
Research Article
PPCM: Combing Multiple Classifiers to Improve
Protein-Protein Interaction Prediction

Jianzhuang Yao,1 Hong Guo,1 and Xiaohan Yang2

1Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
2Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Correspondence should be addressed to Xiaohan Yang; yangx@ornl.gov

Received 7 January 2015; Revised 22 July 2015; Accepted 26 July 2015

Academic Editor: Ian Dunham

Copyright © 2015 Jianzhuang Yao et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Determining protein-protein interaction (PPI) in biological systems is of considerable importance, and prediction of PPI has
become a popular research area. Although different classifiers have been developed for PPI prediction, no single classifier seems
to be able to predict PPI with high confidence. We postulated that by combining individual classifiers the accuracy of PPI
prediction could be improved. We developed a method called protein-protein interaction prediction classifiers merger (PPCM),
and this method combines output from two PPI prediction tools, GO2PPI and Phyloprof, using Random Forests algorithm. The
performance of PPCM was tested by area under the curve (AUC) using an assembled Gold Standard database that contains
both positive and negative PPI pairs. Our AUC test showed that PPCM significantly improved the PPI prediction accuracy
over the corresponding individual classifiers. We found that additional classifiers incorporated into PPCM could lead to further
improvement in the PPI prediction accuracy. Furthermore, cross species PPCM could achieve competitive and even better
prediction accuracy compared to the single species PPCM.This study established a robust pipeline for PPI prediction by integrating
multiple classifiers using Random Forests algorithm. This pipeline will be useful for predicting PPI in nonmodel species.

1. Introduction

Protein-protein interaction (PPI) networks play important
roles inmany cellular activities, including complex formation
and metabolic pathways [1], and identification of PPI pairs
may provide important insights into the molecular basis of
cellular processes [2]. Several high-throughput experimen-
tal approaches have been developed for PPI identification,
including two-hybrid assays [3], tandem affinity purification
followed by Mass Spectrometry [4], and protein microarrays
[5]. These high-throughput methods have produced a large
amount of PPI data, which have been accumulated in the
public PPI databases, such as DIP [6] and STRING [7]. How-
ever, the results generated by these high-throughputmethods
may lack reliability [8] and have limited coverage of PPIs in
any given organism [9]. Additional experimental information
for PPI is also available, including the X-ray structures of
protein complexes in the PDB databank [10]. Nevertheless,
the information from protein structure complexes may be
limited compared to the large volume of protein sequences
available in the public databases [11].

To overcome the limitations in PPI identification using
experimental methods, computational approaches have been
developed to achieve large-scale PPI prediction in vari-
ous organisms [12–17]. Traditional input features for PPI
prediction are mainly from biological data sources, which
may be divided into four categories: Gene Ontology-
(GO-) based, structure-based, network topology-based, and
sequence-based features [18]. Each individual computational
PPI prediction method utilizes only one or few input
sources for PPI prediction. For example, BIPS only takes
protein sequences as input for Interolog searching [19].
Bio::Homology::InterologWalk takes protein sequences and
well-known PPI networks as input [12]. Although these
methods using single or several features as input can generate
fairly accurate results, they are unable to take advantage
of other input features that could be helpful for PPI pre-
diction. Thus, machine learning methods (e.g., Bayesian
classifiers [20], Artificial Neural Networks (ANN) [21], Sup-
port Vector Machines (SVM) [22], and Random Forests
[23]) have been developed to integrate multiple features
as inputs. Machine learning approaches have shown better
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performances compared to some other methods; among
them, Random Forests method seems to show the best
performance [24]. In addition, PPI prediction is associated
with imbalanced data problem. Zhang et al. [25] proved that
the imbalanced data problem could be solved by ensemble
methods. Augusty and Izudheen [26] further showed that
Random Forests method could improve Zhang’s methods in
dealing with the imbalanced data problem.

