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Magnetic resonance spectroscopy (MRS) studies have found significant correlations
among neurometabolites (e.g., between glutamate and GABA) across individual
subjects and altered correlations in neuropsychiatric disorders. In this article, we
discuss neurochemical associations among several major neurometabolites which
underpin these observations by MRS. We also illustrate the role of spectral editing in
eliminating unwanted correlations caused by spectral overlapping. Finally, we describe the
prospects of mapping macroscopic neurochemical associations across the brain and
characterizing excitation–inhibition balance of neural networks using glutamate- and
GABA-editing MRS imaging.

Keywords: glutamate, GABA, neurochemical correlations, magnetic resonance spectroscopy, spectral editing,
psychiatric disorders
INTRODUCTION

In vivo MRS is the only noninvasive technique that can directly measure brain chemicals in vivo.
Using techniques similar to MRI, MRS can measure concentrations of many neurometabolites as
well as metabolic fluxes from localized brain regions (1). Over the past decades, MRS studies have
found biochemical abnormalities in essentially all neuropsychiatric disorders, providing important
insights into our understanding of etiologies and treatments of various brain diseases. These studies
have, in most cases, focused on alterations in the concentrations of individual brain
neurometabolites by comparing them among different cohorts and/or effects of treatments.

Many significant correlations among neurometabolites and between individual neurometabolites
and non-MRS measures of brain function and disorders have been reported more recently. Altered
correlations have been found in neuropsychiatric disorders, revealing abnormal neurochemical
associations under pathophysiological conditions [e.g., (2–12)]. The strong correlations among N-
acetylaspartate (NAA)/choline in precentral gyrus, midcingulate cortex, and thalamus found in
healthy subjects were absent in patients with amyotrophic lateral sclerosis (4). Correlation between
hippocampal Glx (glutamate + glutamine) and NAA has been demonstrated to be a more sensitive
biomarker differentiating between healthy controls and schizophrenia patients than either
neurometabolite alone (6, 7). In patients with subclinical hepatic encephalopathy the occipital
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lobe phosphodiester measured by 31P MRS and Glx levels were
found to be negatively correlated (13). Interregional correlations
of glutamate and GABA levels have also been reported in many
studies [e.g., (8, 14–17)]. These studies have clearly demonstrated
that neurochemical associations are abnormally altered in many
brain disorders, but the absolute strengths of these correlations
measured by different MRS methodologies have been
inconsistent or controversial [e.g., (5, 14, 15, 18–23)]. In
particular, the effects of spectral overlap on the observed
neurometabolite correlations have yet to be illustrated although
they can significantly confound the intrinsic neurochemical
correlations of interest.

Many studies of neurochemical associations rely on spectral fitting
[e.g., (24)] to extract neurometabolite concentrations from overlapping
signals. When there is significant spectral overlap between two signals
overestimate of one signal is statistically correlated with underestimate
of the other signal and vice versa, even when there exists no
neurochemical correlation between the two signals. In addition, this
type of statistical correlations can propagate due to the intensity
constraints imposed by LCModel (24) or overlapping with
neurochemically correlated signals. When neurometabolite
concentrations are correlated with other measurements (e.g.,
behavior, resting state fMRI functional connectivity, or gene
expression), statistical correlations due to spectral overlap among
MRS measurements can also affect correlations between MRS
measurements and non-MRS measurements.

