functional miRNAs [such as miR-181a (85)
and miR-23b (87) in cancers] before we develop diagnostic and
therapeutic strategies for cancer treatment based on miRNAs.
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