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Estimating and mapping ecological
processes influencing microbial
community assembly
James C. Stegen*, Xueju Lin, Jim K. Fredrickson and Allan E. Konopka

Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest National Laboratory,
Richland, WA, USA

Ecological community assembly is governed by a combination of (i) selection resulting
from among-taxa differences in performance; (ii) dispersal resulting from organismal
movement; and (iii) ecological drift resulting from stochastic changes in population
sizes. The relative importance and nature of these processes can vary across
environments. Selection can be homogeneous or variable, and while dispersal is a
rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation
results from limited exchange of organisms among communities, and homogenizing
dispersal results from high levels of organism exchange. To estimate the influence and
spatial variation of each process we extend a recently developed statistical framework,
use a simulation model to evaluate the accuracy of the extended framework, and
use the framework to examine subsurface microbial communities over two geologic
formations. For each subsurface community we estimate the degree to which it
is influenced by homogeneous selection, variable selection, dispersal limitation, and
homogenizing dispersal. Our analyses revealed that the relative influences of these
ecological processes vary substantially across communities even within a geologic
formation. We further identify environmental and spatial features associated with each
ecological process, which allowed mapping of spatial variation in ecological-process-
influences. The resulting maps provide a new lens through which ecological systems
can be understood; in the subsurface system investigated here they revealed that the
influence of variable selection was associated with the rate at which redox conditions
change with subsurface depth.

Keywords: ecological niche theory, ecological neutral theory, Hanford Site 300 Area, microbial biogeography, null
modeling, phylogenetic beta-diversity, phylogenetic signal, Raup–Crick

Introduction

In his conceptual synthesis, Vellend (2010) proposed that ecological communities are influenced
by a combination of ecological selection, organismal dispersal, ecological drift, and speciation
(see also Hanson et al., 2012). This is a useful perspective that places all ecological communities
within the same conceptual framework, thereby facilitating cross-system comparisons. While there
is some knowledge of what causes shifts in the relative influences of governing processes (e.g.,
Horner-Devine and Bohannan, 2006; Chase, 2007, 2010; Stegen et al., 2012), turning Vellend’s
conceptual framework into an operational framework is a significant challenge. As an initial
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attempt, Stegen et al. (2013) proposed a null modeling approach
that estimates the relative influences of ecological components
within Vellend’s framework at the scale of a metacommunity. To
provide context, we next introduce the concepts synthesized in
Vellend (2010).

Ecological selection results from different organisms having
different levels of fitness for a given set of environmental
conditions; here we consider ‘environmental conditions’ to
include both abiotic variables (e.g., temperature) and biotic
factors related to organismal interactions. If environmental
conditions are homogeneous through space, the selective envi-
ronment will also be homogeneous (Vellend, 2010). The scenario
in which a consistent selective pressure—that results from con-
sistent environment conditions—is the primary cause of low
compositional turnover is referred to as ‘homogeneous selection’
(Figure 1), as in Dini-Andreote et al. (2015). On the other hand,
if environmental conditions change through space, among-taxa
fitness differences can change (Vellend, 2010). The scenario in
which a shift in selective pressure—that results from a shift in
environment conditions—is the primary cause of high compo-
sitional turnover is referred to as ‘variable selection’ (Figure 1).

Organismal dispersal refers to the movement of organisms
through space (Vellend, 2010). High dispersal rates have the
potential to homogenize community composition such that there
is low turnover in composition (Leibold et al., 2004). High disper-
sal rates can, in principle, overwhelm selection-based influences,
a scenario at the population level known as source-sink dynamics
(Dias, 1996). The scenario in which a high dispersal rate—
between a given pair of communities—is the primary cause of low
compositional turnover is referred to as ‘homogenizing dispersal’
(Stegen et al., 2013).

On the other hand, when selection is relatively weak and
organisms rarely move between communities, ecological drift
(i.e., stochastic changes in population sizes) can lead to marked
differences in community composition (Hubbell, 2001; Vellend,
2010). The scenario in which high turnover in composition is
primarily due to a low rate of dispersal enabling community com-
position to drift apart is referred to here as ‘dispersal limitation.’
To be clear, our use of the term ‘dispersal limitation’ does not
directly refer to a low rate of dispersal between a given pair of
communities. We use ‘dispersal limitation’ to indicate a situation
in which a low dispersal rate is the primary cause of high composi-
tional turnover; differences in selective environments may be the
primary cause of high compositional turnover even when disper-
sal rates are low, which would fall within the conceptualization of
‘variable selection.’

It is important to consider that the rate of dispersal and
strength of selection are continuous variables with context-
dependent magnitudes and that these processes simultaneously
influence ecological communities. The above-summarized sce-
narios assume relatively extreme levels of dispersal and/or selec-
tion, but it is likely that some natural systems (or parts of systems)
are characterized by moderate levels of dispersal and selection.
In this case, neither process may dominate, leading to composi-
tional differences between communities that are due to a mixture
of stochastic organismal movements and stochastic birth–death
events. Stegen et al. (2013) used the term ‘ecological drift’ to refer

to this scenario, but here we use the term ‘undominated’ to refer
more directly to the scenario in which neither dispersal nor selec-
tion is the primary cause of between-community compositional
differences.

Here we first develop and test an extended version of the
Stegen et al. (2013) framework and, in turn, apply the extended
framework to subsurface microbial communities distributed
across two geologic formations within the 300 Area of the U.S.
Department of Energy’s Hanford Site in southcentral Washington
State. Our framework uses null models to estimate the degree
to which compositional turnover between a single focal commu-
nity and all other sampled communities is governed by different
ecological processes (homogeneous selection, variable selection,
homogenizing dispersal, and dispersal limitation). The frame-
work also estimates the portion of compositional turnover that
is not dominated by a single process. To evaluate this framework
we simulated community assembly under different scenarios; the
analytical framework was applied to simulated communities to
ask how robust the framework was in detecting the dominance
of specific ecological processes. In turn, process estimates were
generated for the field-sampled subsurface communities; these
estimates were combined with environmental data and commu-
nity spatial locations to identify environmental drivers and to
characterize spatial variation in the relative influence of each
ecological process.