In this article we review dominant metabolic pathways
connecting major neurometabolites (25–27) which underpin the
neurochemical associations detected by MRS correlation studies.
Non-MRS neurochemical studies of animal models that found
correlated changes in neurometabolite concentrations under
various pathophysiological conditions are also discussed. Monte
Carlo simulations are performed to demonstrate the existence of
statistical correlations that originated from spectral overlap. Finally,
we discuss MRS techniques that eliminate spectral overlap and
associated statistical correlations. We hope that these discussions
will spur interest in developing MRS techniques for mapping
neurochemical associations across the brain to facilitate a variety of
clinical investigations. In particular, since glutamate and GABA play
dominant roles in the excitation–inhibition balance (28, 29) and in
many neuropsychiatric disorders (30–33), MRS characterization of
glutamate–GABA associations among the nodes of neural networks
may provide considerable insight into the interactions between
glutamatergic and GABAergic systems and their abnormalities.
METABOLIC PATHWAYS UNDERLYING
NEUROCHEMICAL ASSOCIATIONS

Predominant metabolic pathways connecting NAA, glutamate,
glutamine, and GABA are reviewed in detail. For clarity, a table
summarizing these pathways is provided (Table 1).

NAA-Glutamate Association
NAA is the most abundant free amino acid derivative in the
CNS. NAA is found almost exclusively within the nervous
Frontiers in Psychiatry | www.frontiersin.org 2
system. In the adult brain, it is mostly confined to neurons. As
such, it is of great clinical interest as it has been considered as a
neuronal marker for assessment of neuronal viability in a variety
of neuropsychiatric disorders using proton MRS. For example,
NAA level is markedly reduced within the infarct of stroke
patients (34), while a higher NAA level is associated with a
better clinical outcome (35). Despite the intense interest in NAA,
both its physiological and metabolic roles in normal brain
functions as well as in neuropsychiatric disorders remain
poorly understood [for a review of the putative role of NAA,
see (36)].

Important metabolic associations exist among major
neurometabolites observable by MRS through precursor–product
relationships and sharing common substrates (26, 37, 38).
Glutamate, the most abundant intracellular amino acids in
mammals, is a key component of intermediary metabolism and a
precursor of numerous cellular components including proteins as
well as neurometabolites such as GABA, N-acetylaspartylglutamate
(NAAG), and glutathione (26). As glutamate is also the primary
excitatory neurotransmitter in the CNS, it is not surprising that the
proton MRS has found abnormal glutamate levels in many
neuropsychiatric disorders including multiple sclerosis (39), major
depression (40), and bipolar disorder (41) where glutamatergic
dysfunction is broadly implicated.

Glutamate is primarily synthesized by transamination from
a-ketoglutarate catalyzed by aspartate aminotransferase (25):

glutamate + oxaloacetate ↔ a � ketoglutarate  +  aspartate

Glutamate also is produced, to a much lesser extent, from a-
ketoglutarate and ammonium via glutamate dehydrogenase, from
glutamine via hydrolysis catalyzed by phosphate-activated
glutaminase, by other transamination reactions that use a-
ketoglutarate as receptor of the amino group, and during protein
turnover (42).

The transaminases of importance for maintenance of glutamate
homeostasis in the brain are mainly aspartate aminotransferase,
branched-chain aminotransferase, and alanine aminotransferase
with aspartate aminotransferase dominating overwhelmingly,
representing >97% of the glutamate-related aminotransferase
activities (26). 13C magnetization transfer MRS experiments have
shown that the aspartate aminotransferase reaction is extremely fast
in the brain in vivo (43). This rapid transamination by aspartate
aminotransferase predominates in the formation of glutamate in the
CNS, forming strong metabolic coupling between glutamate and
aspartate (25). The tight connection between glutamate and
TABLE 1 | Predominant metabolic pathways of NAA, glutamate, glutamine and
GABA in brain.