In addition to the progress in identification of informative
features for PPI prediction, a variety of algorithms have been
developed to improve the PPI prediction accuracy [18]. For
instance, Phylogenetic Profiling (PP) uses genome-scale and
network-based features as inputs for PPI prediction founded
on the assumption that the cooccurrence of two proteins
across taxa indicates a good chance for them to function
together [27, 28]. Although PPI prediction by PP has shown
good performance in prokaryotes, it has poor performance
in PPI prediction in eukaryotes, probably due to modularity
of eukaryotic proteins, biased diversity of available genomes,
and large evolutionary distances [29, 30]. Several studies
indicate that the accuracy of PPI prediction by PP can be
improved by selecting the appropriate reference taxa and
matching the reference taxa to the known PPI network [30–
32]. Recently, Simonsen et al. developed a PPI prediction
software Phyloprof [33] that integrates four PPI prediction
methods including the original PP method [27], mutual
information (MI) method [34], hypergeometric distribution
based method [35], and the extension of the hypergeometric
distribution (RUN) method [36]. Also, Phyloprof provides
six reference taxa optimizationmethods including Tree Level
Filtering, Iterative Taxon Selection, Genetic Algorithm, and
Tree based search [33, 37]. Furthermore, there are four
PPI networks available in Phyloprof, including the networks
from Escherichia coli (EC), Saccharomyces cerevisiae (here-
after referred to as SC), Drosophila melanogaster (DM), and
Arabidopsis thaliana (AT). In short, Phyloprof provides a
series of PPI prediction classifiers as a result of various
combinations of PPI prediction methods, reference taxa
optimization methods, and networks from different species.

Another sophisticated PPI prediction software called
GO2PPI has been developed to use Gene Ontology and
PPI networks as input [38]. By introducing a concept called
inducer to combinemachine learning and semantic similarity
techniques, GO2PPI can provide a series of PPI predic-
tion classifiers that are combinations of machine learning
methods (i.e., Näıve Bayes (NB) and Random Forests), GO
categories (i.e., biological process (BP), cellular component
(CC), and molecular function (MF)), and networks from
seven species (Homo sapiens (HS), Mus musculus (MM), S.
pombe (SP), SC, AT, EC, and DM).

A variety of ensemble classifiers have been proposed in
different bioinformatics studies and showed generally better
performance than individual classifiers [39–41]. To build
on this research, we developed a pipeline PPCM (i.e., PPI
prediction classifiers merger) to enhance the PPI prediction
accuracy by merging multiple PPI prediction classifiers using
RandomForests algorithm. To the best of our knowledge, this
study is the first effort tomergemultiple classifiers (Phyloprof
and GO2PPI) by machine learning for PPI prediction.

2. Methods

2.1. Construction of a Gold Standard Dataset. We created
training and test dataset containing direct interacted protein
pairs of yeast for protein-protein interaction (PPI) prediction
using a method described by Qi et al. [24]. Briefly, 2865
positive PPI pairs were obtained from the DIP database
[6]. These direct interaction protein pairs were tested to
be highly confident PPI pairs by small-scale experiments.
Since there was insufficient high-confidence negative data
[42], negative PPI pairs were generated by randomly pairing
proteins followed by removing the positive PPI pairs [43].
Finally, the positive PPI pairs and the negative PPI pairs were
combined by a ratio of 1 to 100 into a “Gold Standard” dataset.
It has been proved that the AUC value is not sensitive to the
different positive-to-negative ratios (e.g., from 1 : 2 to 1 : 100)
by both GO2PPI and Phyloprof.

2.2. Selection of Features for PPI Prediction. The results of PPI
prediction classifiers were used as features of PPCM. Specif-
ically, Phyloprof has three kinds of input parameters, includ-
ing four PPI prediction methods, eight Reference Taxa Opti-
mizationmethods, and four PPI networks.Without the time-
consuming PPI predictionmethod “RUN,” there were 96 dif-
ferent classifiers based on different combinations of param-
eters provided by Phyloprof (Table S2 in Supplementary
Material available online at http://dx.doi.org/10.1155/2015/
608042). As mentioned above, GO2PPI has three kinds of
input parameters as well, including two machine learning
methods, seven GO terms or terms combinations (BP, CC,
MF, BPCC, BPMF, CCMF, and BPCCMF), and seven PPI
networks. In the same way, there were 98 different combina-
tions of classifiers provided by GO2PPI (Table S1). We used
combined GO terms in this study, because the best accuracy
was achieved by the integration of three GO terms in the
GO2PPI paper [38].