Materials and Methods

Subsurface Sampling
The dataset used here is the same as in Stegen et al. (2013) such
that here we provide a brief summary of methods used to generate
those data. We analyzed sediment-associated bacterial commu-
nities found within two subsurface geologic formations roughly
250 m from the Columbia River in Richland, WA, USA. The
sampled communities were within the Hanford Integrated Field
Research Challenge (IFRC) site1, and were sampled during the
drilling of 26 IFRC wells (Bjornstad et al., 2009); supplemen-
tal material in Stegen et al. (2013) provides details on sample
locations. The sampled formations are structurally and hydro-
logically distinct, are separated vertically, but are in the same
horizontal location; 16 communities were sampled within the
deeper-lying Ringold Formation, which has restricted water flow
and finer-grain sediments; 28 communities were sampled within
the shallower Hanford formation, which has less restricted water
flow and coarser-grain sediments (Bjornstad et al., 2009). In addi-
tion, the Ringold formation changes with depth from oxidized to
reduced conditions (Bjornstad et al., 2009). Microbial communi-
ties were characterized through pyrosequencing of the 16S rRNA
gene (see Lin et al., 2012a,b), DNA sequences were processed
using QIIME (Caporaso et al., 2010), and statistical analyses were
done using R2 (for molecular and bioinformatics methods see
Stegen et al., 2013). Each microbial community was associated
with environmental metadata including its spatial position, its

1http://ifchanford.pnnl.gov/
2http://cran.r-project.org/
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FIGURE 1 | Conceptual summary of homogeneous selection and
variable selection. The left panel shows spatial variation in an arbitrary
environmental variable. For illustration, we might consider temperature to be the
environmental variable, going from cold (blue) to hot (red). There are three
locations indicated as L1, L2, and L3; L1 and L2 are spatially separated, but
they are both in a cold environment; L3 is in a hot environment. The center
panel shows the fitness landscapes at L1 and L2; they are identical because
the environment is the same; species adapted to cold temperatures will have

higher fitness than species adapted to hot temperatures. In turn, the selective
environment is consistent—between L1 and L2—such that we expect
cold-adapted species to comprise communities found in both locations. This is
an example of ‘homogeneous selection.’ The right panel shows fitness
landscapes in L1 and L3; because of different temperatures, the fitness
landscapes do not overlap each other; cold adapted species are expected in L1
and hot-adapted species are expected in L3. In this case, the selective
environment varies through space; this is an example of ‘variable selection.’

horizontal distance from the Columbia River, the elevations of
reduced and oxidized portions of the Ringold Formation, and
the vertical thickness of the oxidized portion of the Ringold.
Vertically structured features were obtained from Bjornstad et al.
(2009).

Statistical Approach
Our statistical framework uses phylogenetic turnover between
communities to infer ecological selection (Stegen et al., 2013).
This approach requires significant ‘phylogenetic signal’ (Losos,
2008) whereby there is a relationship between phylogenetic relat-
edness and ecological similarity (Kraft et al., 2007; Cavender-
Bares et al., 2009; Fine and Kembel, 2011); as in other microbial
systems (e.g., Wang et al., 2013) this was found to be true such
that more closely related taxa were more similar ecologically (see
Figure 2 in Stegen et al., 2013).

To quantify phylogenetic turnover between communities
we used the between-community mean-nearest-taxon-distance
(βMNTD) metric (Fine and Kembel, 2011; Webb et al., 2011),
which quantifies the phylogenetic distance between each species
in one community (k) and its closest relative in a second commu-
nity (m):

βMNTD = 0.5 [�nk
ik=1 fik min (�ikjm) + �

nm
im=1 fim min (�imjk)],

where fik is the relative abundance of species i in community k,
nk is the number of species in k, and min (�ikjm) is the minimum
phylogenetic distance between species i in community k and all
species j in community m. βMNTD was calculated using the
R function ‘comdistnt’ (abundance.weighted = TRUE; package
‘picante’).

For each pair of communities within each geologic formation
we generated the value of βMNTD expected if ecological selection
was not the primary factor governing compositional differences
by randomly shuffling species across the tips of the phylogeny
and, recalculating βMNTD. This procedure was repeated 999
times to provide a distribution of null values. If the observed
βMNTD value was significantly (a) less or (b) greater than the
null expectation, we inferred that (a) homogeneous selection or
(b) variable selection was responsible for the similarity or differ-
ences, respectively, between the pair of communities. Significance
was evaluated via the β-Nearest Taxon Index (βNTI), which
expresses the difference between observed βMNTD and the mean
of the null distribution in units of SDs; βNTI values< −2 or> +2
indicate significance (Stegen et al., 2012). These interpretations
of the βNTI metric were evaluated and supported via simulation
modeling, as described below.

If observed βMNTD does not significantly deviate from the
null expectation it indicates that the observed compositional dif-
ference is not due to selection (Hardy, 2008), and should therefore
be due to very low rates of dispersal (i.e., dispersal limitation),
very high rates of dispersal (i.e., homogenizing dispersal), or
a lack of dominance between selection and dispersal (i.e., the
‘undominated’ scenario described in the Introduction). To distin-
guish among these possibilities, we used the Raup–Crick metric
(Chase et al., 2011) extended to incorporate species’ relative abun-
dances (as in Stegen et al., 2013); referred to as RCbray. Like
βNTI, RCbray was based on a comparison between observed
and expected levels of turnover, but without using phylogenetic
information.

To generate an expected degree of turnover—for use in quan-
tifying RCbray—we drew species into each local community until
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empirically observed local species richness was reached. The
probability of drawing a given species was proportional to the
number of local sites occupied by that species (as in Chase et al.,
2011). In turn, we drew individuals into each selected species
until total abundance—summed across species—was equal to
observed total abundance. The probability of drawing an indi-
vidual into a given species was proportional to the relative
abundance of that species across all local communities (as in
Stegen et al., 2013). This procedure represented stochastic assem-
bly of local communities under the assumptions of weak selection
and random dispersal. Compositional differences were quantified
with Bray–Curtis (Bray and Curtis, 1957). Repeating stochastic
assembly 999 times for each pair of communities provided a null
distribution of Bray–Curtis dissimilarities.