Neurometabolites Anabolic enzymes Catabolic enzymes

NAA NAA synthase aspartoacylase
glutamate aspartate

aminotransferase,
glutaminase, glutamate
dehydrogenase

aspartate aminotransferase,
glutamine synthetase, glutamate
dehydrogenase, glutamic acid
decarboxylase

glutamine glutamine synthetase glutaminase
GABA glutamic acid

decarboxylase
GABA transaminase
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aspartate becomes conspicuous under many pathophysiological
conditions where the brain is challenged or perturbed metabolically.
For example, during hypoglycemia a decrease in glutamate
concentration was accompanied by an increase in aspartate
concentration (44–46). Similarly, barbiturate anesthesia and
hypothermia were also found to lower the concentration of a-
ketoglutarate accompanied by reduced glutamate concentration and
increased aspartate concentration (47–49). These correlated changes
in glutamate and aspartate were explained by a sizable shift in the
aspartate aminotransferase reaction towards aspartate formation at
the cost of a reduction in glutamate concentration (25, 26). In
contrast, both hypocapnia and hypoxic hypoxia are associated with
an increase in glutamate concentration and a reduction in aspartate
concentration with the aspartate aminotransferase reaction shifting
in the opposite direction (25, 26, 50).

A strong metabolic coupling between glutamate and aspartate
mediated by the rapid and ubiquitous aspartate aminotransferase
reaction also affects NAA, the dominant signal in proton MRS, as
NAA is primarily synthesized from acetyl coenzyme A (CoA)
and aspartate by NAA synthase (51):

acetyl�CoA + aspartate ! CoA + H+ + NAA

In addition to this indirect connection from glutamate to
NAA synthesis via aspartate, both glutamate and NAA are
products of NAAG catabolism catalyzed by N-acetylated-a-
linked-amino dipeptidase (52–54). The deacetylation of NAA
catalyzed by aspartoacylase has also been proposed as a
significant metabolic pathway for NAA to act as a reservoir for
glutamate in brain (55).

Glutamate–Glutamine Association
In contrast to glutamate, which is predominantly located in
glutamatergic neurons, glutamine is primarily an astrocytic
chemical. In the MRS literature glutamate + glutamine is often
collectively referred to as Glx as at lower magnetic fields it has
Frontiers in Psychiatry | www.frontiersin.org 3
been difficult to separate the two spectroscopically. Abnormal
glutamine concentrations have been found in several brain
disorders including cancer, hepatic encephalopathy, and other
neuropsychiatric disorders (56, 57).

Although the overall glutamate pool in neural tissues rapidly
turns over fueled by primarily glucose under normal
physiological conditions, glutamate released from nerve
terminals is replenished by astroglial glutamine via the
glutamate–glutamine neurotransmitter cycle [Figure 1; (26,
59)]. The negatively charged highly hydrophilic glutamate
cannot diffuse across cell membranes. The concentration of
glutamate in the extracellular space is extremely low due to its
rapid uptake into the astroglia facilitated by high-affinity Na+-
dependent transport systems against a large concentration
gradient (60–62). Once taken up into the astroglial cells,
glutamate is converted into glutamine by glutamine synthetase:

glutamate + NH3 + adenosin triphosphate 

! glutamine + adenosine diphosphate + Pi

or oxidized by assimilation into the tricarboxylic acid cycle of
astroglial cells (26, 63). Once formed, glutamine readily enters
nerve terminals by its own low affinity transport system or by
simple diffusion. There the phosphate-activated glutaminase
converts it into glutamate (26):

glutamine + H2O ! glutamate  +  NH+
4

A large number of neurochemical as well as autoradiographic
studies have confirmed that glutamate is selectively taken up by
astroglial cells and then converted into glutamine, while
glutamine preferentially enters the neurons and is converted
into glutamate there (64). In vivo 13C and 15N MRS studies have
quantitatively measured the glutamate–glutamine cycling flux in
rodent and human brains [e.g., (58, 65–69)]. Results from these
studies have demonstrated that the glutamate–glutamine cycle
FIGURE 1 | Schematic diagram of the glutamate–glutamine neurotransmitter cycle between neurons and astroglia (58). Glutamate (Glu) is taken up from the
synaptic cleft into astroglia. There glutamate is converted to glutamine (Gln) by glutamine synthetase. The inactive glutamine is released by the astroglia, enters the
neurons, and then is converted into glutamate by phosphate-activated glutaminase. Glc, glucose; a-KG, a-ketoglutarate; NH3, ammonia.
August 2020 | Volume 11 | Article 802
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between glutamatergic neurons and astroglia is metabolically
significant, providing a major connection between glutamate and
glutamine in the brain (70). In addition, over the range of
glutamate concentrations found in the nerve terminals,
product inhibition appears to be the main mechanism of
control of glutaminase activity with glutamate significantly
attenuating the activity of glutaminase (71).