2.3. PPI Prediction Using PPCM Pipeline. The PPCM pipe-
line, as illustrated in Figure 1, was developed to combine
multiple classifiers for enhancing PPI prediction accuracy.
Specifically, a protein pair is first evaluated by classifiers
provided by PPI prediction software, such as GO2PPI [38]
and Phyloprof [33]. Then, the classification scores from
individual classifiers are used as input features to generate the
final PPI prediction score using Random Forests algorithm,
implemented in the Berkeley Random Forests package [44].
GO2PPI has 98 PPI prediction classifiers, amongwhich 14 are
SC-related and 84 are not SC-related (cross species) classifiers
(Table S1). Phyloprof has 96 PPI prediction classifiers, among
which 24 are SC-related and 72 are not SC-related (cross
species) classifiers (Table S2).

2.4. Evaluation of PPI Prediction Accuracy. The aforemen-
tioned Gold Standard database that contains about 30,000
PPI pairs with a positive-to-negative PPI ratio of 1 : 100 was
used to evaluate the PPI prediction accuracy. The following
measures were used to evaluate PPI prediction results: the
true positive rate (TPR, also called sensitivity), defined as
the ratio of correctly predicted positive PPI pairs among
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Figure 1: The PPCM pipeline for protein-protein interaction prediction. Given a pair of query proteins QA and QB, their interaction
possibility was first predicted by each of the 194 classifiers from GO2PPI and Phyloprof. Then, the classification scores were merged using
Random Forests algorithm to generate the final PPI prediction score. Nine PPI classification scores were provided by PPCM. “SC” represents
PPI networks in Saccharomyces cerevisiae. “Cross” represents all PPI networks except SC. “All” represents all PPI networks in both SC and
cross species.

all positive PPI pairs, the true negative rate (TNR, also
called specificity), defined as the ratio of correctly predicted
negative PPI pairs among all negative PPI pairs, and the false
positive rate (FPR, also called Type I error), defined as the
ratio of incorrectly predicted PPI pairs among all negative
PPI pairs. FPR is one minus TNR. The receiver operating
characteristic (ROC) curves were created by plotting TPR
versus FPR. The area under the curve (AUC) was used as
a measure of the prediction accuracy. The AUC value was
calculated using the following equation:

AUC = 1
2

𝑛

∑

𝑘=1
((𝑋
𝑘
−𝑋
𝑘−1) (𝑌𝑘 +𝑌𝑘−1)) , (1)

where 𝑋
𝑘
is the FPR at 𝑘 pair and 𝑌

𝑘
is the TPR at 𝑘 pair in

the ranked PPI pair list. The prediction process was repeated
25 times, and the average AUC value was reported.

We evaluated the PPI prediction accuracy of PPCMs and
the classifiers in GO2PPI and Phyloprof using AUC. We
introduced three categories of PPCM, including GO2PPI,
Phyloprof, and GO2PPI + Phyloprof, with each further
divided to three subcategories: SC, cross species, and all
species (i.e., SC plus cross species) (Figure 1).

3. Results and Discussion

3.1. Performance of PPCM in GO2PPI Category. Using our
Gold Standard dataset, the average AUC of the 14 SC-related

classifiers in GO2PPI (Table S1) was 0.63 and rf |bpcc|SC was
the most accurate classifier, with an AUC of 0.64, among
these 14 classifiers (Figure 2(a)). The average AUC of the 84
cross species related classifiers in GO2PPI (Table S1) was 0.57
and rf |bpcc|HSwas the most accurate classifier, with an AUC
of 0.61, among these 84 classifiers (Figure 2(b)). The average
AUCof all the 96 (all species) classifiers inGO2PPI (Table S1)
was 0.58 and rf |bpcc|SCwas themost accurate classifier, with
an AUC of 0.64, among these 98 classifiers (Figure 2(c)). The
AUCs of PPCMs are 0.70, 0.68, and 0.70 for SC, cross species,
and all species PPCM, respectively (Figure 2). These results
indicate that PPCMs significantly improved PPI prediction
accuracy compared with their corresponding classifiers in
GO2PPI category.