To compare observed Bray–Curtis to the null distribution
we followed Chase et al. (2011). The number of comparisons
between randomly assembled communities that had a Bray–
Curtis value greater than the empirical Bray–Curtis was added
to half the number of ties. This sum was standardized to range
from−1 to+1 by subtracting 0.5 andmultiplying by 2; the result-
ing value is RCbray; values between −0.95 and +0.95 indicate
that compositional turnover between a given pair of commu-
nities is ‘undominated.’ In turn, we infer that RCbray values
<−0.95 or >+0.95 indicate that selection, dispersal limitation,
or homogenizing dispersal govern observed compositional differ-
ences. Furthermore, dispersal limitation is expected to increase
differences in community composition and should therefore
result in RCbray values greater than +0.95. Homogenizing dis-
persal, in contrast, increases compositional similarity and should
therefore result in RCbray values less than −0.95 (Stegen et al.,
2013). These interpretations of the RCbray metric were eval-
uated and supported via simulation modeling, as described
below.

Quantifying Influences of Ecological
Processes
The composition of each community was compared to the com-
position of all other sampled communities within the same
geologic formation. For a given community we estimated the
relative influence of variable selection or homogeneous selec-
tion as the fraction of its comparisons with βNTI > +2 or
βNTI < −2, respectively. Selection is excluded as the domi-
nant process when |βNTI| < 2; in these cases RCbray >+0.95
or < −0.95 were taken as evidence that dispersal limitation or
homogenizing dispersal, respectively, was the dominant process.
For a given local community the relative influence of dispersal
limitation was therefore estimated as the fraction of its between-
community comparisons with |βNTI| < 2 and RCbray > +0.95.
Similarly, the relative influence of homogenizing dispersal was
estimated as the fraction of comparisons with |βNTI| < 2 and
RCbray < −0.95. The scenario where |βNTI| < 2 and |RCbray|
< 0.95 indicates that neither selection nor dispersal strongly
drive compositional turnover; this is the ‘undominated’ scenario
and its relative contribution was estimated as the fraction of
comparisons characterized by |βNTI| < 2 and |RCbray | < 0.95.
These interpretations of the βNTI and RCbray metrics were

evaluated and supported via simulation modeling, as described
below.

Statistical Models of
Ecological-Process-Influences
In addition to estimating ecological-process-influences we aimed
to map spatial variation in those influences. In the subsur-
face system studied here there were spatial locations where
environmental features were characterized but where microbial
communities were not. To predict ecological-process-influences
across the entire system we first characterized explanatory vari-
ables using spatial and environmental data from all sampled
locations.

The spatial positions of sampled locations were used with
Principal Coordinates of Neighbor Matrices’ (PCNM, now
referred to as ‘Moran’s Eigenvector Maps’) to describe spatial
eigenvectors (function ‘pcnm’ in R package ‘vegan’; Borcard and
Legendre, 2002; Borcard et al., 2011). The horizontal positions
of locations at which microbial communities were sampled were
unique to each formation such that spatial eigenvectors (referred
to as PCNM axes) were generated independently for each forma-
tion. We also examined horizontally structured environmental
features that included horizontal distance from the Columbia
River, the elevations of the reduced and oxidized portions of the
Ringold Formation, and the vertical thickness of the oxidized
Ringold. Spatial eigenvectors and the four environmental features
were used to construct statistical models for each ecological pro-
cess in each formation; in all cases the statistical models were
linear, multiple regression models.

For each ecological process we used environmental features
and formation-specific PCNM axes as explanatory variables
to construct all possible models with up to seven indepen-
dent variables. Explanatory variables were described using data
from all locations for which there were environmental data
(Figure 2), but ecological-process estimates were only avail-
able from locations where microbial communities were sam-
pled (Figures 3 and 4). While three of the environmental
variables characterize the Ringold Formation, they were used
as potential explanatory variables in models for both forma-
tions. Doing so evaluated the hypothesis that features of the
Ringold Formation influence ecological processes in one or both
formations.

Microbial communities were characterized at 16 and 28 loca-
tions in the Ringold and Hanford, respectively. We therefore
chose the statistical (i.e., the linear, multiple regression) model
with the lowest small-sample-size-corrected Akaike Information
Criterion (AICc; Burnham and Anderson, 2002). Prior to the
construction of statistical models some explanatory variables
were removed to avoid strong co-variation. The set of retained
explanatory variables was unique to each ecological process in
each formation, and was determined as follows. First, explana-
tory variables were prioritized; a primary goal was to determine
the influence of measured environmental features over spatial
patterns in ecological processes; measured environmental fea-
tures had higher priority than the spatial PCNM axes. In addi-
tion, ranking within each class of variable—environmental or
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FIGURE 2 | Maps of measured environmental features evaluated as
predictors of estimates of ecological-process-influences. (A) The vertical
thickness of the oxidized portion of the Ringold formation, (B) the horizontal
distance from the Columbia River, (C) the elevation at the top of the oxidized

Ringold formation, and (D) the elevation at the top of the reduced portion of the
Ringold formation. Solid symbols indicate sampling locations and colors indicate
interpolations with magnitudes corresponding to scale bars associated with
each panel.

PCNM—was based on the strength of correlation to the ecologi-
cal process being evaluated. If two explanatory variables were sig-
nificantly correlated (R function ‘cor.test’), only the explanatory
variable with higher priority was retained. Using this approach,
lower priority variables that were strongly correlated with higher
priority variables were removed prior to model selection.

Models with the lowest AICc for each ecological process in
each formation were used to construct spatial maps of ecological-
process-influences. For each ecological process in each formation,
estimates of explanatory variables from each sampled location
were fed into the selected models to generate predictions of
ecological-process-influences. This was done for all sampled loca-
tions, which included locations where microbial communities
were characterized and locations where microbial communities
were not characterized. The statistical models were therefore
used to extrapolate to locations without microbial data. In turn,
the predicted ecological-process-influences were spatially inter-
polated (function ‘interp’ in R library ‘akima’) and visualized
(function ‘filled.contour’ in R package ‘graphics’).