The metabolic connection between glutamate and glutamine is
manifested in many brain disorders and animal models. For
example, elevated ammonia level in the brain is associated with
increased glutamine synthesis for ammonia detoxification (67). It
has been reported that in hyperammonemia and hepatic
encephalopathy the elevation of glutamine level in the brain is
accompanied by a reduced glutamate level as glutamate acts as a
receptor for the excessive ammonia (72). The changes in glutamate
and glutamine levels, however, do not necessarily go in opposite
directions. Both glutamate and glutamine are abundant in the brain.
Despite efforts to understand the roles of glutamate and glutamine,
the reason for maintaining relatively high concentrations of
glutamate and glutamine in the brain is still poorly understood. It
is possible that a high concentration of glutamate and glutamine
facilitates the generally high metabolic activities in the brain because
glutamate and glutamine are key components of intermediary
metabolism (25). They are also precursors of many other cellular
components (26). Their role as “energy reservoirs” is particularly
clear when the brain is under metabolic stress. For example, when
glucose is scarce, such as in hypoglycemia, both glutamate and
glutamine act as energy fuels. As a result, the concentrations of both
glutamate and glutamine are reduced in synchrony during
hypoglycemia and in many other pathophysiological conditions
when normal oxidative metabolism is impaired (45, 73).

Glutamate–GABA Association
While glutamate is the major excitatory neurotransmitter in the
mammalian brain, GABA is the major inhibitory neurotransmitter.
Since the initial detection of reduced GABA levels in epilepsy
patients by MRS (74) and a strong correlation between GABA
levels and seizure control in epilepsy patients treated by vigabatrin
(75), MRS of GABA has greatly advanced both in terms of MRS
methodologies and their clinical applications in studying
GABAergic abnormalities in neuropsychiatric disorders.

Like glutamate, GABA metabolism proceeds through
important intermediates of the tricarboxylic acid cycle. When
GABA was first discovered (76) it was realized that GABA was
formed from glutamate. Later studies identified that the principal
pathway of GABA goes through a-decarboxylation of glutamate
via glutamic acid decarboxylase which converts glutamate
directly into GABA (77):

glutamate ! GABA  +  CO2

The source of the GABA precursor is believed to be
dominated by neuronal glucose with astroglial glutamine
playing a smaller role (78–80). GABA synthesis from
putrescine and other polyamines is metabolically insignificant
in the brain although polyamines play an important role in the
developing brain (81).
Frontiers in Psychiatry | www.frontiersin.org 4
A fundamental aspect of glutamate–GABA association is the
excitation–inhibition balance in the brain (32, 82) because of their
roles as the dominant excitatory and inhibitory neurotransmitters,
respectively, in the CNS. Glutamatergic neurons (e.g., cortical
pyramidal neurons) receive a significant degree of GABAA-
mediated inhibition through interneurons (83). Balanced
excitation and inhibition facilitate normal brain functions, and
failure to maintain excitation–inhibition balance underlies
dysfunction in many brain disorders (32, 33, 84). Many studies
have also revealed altered glutamate and GABA. For example,
GABA levels were found to decrease, whereas Glx levels increased
with increasing visual input in the occipital cortex of healthy
subjects (85). Both glutamate and GABA increased following
vigorous exercise (86). In autistic patients the frontal lobe
[GABA]/[Glu] ratio was found to be significantly lower,
suggesting abnormality in the regulation between GABA and
glutamate (87). Abnormalities in MRS measures of glutamate
and/or GABA in many other neuropsychiatric disorders have also
been reported and reviewed [e.g., (40, 88–90)].