Compared with the most accurate classifier in GO2PPI
category, the cross species PPCM improves AUC by 11%.
The improvement of PPCM in SC PPCM was only 9%
(Figure 2), indicating that the cross species PPCM had better
performance than the SC classifier.The better performance of
cross species PPCM (containing 84 features) than SC PPCM
(containing 14 features) suggests that the larger number of
features incorporated into PPCM enhanced PPI prediction
accuracy in GO2PPI category.

3.2. Performance of PPCM in the Phyloprof Category. Again,
using our Gold Standard dataset, the average AUC of the 24
SC-related classifiers in Phyloprof (Table S2) was 0.64 and
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Figure 2: Comparison of PPI prediction accuracy in the GO2PPI category. (a) PPI prediction based on classifiers related to SC. (b) PPI
prediction based on classifiers related to cross species. (c) PPI prediction based on classifiers related to all species. “Average” represents the
meanAUC of all the classifiers in each category. “Highest” represents the classifier with highest AUC among all the classifiers in each category.
Error bars show standard deviation. “∗” indicates that AUC of PPCM was significantly (𝑃 value < 0.05; 𝑡-test) higher than that of the most
accurate classifier in each category.

SC|mi|et was the most accurate classifier, with an AUC of
0.71, among these 24 classifiers (Figure 3(a)). The average
AUC of the 72 cross species related classifiers in Phyloprof
(Table S2) was 0.61 and EC|mi|et was the most accurate
classifier, with an AUC of 0.72, among these 84 classifiers
(Figure 3(b)). The average AUC of all the 96 (all species)
classifiers in Phyloprof (Table S2) was 0.62 and mi|et|EC was
themost accurate classifier, with anAUCof 0.72, among these
96 classifiers (Figure 3(c)). The AUCs of PPCMs are 0.72,
0.76, and 0.77 for SC, cross species, and all species PPCM,
respectively (Figure 3). These results indicate that PPCMs

significantly improved PPI prediction accuracy compared
with their corresponding classifiers in the Phyloprof category.
Compared with the most accurate classifier in the Phyloprof
category, the cross species PPCM improvesAUCby 6%,while
the improvement by SC PPCM is only 1% (Figure 3), indicat-
ing that the cross species PPCM had better performance in
AUC improvement. The better performance of cross species
PPCM(containing 72 features) than SCPPCM(containing 24
features) suggests thatmore features incorporated into PPCM
could enhance PPI prediction accuracy in the Phyloprof
category.
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Figure 3: Comparison of PPI prediction accuracy in the Phyloprof category. (a) PPI prediction based on classifiers related to SC. (b) PPI
prediction based on classifiers related to cross species. (c) PPI prediction based on classifiers related to all species. “Average” represents the
meanAUC of all the classifiers in each category. “Highest” represents the classifier with highest AUC among all the classifiers in each category.
Error bars show standard deviation. “∗” indicates that AUC of PPCM was significantly (𝑃 value < 0.05; 𝑡-test) higher than that of the most
accurate classifier in each category.

3.3. Performance of PPCM in GO2PPI + Phyloprof Category.
After separate evaluation of PPCM in the GO2PPI and
Phyloprof categories, we assessed the performance of PPCM
in the GO2PPI + Phyloprof category which combined all
the classifiers in both GO2PPI and Phyloprof. The AUCs
of PPCMs in the GO2PPI + Phyloprof category were 0.83,
0.85, and 0.86 for SC, cross species, and all species PPCM,
respectively (Figure 4), which are significantly higher than
those of PPCMs in either GO2PPI or Phyloprof category
separately (Figures 2 and 3). Compared with the highest
AUCs of individual classifiers in GO2PPI and Phyloprof

category, the cross species PPCM improves AUC by 18% and
the improvement by SC PPCM was 17% (Figures 2, 3, and
4). These results indicate that PPCM based on all the 194
classifiers from both GO2PPI and Phyloprof could generate
more accurate PPI prediction than PPCM based on a fewer
number of classifiers in GO2PPI or Phyloprof individually,
further supporting the aforementioned premise that more
features incorporated into PPCM would enhance PPI pre-
diction accuracy. In summation, based on our combinatorial
approach, our cross species PPCM results yield informative
predictions that will help build high-quality PPI networks
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Figure 4: Comparison of PPI prediction accuracy in the GO2PPI + Phyloprof category. Error bars show standard deviation.