To help determine which environmental features are most
likely to have a causal effect on ecological-process-influences,

environmental features were related to ecological-process-
influences using univariate linear regression. This was only done
when a measured environmental feature was the most impor-
tant component within the multiple regression model of a given
ecological process; the most important variable had the largest
absolute standardized regression parameter.

Simulation Model

Overview
The preceding two subsections contain a number of assertions
regarding the interpretation of βNTI and RCbray that need to be
evaluated to refine interpretations and better understand limita-
tions. For an initial evaluation we developed a purposely simple
simulation model that uses idealized cases of specific ecological
scenarios to generate a set of ecological communities that are used
to evaluate our proposed interpretations.

The simulation model has two components; the first evolves
a regional pool of species, tracking species’ evolutionary rela-
tionships and evolution in species’ optimal environments; the
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FIGURE 3 | Predicted spatial variation in the relative influences
of ecological processes across the Ringold formation. (A)
Variable selection, (B) dispersal limitation, (C) homogenizing dispersal,
and (D) the undominated fraction. Squares indicate spatial locations

where field samples were used to estimate environmental features.
Filled squares indicate where field samples were also used to
characterize microbial communities. The scale bar applies to all
panels.

second uses this regional pool to assemble local communities
based on scenarios that reflect our conceptualization of how each
ecological process influences community composition (Figure 5).

The first component of the model simulates diversification in
which new species arise asexually through mutations in the envi-
ronmental optima of ancestral species. Environmental optima
evolve and diversify along an arbitrary environmental axis that
takes on values from 0 to 1. Evolution is effectively Brownian

due to no variation in fitness across the environmental axis.
The number of species in the regional pool reaches equilib-
rium due to the following constraints, which are similar to those
imposed in Hurlbert and Stegen (2014): there is a maximum
total number of individuals (2 million) summed across all species
such that population sizes (equal across species) decline with
increasing number of species, and the probability of species
extinction increases with decreasing population size following a
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FIGURE 4 | Predicted spatial variation in the relative influences
of ecological processes across the Hanford formation. (A)
Variable selection, (B) dispersal limitation, (C) homogenizing dispersal,
and (D) the undominated fraction. Squares indicate spatial locations

where field samples were used to estimate environmental features.
Filled squares indicate where field samples were also used to
characterize microbial communities. The scale bar applies to all
panels.

negative exponential function [population extinction probability
∝ exp(−0.001∗population size)].

The system was initiated with one ancestor that had a ran-
domly chosen environmental optimum. The maximum number
of individuals in the system was always achieved such that the
ancestor had an initial population size of 2 million. The probabil-
ity of mutation increased with population size, and a descendant’s
environmental optimum deviated from its ancestor’s by a quan-
tity selected from a Gaussian distribution with mean of 0 and SD
of 0.15. Following mutation, population sizes were adjusted so
that the total number of individuals was 2 million. Within a time

step, mutation and extinction occurred probabilistically and pop-
ulation sizes were adjusted. The simulation was run for 250 time
steps, which was sufficient to reach equilibrium species richness.
This simulation procedure, which included tracking of evolu-
tionary relationships among species, provided significant phylo-
genetic signal (Supplementary Figure S1) for a regional species
pool comprised of 1140 species with environmental optima that
spanned the environmental axis (Supplementary Figure S2).

In the ecological component of our model, species were drawn
from the simulated regional pool to assemble four communi-
ties under relatively weak ecological selection (blue environment,
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FIGURE 5 | (A) Phylogeny showing evolutionary relationships among a
subsample of 50 species from the regional species pool simulation model;
colors indicate environmental optimum of each species along the arbitrary
environmental gradient. (B) Fitness functions in two environments along the
environmental gradient (see color ramp on bottom panel) that—for
illustration—could be cold (blue) and hot (red). The ‘cold’ environment is
characterized by relatively weak ecological selection; the blue Gaussian
function describes how fitness declines as a species environmental optimum
deviates from the blue environment’s temperature. The ‘hot’ environment is
characterized by strong selection; fitness declines rapidly as species
environmental optima move away from the red environment’s temperature, as
indicated by the red Gaussian fitness function. (C) Assembly of all local
communities was simulated by probabilistic dispersal (not diagrammed) from
the regional pool; a species’ probability of dispersal and its local abundance
increased with its fit to the local environment. Species abundances in
communities 2, 3, and 5 were further influenced by dispersal from community
1; arrows indicate dispersal and thicker arrows indicate higher dispersal rates.
Primary and secondary ecological processes governing turnover between
pairs of communities—and the associated expectations for βNTI and
RCbray—are summarized in Table 1.

Figure 5) and three communities under stronger ecological selec-
tion (red environment, Figure 5). All communities had 100
species and 10,000 individuals, drawn probabilistically from the
regional species pool using ecological rules summarized below.
The ecological rules enabled development of a priori expectations
(summarized in Table 1) for the magnitudes of βNTI and RCbray,
under the assumption that greater fitness translates into higher
relative abundance. Following community assembly these expec-
tations were evaluated by comparing one focal community to
five other simulated communities, with one exception discussed
below.

To characterize the degree of support for our proposed inter-
pretations of βNTI and RCbray, the ecological assembly model
was run 1000 times. Each iteration used the same regional pool,
which was evolved once, and βNTI and RCbray were quantified
following community assembly. This approach generated a distri-
bution of both metrics for each pairwise community comparison.
These distributions were used to characterize the degree of sup-
port for our a priori expectations, which were tied directly to
our proposed conceptual interpretations of βNTI and RCbray. We
next describe the different ecological rules imposed within the
assembly model.

The Focal Community (Community 1)
Hundred species were drawn without replacement from the
regional species pool with probabilities proportional to their fit-
ness in an environment of 0.05; fit was quantified with a Gaussian
function centered on 0.05 and with variance of 0.175 (blue curve,
Figure 5); the arbitrary environmental variable used in the simu-
lations took on values between 0 and 1. Individuals were prob-
abilistically drawn into the 100 selected species until reaching
10,000 individuals. Note that the strength of selection is relatively
weak in the blue environment as indicated by the relatively broad
fitness function; for comparison, note that selection is relatively
strong in the red environment as indicated by the narrower fitness
function (Figure 5).