Long range excitatory and inhibitory interactions between
functionally connected brain regions are well established (91–93).
The strong coupling between glutamatergic neurotransmission and
total GABA level is supported by a large body of in vitro and in vivo
evidence [e.g., (16, 75, 94–100)]. A large number of neuroimaging
studies have also shown that total glutamate or Glx concentration is
significantly correlated with neural activity or glutamatergic
neurotransmission [e.g., (28, 101–103)]. Correlations of total
glutamate and total GABA levels locally and among regions
functionally connected in a specific neural network have also been
reported [e.g., (15–17, 19)].
STATISTICAL CORRELATIONS AMONG
MRS SIGNALS DUE TO SPECTRAL
OVERLAP

Many neurometabolites have similar resonant frequencies,
leading to spectral overlap among MRS signals. Effects of
spectral overlap on the Cremer–Rao lower bounds of extracted
neurometabolites have been analyzed previously (104).
Extracting the concentrations of neurometabolites by spectral
fitting is essentially mapping the acquired MRS spectrum (spec)
into a vector (conc) consisting of concentrations by inverting the
matrix equation spec = basis • conc (24). Here, basis is a matrix
consisting of basis spectra of the component neurometabolites,
which transforms the concentration vector conc into the fitted
spectrum that approximates spec in the sense of least squares.
Overlapping neurometabolites become statistically correlated
through the covariance matrix (COV) of conc (105):

COV(conc) = s 2(basis† •  basis)−1

where † denotes Hermitian transposition and s2 is the noise
variance of the measured spectrum spec. The off-diagonal
elements (proportional to the square of cross-correlation
coefficients) of COV(conc) depend on the frequency separation
August 2020 | Volume 11 | Article 802
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among the resonances of the neurometabolites in basis. Figure 2
shows Monte Carlo simulations of the correlation between two
singlet peaks as a function of their separation in the frequency
domain. Figure 2A shows the correlation between conc1 and conc2
across individual fits when spectral overlap between the two signals
is minimal. The correlation between conc1 and conc2 when their
frequency separation equals their half-height linewidth is plotted in
Figure 2B. Finally, the correlation between conc1 and conc2 when
their frequency separation equals 0.5* half-height linewidth is
plotted in Figure 2C. As shown by Figure 2 statistical correlation
between these two neurochemically unrelated signals increases as
their spectral overlap increases. Here the large correlation values
occur when the two signals happen to exhibit similar chemical
shifts, not because one signal influences the other neurochemically.
This simple example of two overlapping singlets illustrates a point of
caution in the interpretation of neurometabolite correlation results.
For multiplets and neurometabolites with multiple resonances,
spectral overlap occurs when two resonance lines overlap each
other even when the chemical shifts are not very close.