Homogenizing Dispersal (Community 2)
Species and individuals were probabilistically drawn as for com-
munity 1, but the probabilities were altered to reflect a high
rate of dispersal from community 1. More specifically, species’
probabilities based on the Gaussian fitness function (within the
blue environment) were modified by adding a quantity equal to
0.05∗(species abundance in the focal community 1.1); the expo-
nent controls the rate of dispersal and was selected through
preliminary exploration of parameter-space. Given a high rate of
dispersal between communities 1 and 2, compositional turnover
between communities 1 and 2 will be primarily governed by
homogenizing dispersal; the expectations are |βNTI| < 2 and
RCbray < −0.95.

Undominated (Community 3)
In our conceptualization, an ‘undominated’ scenario arises when
there is a moderate rate of dispersal and the strength of selection
is relatively weak; high dispersal leads to homogenizing dispersal,
low dispersal leads to dispersal limitation, and strong selection
will constrain community composition. To generate this sce-
nario, species were drawn into community 3 as for community
2, but with a lower dispersal rate; species’ probabilities based on
the Gaussian fitness function were modified by adding a quantity
equal to 0.05∗(species abundance in the focal community0.8); this
smaller exponent caused a lower rate of dispersal. Compositional
turnover between communities 2 and 3 should be undominated
such that |βNTI| < 2 and | RCbray| < 0.95 are expected.

Dispersal Limitation (Community 4)
Species were drawn into community 4 using only probabilities
based on fit to the environment (as for community 1 assembly).
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TABLE 1 | Ecological processes primarily, and secondarily, responsible for turnover between indicated pairs of communities within the simulation model
(Figure 1 depicts relationships among communities).

Communities Primary factor Primary
expectation

Primary
supported

Secondary
factor

Secondary
expectation

Secondary
supported

Fraction
unexpected

1 and 2 Homogenizing dispersal | βNTI | < 2
RCbray <−0.95

91% Homogeneous
selection

βNTI < −2 8% 1%

1 and 3 Undominated | βNTI | < 2
|RCbray| < 0.95

87% Homogeneous
selection

βNTI < −2 11% 2%

1 and 4 Dispersal limitation | βNTI | < 2
RCbray > +0.95

88% Homogeneous
selection

βNTI < −2 12% 1%

1 and 5 Homogenizing dispersal | βNTI | < 2
RCbray < −0.95

83% Variable
selection

βNTI > +2 16% 1%

1 and (6 or 7) Variable selection βNTI > +2 91% Dispersal
limitation

| βNTI | < 2
RCbray > +0.95

9% 0%

6 and 7 Homogeneous selection βNTI < −2 90% Dispersal
limitation

| βNTI | < 2
RCbray > +0.95

0% 10%

Primary and secondary ecological processes are inputs to the simulation model and the associated expectations are patterns that our statistical framework should reveal if
it is properly parsing the influences of those ecological processes. The degree of support is summarized as the percentage of replicate simulations for which the statistical
framework generates the expected magnitudes of βNTI and RCbray. The frequency of observing combinations of these two metrics that depart from both the primary and
secondary expectations is the scenario-specific error (Fraction unexpected).

This reflects dispersal limitation in the sense that the abun-
dance of a given species in community 1 had no influence on
its abundance in community 4 because there is no direct dis-
persal between the communities. Given weak selection in the
blue environment and a low dispersal rate between communi-
ties 1 and 4, compositional turnover between communities 1 and
4 should be dominated by dispersal limitation; |βNTI|< 2 and
RCbray > +0.95 are expected.

Homogenizing Dispersal Overwhelms
Variable Selection (Community 5)
To generate this scenario a second selective environment was
required, and was represented as the red environment in
Figure 5, (environmental value of 0.95). Community 5 was
assembled in the red environment such that species’ probabilities
of occurrence were influenced by their fitness as determined by
a Gaussian fitness function centered on 0.95 and with a variance
of 0.0075 (red curve, Figure 5). The red Gaussian fitness func-
tion had lower variance than the blue Gaussian fitness function,
which reflected stronger selection. To draw species and indi-
viduals into community 5, the fitness-based probabilities were
modified as for community 2 assembly such that there was a high
rate of dispersal from community 1 to community 5; species’
probabilities based on the Gaussian fitness function (within the
red environment) were modified by adding a quantity equal
to 0.05*(species abundance in the focal community1.1). Given
a high rate of dispersal between communities 1 and 5, com-
positional turnover between communities 1 and 5 should be
governed by homogenizing dispersal even though the selective
environments are different; |βNTI| < 2 and RCbray < −0.95 are
expected.

Variable Selection (Community 6)
Community 6 was assembled as for community 1, but instead
using species’ probabilities based on fitness within the red envi-
ronment. In this case, large compositional differences should

arise between communities 1 and 6 due to these communi-
ties being assembled in different selective environments; variable
selection should dominate such that βNTI > +2 is expected.

Homogeneous Selection (Community 7)
Homogeneous selection can dominate if communities occur in
the same selective environment and if selection is relatively
strong. Ecological selection in the blue environment is rela-
tively weak such that homogeneous selection is unlikely to arise;
as selection becomes weaker, species become demographically
equivalent so that selection does not govern community compo-
sition (as in Hubbell, 2001). Selection in the red environment is
relatively strong, however, such that homogeneous selection will
emerge when assembly is governed principally by environmen-
tally determined fitness. Community 7 was therefore assembled
as for community 6; βNTI < −2 is expected.

Secondary Expectations
As summarized above, our proposed conceptual interpretations
of βNTI and RCbray provide a priori expectations for patterns
of these metrics in each simulated scenario (Table 1). Ecological
systems are, however, inherently probabilistic (as is our simu-
lation model). While there is a high probability that species in
community (1) disperse to community (2), for example, this is
not guaranteed to occur—in the model or in natural systems—
and it is therefore expected that homogenizing dispersal will not
always dominate. Given that communities (1) and (2) are assem-
bled under the same selective environment, we suggest that when
homogenizing dispersal fails to dominate it is most likely because
homogeneous selection has constrained community composi-
tion; on average, selection is relatively weak in the blue environ-
ment (Figure 5), but occasionally selection will strongly constrain
community composition. The comparison between communities
(1) and (2) in a relatively small fraction of replicate simulations
should therefore be characterized by βNTI < −2; we consider
this to be a ‘secondary expectation.’ For each pairwise com-
munity comparison we derived secondary expectations, which
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are summarized in Table 1. The percentage of replicate simula-
tions showing patterns of βNTI and RCbray consistent with those
expectations are summarized in Table 1.

Results

Analysis of simulation model outputs showed strong correspon-
dence between expected and observed patterns of βNTI and
RCbray (Table 1). Five of the six scenarios showing error rates
of 2% or less. The scenario with the highest error rate (10%)
invoked strong homogeneous selection and was associated with
the comparison between communities (6) and (7). The statis-
tical framework was therefore applied to the data on microbial
communities across the Hanford and Ringold formations.

In both geologic formations there was substantial variation
across local communities in the relative influences of the eco-
logical processes (Supplementary Figure S3). Using environmen-
tal features and PCNM axes to describe spatial variation in
ecological-process-influences showed that each process within
each formation was associated with a distinct set of features/axes
(Tables 2 and 3). In most cases the bestmodels were highly signif-
icant, contained at least one environmental feature, and explained
up to 83% of spatial variation in ecological-process-influences
(Tables 2 and 3).

Within the Ringold Formation, the model for homogeneous
selection was not significant (p = 0.11), but the thickness of the
oxidized Ringold was the most important feature retained in the
model for variable selection (Table 2). A significant relationship

TABLE 2 | Chosen models for each ecological process within the Ringold
Formation.

Variable Coefficient SE t-value p-value

Ringold homogeneous selection: model R2 = 0.17, p = 0.11

PCNM22 0.023 0.014 1.694 0.112

Ringold variable selection: model R2 = 0.81, p = 0.0007

Oxidized Ringold Thick −0.164 0.035 −4.637 0.001

PCNM21 0.103 0.026 3.955 0.002

PCNM2 0.065 0.029 2.241 0.047

PCNM8 0.093 0.034 2.710 0.020

Ringold undominated: model R2 = 0.3847, p = 0.04257

Oxidized Ringold Thick 0.088 0.039 2.258 0.042

PCNM17 0.063 0.033 1.893 0.081

Ringold dispersal limitation: model R2 = 0.8298, p = 0.001333

Oxidized Ringold Elevation −0.196 0.038 −5.228 0.0004

PCNM22 −0.176 0.026 −6.802 0.0000

PCNM1 0.125 0.025 4.944 0.0006

PCNM13 −0.039 0.015 −2.669 0.0235

PCNM8 0.171 0.036 4.790 0.0007

Ringold homogenizing dispersal: model R2 = 0.7029, p = 0.001742

Reduced Ring. Elevation 0.044 0.009 4.911 0.0004

PCNM8 −0.034 0.010 −3.378 0.0055

PCNM16 −0.033 0.010 −3.449 0.0048

All explanatory variables were standardized as standard normal deviates prior to
analysis such that coefficient magnitudes are directly comparable.

TABLE 3 | Chosen models for each ecological process within the Hanford
formation.

Variable Coefficient SE t-value p-value

Hanford homogeneous selection: model R2 = 0.65, p = 0.0002

Distance to River −0.013 0.007 −1.787 0.0877

Oxidized Ringold Thick. −0.015 0.008 −1.957 0.0632

PCNM22 0.019 0.006 3.023 0.0063

PCNM6 0.019 0.009 2.138 0.0439

PCNM21 0.013 0.007 1.903 0.0702

Hanford variable selection: model R2 = 0.29, p = 0.04

Distance to River −0.061 0.027 −2.252 0.0337

PCNM22 −0.058 0.025 −2.269 0.0325

PCNM8 0.049 0.031 1.611 0.1204

Hanford undominated: model R2 = 0.5271, p = 0.0003783

Distance to River 0.114 0.025 4.558 0.0001

Reduced Ring. Elevation −0.075 0.028 −2.686 0.0129

PCNM11 −0.070 0.027 −2.572 0.0167

Hanford dispersal limitation: model R2 = 0.3908, p = 0.00696

PCNM17 0.067 0.028 2.425 0.023

PCNM7 −0.042 0.023 −1.801 0.084

PCNM13 −0.044 0.024 −1.844 0.078

Hanford homogenizing dispersal: model R2 = 0.6128, p = 3.664e-05

Oxidized Ringold Elevation 0.042 0.026 1.625 0.1172

PCNM10 −0.075 0.018 −4.103 0.0004

PCNM4 0.069 0.021 3.275 0.0032

All explanatory variables were standardized as standard normal deviates prior to
analysis such that coefficient magnitudes are directly comparable.

between the influence of variable selection and the thickness of
the oxidized Ringold was also observed by univariate regression
(p = 0.01, R2 = 0.38, Figure 6A). Oxidized Ringold thickness
was also the most important feature retained in the model of the
undominated fraction (Table 2), but this relationship was not sig-
nificant when evaluated by univariate regression (p = 0.07). The
upper elevation of the oxidized Ringold was the most important
feature retained in the model of dispersal limitation (Table 2), but
this relationship was not significant when evaluated by univari-
ate regression (p = 0.75). The elevation at the top of the reduced
Ringold was the most important feature in the homogenizing dis-
persal model (Table 2), but this relationship was not significant
when evaluated with univariate regression (p = 0.09).

Within the Hanford formation, homogeneous selection was
most strongly related to PCNM axes and variable selection
was most strongly related to distance from the Columbia River
(Table 3). Variable selection in the Hanford was not, however,
significantly related to distance from the Columbia River, by uni-
variate regression (p = 0.12). Distance from the Columbia River
was the most important feature in the model of the undomi-
nated fraction (Table 3), and this relationship was also observed
by univariate regression (p = 0.005, R2 = 0.27, Figure 6B).
No environmental features were retained in the dispersal limita-
tion model (Table 3). Homogenizing dispersal was most strongly
related to PCNM axes (Table 3).