The off-diagonal elements of the covariance matrix become
highly significant in the presence of severe spectral overlap such
as in short echo time MRS spectra. In addition to overlapping
neurometabolites, a strong baseline can also cause statistical
correlations (106, 107) because the baseline, which arises from
macromolecules and/or lipids and residual water, overlaps with
essentially all neurometabolite signals. Figure 3 compares
spectral fitting of two 3 T short echo time single voxel in vivo
spectra by the commercial LCModel software. The spectrum on
the left was acquired using short echo time Point RESolved
Spectroscopy (PRESS) technique from a cubic voxel in the
anterior cingulate cortex of a healthy subject at 3 T (echo time =
35ms, voxel size = 8 ml). The spectrum on the right was generated
by broadening the linewidths of the spectrum on the left by 2.0 Hz
and adding random noise to maintain the same signal-to-noise
ratio (107). Both spectra in Figure 3 were fitted using LCModel
with the same default settings (24). With 2.0 Hz line-broadening
the LCModel baseline was conspicuously stronger around the
spectral region near 2.35 ppm where glutamate and the aspartyl
Frontiers in Psychiatry | www.frontiersin.org 5
moiety of NAA resonate. Both NAA and glutamate levels reported
by LCModel were lowered by approximately the same amount
(~11%) after the line-broadening [n = 10; (107)]. This reduction in
the extracted metabolite concentrations was found to be generally
more pronounced with greater line-broadening. Although the
concentrations of neurometabolites in the two spectra of Figure
3 are identical, the LCModel produced lower neurometabolite
levels and a more intense baseline after 2.0 Hz line-broadening.
Because of the spectral overlap between baseline and neurometabolites,
overestimating (underestimating) the baseline causes underestimating
(overestimating) neurometabolites and vice versa. Neurometabolites
overlapping with the same broad baseline peak are similarly
underestimated (overestimated) due to the broad baseline signals.
This in turn, contributes to positive statistical correlations
among those neurometabolites regardless of the underlying
neurochemical associations.

Spectral fitting techniques such as the LCModel heavily rely on
the linewidth difference between neurometabolites and background
signals to separate them. Broad neurometabolite peaks in the
presence of a strong baseline, as often seen in clinical short echo
time MRS data, can lead to significant quantification errors and
unwanted statistical correlations because of the large baseline-
metabolite covariances. The results in Figure 3 are also
corroborated by an earlier study which quantitatively analyzed the
estimation uncertainties caused by the baseline using Cramer–Rao
lower bound (CRLB) of the baseline (106), confirming that the
estimation uncertainty significantly increases with decreased
baseline smoothness and increased spectral linewidths.
PROSPECTS FOR MAPPING
MACROSCOPIC NEUROCHEMICAL
ASSOCIATIONS BY MRS IMAGING

Although group comparison of neurometabolite correlations between
healthy controls and patients reveals altered neurochemical
associations in brain disorders, determining the absolute strength
A B C

FIGURE 2 | Monte Carlo simulation of statistical correlation between two unrelated Lorentzian singlets with signal-to-noise ratio = 20. The half-height linewidth of the
two peaks is 8 Hz. The same spectral fitting process was repeated 1,000 times with the same noise level but different noise realizations. For 40 Hz (A), 8 Hz (B), and
4 Hz (C) frequency separations between the two singlets, the correlation coefficient was found to be −0.04, −0.63, and −0.98, respectively.
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of these correlations is important for interpreting clinical findings
(20, 21) and for potentially relaying interregional associations
across the brain. As linewidth variations in clinical MRS studies
are very common, our analysis of statistical correlations that
originated from the spectral overlap in the section Statistical
Correlations Among MRS Signals Due to Spectral Overlap has
demonstrated that spectral overlap should be eliminated or
minimized when the absolute strength of neurometabolite
correlations is to be determined. To facilitate measurement of the
absolute strength of neurochemical associations, MRS techniques
that result in flat baselines and isolated signals of interest would be
ideal. Many existing single voxel spectral editing techniques
generate flat or weak baselines while eliminating or minimizing
overlapping resonances (74, 108–115), which are likely suited for
measuring local or intraregional neurochemical associations.

Mapping macroscopic neurochemical associations across the
human brain has the exciting potential to broadly impact studies
of normal brain functions as well as neuropsychiatric disorders
(32, 116, 117). Here we discuss the prospects for measuring
interregional excitation–inhibition balance (32, 118–120) by
spectroscopic imaging of spectrally resolved glutamate and
GABA. Participant motion is a major issue in scanning many
patients of neuropsychiatric disorders. Studying these patients
using chemical shift imaging is technically challenging because of
the relatively long scan time required for phase encoding. As
artifacts in chemical shift images caused by motion are hard
to detect, they can lead to erroneous diagnosis and data
interpretation (121). It is well-known that participant motion
inside a magnetic field causes changes in resonant frequencies.
Incorporating spectral editing techniques based on highly
selective radiofrequency pulses into chemical shift imaging
therefore can lead to even larger errors due to the additional
effects of carrier frequency mismatch on spectral editing yield.