In the Ringold, process-influence-maps revealed spatial pat-
terns of variable selection and in the undominated fraction
(Figure 3) that showed similarities to spatial patterns of oxidized
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FIGURE 6 | Regressions of ecological-process-influences against
environmental features that were significant in both multiple
regression and univariate regression models. (A) The
relationship-within the Ringold formation-between the relative influence of
variable selection and the vertical thickness of the oxidized portion of the

Ringold formation, and (B) the relationship-within the Hanford
formation-between the relative contribution of the undominated fraction
and horizontal distance from the Columbia River. Solid lines indicate the
ordinary least squares regression model, and the geological formation
(Ringold or Hanford) and model statistics are provided on each panel.

Ringold thickness (cf. Figures 2A and 3A,D). Dispersal limi-
tation also showed marked spatial variation across the Ringold
Formation, with some congruence with spatial patterns in the
elevation of the oxidized Ringold (cf. Figures 2C and 3B). In con-
trast, homogenizing dispersal was characterized by relatively little
spatial variation across the Ringold Formation (Figure 3C). The
model for homogeneous selection was not significant within the
Ringold Formation (see above) such that amapwas not generated
and, in turn, spatial variation was not evaluated.

Process-influence-maps in the Hanford revealed increases in
variable selection and decreases in the undominated fraction
in regions closest to the Columbia River and complex patterns
across regions further from the river (cf. Figures 2B and 4A,D).
Homogeneous selection was relatively consistent through space
(Supplementary Figure S4). The influence of dispersal limita-
tion in the Hanford appears to be greatest near the eastern
corner of the investigated spatial domain (Figure 4B), with no
obvious correspondence to environmental features, which is con-
sistent with no environmental variables being retained in the
associated multiple regression model (Table 3). Homogenizing
dispersal across the Hanford was characterized by a com-
plex spatial pattern without any obvious correspondence to
environmental features.

Discussion

Here we worked to improve understanding of the ecological pro-
cesses that influence microbial community composition. A major
component of our approach was extending the statistical frame-
work developed in Stegen et al. (2013), which generated process
estimates at the scale of a metacommunity and lumped variable
and homogeneous selection into a single estimate. Our exten-
sion of their framework distinguished homogeneous selection

from variable selection and estimated the influences of ecolog-
ical processes for local communities. This extended framework
revealed a dominant influence of variable selection—relative to
homogenous selection—and enabled an evaluation of subsurface
environmental features related to ecological-process-influences.
In turn, we generated process-influence-maps across two geologic
formations. Also distinct from Stegen et al. (2013), we evaluated
the statistical framework via simulation, which showed close cor-
respondence between expected and observed patterns of βNTI
and RCbray (Table 1). This provides confidence that our statistical
framework generates reasonable estimates of ecological-process-
influences.

The comparison between communities 6 and 7—in which
homogeneous selection was invoked—resulted in the highest
error rate (10%). We hypothesize that increasing the strength
of selection would reduce this error rate. Simulation studies
that continuously vary the strength of selection could be used
to evaluate this hypothesis. Such studies could also be used to
go beyond the discrete ecological scenarios studied here. These
scenarios were used to enable a tractable evaluation of our
approach to inferring ecological processes from null modeling
results, but selection strength and dispersal rate are continu-
ous variables (e.g., Stegen and Hurlbert, 2011). If our approach
is robust, null modeling results should change continuously
with the strength of selection and rate of dispersal. Follow-
on simulation studies will be needed to fully understand this
coupling.

Direct comparison between our results and those from other
systems is not currently feasible; we are not aware of previous
work that parses homogeneous selection, variable selection, dis-
persal limitation, and homogenizing dispersal. We note, however,
that our results are consistent with dispersal limitation having
an important influence over microbial community composition.
This aligns with the emerging perspective that microbes have
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biogeography (Green et al., 2004, 2008; Martiny et al., 2006) and
suggests that in the subsurface all microbes are not everywhere,
in contrast to the classic perspective (De Wit and Bouvier, 2006;
Martiny et al., 2006).

Conceptual Inferences
In both formations variable selection and the undominated
fraction showed opposing, spatially structured patterns while
dispersal limitation and homogenizing dispersal showed more
idiosyncratic patterns. To a first approximation variable selec-
tion in the Ringold was maximized along a Southwest to
Northeast axis, but was maximized in the Eastern cor-
ner of the Hanford formation. Spatial patterns of disper-
sal limitation and homogenizing dispersal were also different
between formations. Environmental features governing the rel-
ative influences of ecological processes therefore appear to be
formation-specific.

The influence of variable selection in the Ringold was most
strongly related to oxidized Ringold thickness; variable selection
became increasingly weak with increasing thickness (Figure 6A).
If one defines the rate at which redox conditions change with
depth as the vertical distance between oxidized and reduced
conditions, redox conditions must change more rapidly with
depth in locations with a thinner oxidized Ringold layer. In turn,
our results suggest that variable selection increases as the verti-
cal redox gradient becomes steeper (i.e., when redox conditions
change more rapidly with depth).

The influence of variable selection may increase with steeper
redox gradients if a small number of microbial taxa take advan-
tage of rapidly changing redox conditions. This hypothesis could
be directly tested by evaluating the response of microbial com-
munities to experimentally manipulated redox patterns within
laboratory flow cells. Such an approach would leverage the
strengths of comparative and experimental techniques to provide
a deeper level of understanding than otherwise possible (Weber
and Agrawal, 2012).

In the Hanford formation the undominated fraction decreased
toward the Columbia River (Figure 4D; Table 3), and there was
a modest increase in the influence of variable selection toward
the Columbia River (Figure 4A; Table 3). These patterns sug-
gest an important environmental shift as one moves toward the
river, which may be related to spatially structured river-water
intrusion.

Elevation of the Columbia River increases annually in the
spring, causing river-water intrusion into the studied subsur-
face system (Peterson et al., 2008; Lin et al., 2012b). To a first
approximation, regions of the system that are closer to the river
(Figure 2B) receive more river-water (Lin et al., 2012b). It may
be that an annually repeated pattern of more river-water in the
eastern portion of the Hanford formation has resulted in a shift
in environmental conditions that cause a stronger influence of
variable selection in that region. As a first test of this hypothesis
it would be useful to sample a broader spatial domain that con-
tains regions of the subsurface closer to and further from the river,
relative to what has been sampled here. Coupling this expanded
sampling with laboratory flow cell experiments would provide
powerful hypothesis tests.