To minimize error due to unavoidable patient movement
during extended scan time necessary for phase encoding, we
Frontiers in Psychiatry | www.frontiersin.org 6
focus on techniques that can resolve glutamate or GABA in a
single shot with relatively weak baselines at 7 T. Spectral isolation
of glutamate or GABA accompanied with a weak baseline will
minimize the unwanted correlations that originated from
spectral overlap (107). The emphasis on minimizing spectral
overlap for measuring interregional neurometabolite correlations
may seem counterintuitive. However, it is necessary because, for
example, overlapping with interregionally correlated signals can
relay the correlation to overlapped signals. To spectrally resolve
glutamate or GABA over an extended brain region, highly
frequency-selective pulses popular for single voxel spectral
editing cannot be used because of the unavoidable and
significant residual B0 inhomogeneity across a large volume in
the brain, especially at high magnetic field strength. Highly
frequency-selective pulses are sensitive to patient movement,
system instability, and B0 inhomogeneity as they will miss or
partially miss the editing target in part of the slice(s) where
resonance frequencies are shifted away (122, 123).

Weak or nearly flat baselines are automatically produced at
long echo times because of the shorter T2 values of macromolecules
(1). Serendipitously, the strongly coupled glutamate H4 (2.35 ppm)
forms an intense pseudo singlet at a relatively long echo time
(~100 ms) at 7 T (111, 112). The resonances of glutamine H4 at
2.45 ppm and glutathione glutamyl H4 at 2.49 ppm also form
pseudo singlets at ~100 ms echo time (see Figure 4). Therefore,
glutamate can be spectrally resolved in a single shot without using
any spectrally selective pulses at ~100 ms echo time at 7 T (111).
At 7 T the multiplet signal of the aspartyl moiety of NAA at 2.49
ppm still overlaps with glutamine H4 and glutathione glutamyl
H4 at ~100 ms echo time (111). The overlapping NAA aspartyl
moiety signals can be eliminated using a J-suppression pulse
acting on the a-H of the aspartyl moiety of NAA at 4.38 ppm
(112). The J suppression pulse can be made band-selective with a
flat top frequency profile (124) to accommodate variations in B0.
Either because no frequency selective pulses are needed (111) or
A B

FIGURE 3 | (A) Single voxel short echo time spectrum acquired from the anterior cingulate cortex of a healthy subject at 3 T. Data was fitted using LCModel. (B)
LCModel generated a different baseline from the same data after 2.0 Hz line-broadening and noise injection to maintain the same signal-to-noise ratio. The large
change in baseline around 2.35 ppm (marked by an arrow) simultaneously reduced fitted NAA and glutamate concentrations, therefore, causing positive correlation
between NAA and glutamate even though the only difference between the two spectra is their linewidth (i.e., no correlations). Reprinted from reference (107) with
permission from Elsevier.
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with band-selective J suppression (112), chemical shift imaging of
glutamate is feasible at 7 T in the presence of significant patient
motion and residual static magnetic field inhomogeneity across
the slice(s).

Multiple quantum filtering can be used to edit GABA in a
single shot (125–128). It is also possible to generate a flat baseline
using multiple quantum filtering (127). Chemical shift imaging
of GABA over a large volume in the brain is challenging even at
the high magnetic field strength of 7 T as all available GABA
editing techniques rely on frequency selective pulses that
differentially act on GABA H3 at 1.91 ppm and GABA H4 at
Frontiers in Psychiatry | www.frontiersin.org 7
3.02 ppm. At 7 T, the chemical shift dispersion between GABA
H3 and GABA H4 is 328 Hz. This relatively large chemical shift
difference makes it possible to use band-selective pulses with a
flat top (124) to accommodate changes in B0 due to patient
movement, system instability, and residual B0 inhomogeneity
while still affording a close to uniform editing yield. Figure 5
proposes a band-selective multiple quantum filtering scheme
that combines spectral selectivity while allowing signal to shift
within the flat passband. This multiple quantum GABA editing
scheme is expected to tolerate a large frequency shift with GABA
H3 lying within the flat bandwidth and GABA H4 staying
outside of the downfield transition band of the band-selective
pulse acting on GABA H3.