The undominated fraction should increase with decreases in
the strength of selection and/or with a shift toward moderate
dispersal rates. In both formations the undominated fraction gen-
erally showed patterns opposite those of variable selection. This
suggests that a shift toward undominated compositional turnover
is due primarily to weaker selection, as opposed to a change in
dispersal rates. It is also interesting to note that both formations
were characterized by relatively weak influences of homogeneous
selection. This result is expected as selection is unlikely to be
consistent across spatially heterogeneous systems such as the
subsurface system studied here.

Dispersal limitation and homogenizing dispersal both have
complex spatial structure, and it is difficult to discern which envi-
ronmental features (if any) drive these spatial patterns. Dispersal
limitation across both formations was unrelated to environmen-
tal features when evaluated with univariate regression, suggesting
that the environmental features used in our analyses do not
strongly determine the influence of dispersal limitation. Similarly,
homogenizing dispersal in the Hanford wasmore strongly related
to PCNM axes than to environmental features (Table 3). Instead
of being driven by relatively simple environmental features, the
influences of dispersal limitation and homogenizing dispersal
may be governed more by complex and spatially inconsistent
features that influence hydrologic transport.

Comparison to Variation Partitioning
While it may appear that variation partitioning (Legendre and
Legendre, 1998) was used here to estimate ecological-process-
influences, there are substantial differences between variation
partitioning and our approach. In variation partitioning, vari-
ation in community composition is explained using features
deemed a priori to reflect spatial relationships or environ-
mental differences among communities (e.g., Tuomisto et al.,
2003; Cottenie, 2005; Legendre et al., 2009; Heino et al.,
2011). Intuitively, the more variation in community composi-
tion explained by spatial or environmental features, the greater
the influence of dispersal limitation or selection, respectively
(Stegen and Hurlbert, 2011). At least three studies have shown
that this intuitive expectation is not valid and that varia-
tion partitioning cannot be used to infer the influences of
ecological processes (Gilbert and Bennett, 2010; Smith and
Lundholm, 2010; Stegen and Hurlbert, 2011). Variation par-
titioning can, at best, determine whether dispersal limitation
has more or less influence than selection (Stegen and Hurlbert,
2011).

With variation partitioning it is tempting to infer that vari-
ation in community composition not explained by spatial or
environmental features results from ecological drift. Unexplained
variation will, however, increase artificially if any of the follow-
ing occur: (i) important environmental features have not been
measured; (ii) spatial axes fail to capture idiosyncratic patterns
in spatial isolation among communities; or (iii) community com-
position is non-linearly related to explanatory variables (see dis-
cussions in Laliberte et al., 2009; Legendre et al., 2009; Anderson
et al., 2011).

In contrast to variation partitioning we used null models to
estimate the influences of ecological processes; our approach
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does not relate community composition to explanatory variables.
Our approach therefore solves a primary shortcoming of varia-
tion partitioning, but like all statistical frameworks has its own
limitations.

Limitations, Caveats, and the Path Forward
With respect to the framework used here, two important con-
siderations are sample size and error from sampling, DNA
sequencing and data processing. Ecological process estimates
likely approach their true values as sample size increases and this
should be considered in cross-system comparisons.

It is not obvious that sources of error will systematically
increase or decrease any particular process estimate such that
we assume errors contribute equally to estimates of all ecological
process. Nonetheless, future simulation studies need to evaluate
the potential for bias related to sample size and sources of error.

On the conceptual side, we note that our framework does
not account for influences of in situ diversification, which is
the evolutionary component in Vellend’s (2010) synthesis (see
also Hanson et al., 2012). This may be relevant as high rates of
in situ diversification could increase compositional turnover in
terms of OTU presence/absence; if dispersal rates are low, new
OTUs that evolve in situ may only be found in one community.
On the other hand, among-community dispersal will minimize
influences of in situ diversification; if newly evolved OTUs dis-
perse away from their community-of-origin, the influence of
in situ diversification on compositional turnover will be mini-
mal. Outcomes are therefore influenced by the balance between
dispersal and diversification rates.

Extending our framework to characterize the influence of in
situ diversification on patterns of compositional turnover repre-
sents an important challenge. Pattern-oriented simulation mod-
eling (e.g., Grimm et al., 2005; Rangel et al., 2007; Stegen and
Hurlbert, 2011; McClain et al., 2012) is one approach that could
be leveraged to meet this challenge. In the context of species rich-
ness gradients, for example, Hurlbert and Stegen (2014) recently
developed a pattern-oriented simulation model that provides
‘multi-metric fingerprints’ that indicate the operation of specific
underlying processes. A similar approach could be added to our
framework to identify multi-metric fingerprints indicating the
influence of in situ diversification on patterns of compositional
turnover.

We further suggest that a pattern-oriented simulation model-
ing approach could be used to draw additional inferences from
the undominated fraction provided by our current framework.
The undominated fraction is tied to a conceptual inference—
selection is too weak and dispersal rates are not extreme enough
for either process to drive compositional turnover. It would be

useful, however, to parse the relative influences of ecological
processes within the undominated fraction. To this end, pattern-
oriented simulations similar to those in Stegen and Hurlbert
(2011) could be used to study compositional turnover patterns
expected across a two-dimensional process-space defined by the
strength of selection and the rate of dispersal. Observed turnover
patterns within the undominated fraction could then be related
back to simulated turnover patterns and, in turn, the balance
between selection and dispersal (similar to McClain et al., 2012).

In summary, we have provided spatial projections for the rel-
ative influences of ecological processes on subsurface microbial
community composition. Doing so has revealed key features of
our system unrecognized through application of existing statis-
tical frameworks. We suggest that for many systems a similar
outcome is likely and that novel insights can be gained through
broad application of a framework that couples the approach
used here with that of Stegen et al. (2013). We look forward
to these statistical frameworks being improved through addi-
tional simulation-based evaluations, to experimental tests of the
hypotheses they generate, and to a coupling between the informa-
tion they provide and process-based models aimed at predicting
community composition across environmental conditions.
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