Although we have focused on discussing chemical shift
imaging of spectrally resolved glutamate and GABA without
using highly selective editing pulses for the magnetic field
strength of 7 T, similar ideas may also be developed for lower
magnetic field strengths such as 3 T. For example, multiecho
time averaging at 3 T can isolate glutamate with a nearly flat
baseline without using any spectral editing pulses (109). Directly
combining this approach with conventional phase-encoding for
chemical shift imaging would not be feasible due to the large
number [e.g., (32)] of echoes required for each phase encoding
step. Instead of using evenly spaced echo times, the averaging
effect may be obtained using fewer echo times with numerical
optimization. Many fast imaging strategies such as echo-planar
readout can also greatly accelerate data acquisition of chemical
shift imaging experiments.

The coordinated variations of glutamate and GABA across
the brain can be assessed using chemical shift images of
spectrally resolved glutamate and GABA. The absolute
strengths of interregional correlations of spectrally resolved
glutamate and GABA have the exciting potential for
characterizing excitatory–inhibitory connections among the
nodes of neural networks, therefore providing novel
FIGURE 4 | Single voxel 7 T spectrum acquired using a single-shot echo
time optimized PRESS sequence (112) without signal averaging. Voxel size =
2 × 2 × 2 cm3. Echo time = 106 ms. Line broadening = 8 Hz. Number of
averages = 1. NAA, N-acetylaspartate; Glu, glutamate; Gln, glutamine; GSH,
glutathione; tCr, total creatine; tCho, total choline; mI, myo-inositol. Glutamate
H4 at 2.35 ppm was spectrally resolved with an approximately flat baseline.
FIGURE 5 | A proposed scheme for band-selective multiple quantum filtering of GABA. A band-selective refocusing pulse prepares GABA into multiple quantum
state while leaving glutathione in single quantum state by avoiding refocusing its cysteinyl a-H at 4.56 ppm. A band-selective 90° pulse converts the double quantum
coherence into observable single quantum coherence. The frequency separation between GABA H4 and GABA H3 at 7 T is 164 × 2 = 328 Hz. Asp, aspartate;
GSH, glutathione; Cr, creatine. The chemical shifts (in ppm) of the resonance signals are placed below their labels.
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parameters for gauging interregional excitation–inhibition
balance, the disruption of which is implicated in many
neuropsychiatric disorders [e.g., (33, 103, 117, 129, 130)].
CONCLUSIONS

Previous neurochemical studies of animal models have revealed
coordinated changes in major neurometabolites under various
pathophysiological conditions which were attributed to the well-
studied metabolic pathways connecting them. Recent MRS
findings of neurometabolite correlations in healthy subjects
and altered correlations in patients have further corroborated
these associations, and their disruption is a hallmark of many
neuropsychiatric disorders. To measure the absolute strength of
these correlations, it is necessary to use spectral editing
techniques to minimize or eliminate statistical correlations
among MRS signals that originated from spectral overlap.
Finally, chemical shift imaging of spectrally resolved glutamate
and GABA is technically feasible at 7 T. It is hoped that the
Frontiers in Psychiatry | www.frontiersin.org 8
prospects for eliminating the confounding statistical correlations
due to spectral overlap will reduce controversies in the field and
generate further interest in characterizing local and interregional
neurochemical associations especially glutamate–GABA
interactions in the brain for studying neuropsychiatric disorders.
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