for nonmodel organisms. Such prediction will be valuable
for nonmodel organisms that lack biological data and PPI
prediction software for nonmodel organisms [18].

Recently, ensemble classifiers, for example, LibD3C, were
developed based on a clustering and dynamic selection
strategy [39]. In order to compare the performance of
RandomForests method applied by our PPCMwith the latest
ensemble classifiers, we performed ensemble classifiers cal-
culation on our all species training and testing datasets of the
GO2PPI + Phyloprof category (see Figure 4) by LibD3C in
Weka-3.7.12 with default setting.The average AUCby LibD3C
was 0.86 ± 0.03 which is in an excellent agreement with
our Random Forests result (0.86 ± 0.02). Therefore, Random
Forests method applied by our PPCM shows very similar
performance with the latest ensemble classifiers (LibD3C).
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López, E. Feliu, and B. Oliva, “Understanding protein–protein
interactions using local structural features,” Journal ofMolecular
Biology, vol. 425, no. 7, pp. 1210–1224, 2013.

[10] J. L. Sussman, D. Lin, J. Jiang et al., “Protein Data Bank
(PDB): database of three-dimensional structural information
of biological macromolecules,”Acta Crystallographica Section D
Biological Crystallography, vol. 54, no. 6, part 1, pp. 1078–1084,
1998.

[11] G. T. Hart, A. Ramani, and E. Marcotte, “How complete
are current yeast and human protein-interaction networks?”
Genome Biology, vol. 7, no. 11, p. 120, 2006.

[12] G. Gallone, T. I. Simpson, J. D. Armstrong, and A. P. Jarman,
“Bio::Homology::InterologWalk—a Perl module to build puta-
tive protein-protein interaction networks through interolog
mapping,” BMC Bioinformatics, vol. 12, article 289, 2011.

[13] C. Y. Yu, L. C. Chou, and D. T. H. Chang, “Predicting protein-
protein interactions in unbalanced data using the primary
structure of proteins,” BMC Bioinformatics, vol. 11, article 167,
2010.

[14] J. Garcia-Garcia, E. Guney, R. Aragues, J. Planas-Iglesias, and
B. Oliva, “Biana: a software framework for compiling biological
interactions and analyzing networks,” BMC Bioinformatics, vol.
11, no. 1, article 56, 2010.



International Journal of Genomics 7

[15] Y. Liu, I. Kim, and H. Zhao, “Protein interaction predictions
from diverse sources,” Drug Discovery Today, vol. 13, no. 9-10,
pp. 409–416, 2008.

[16] Y. Qi, J. Klein-Seetharaman, and Z. Bar-Joseph, “Random
forest similarity for protein-protein interaction prediction from
multiple sources,” in Proceedings of the Pacific Symposium on
Biocomputing, pp. 531–542, January 2005.

[17] X. W. Chen and M. Liu, “Prediction of protein-protein interac-
tions using random decision forest framework,” Bioinformatics,
vol. 21, no. 24, pp. 4394–4400, 2005.

[18] K. A. Theofilatos, C. M. Dimitrakopoulos, A. K. Tsakalidis,
S. D. Likothanassis, S. T. Papadimitriou, and S. P. Mavroudi,
“Computational approaches for the prediction of protein-
protein interactions: a survey,” Current Bioinformatics, vol. 6,
no. 4, pp. 398–414, 2011.

[19] J. Garcia-Garcia, S. Schleker, J. Klein-Seetharaman, and B.
Oliva, “BIPS: BIANA Interolog Prediction Server. A tool for
protein-protein interaction inference,” Nucleic Acids Research,
vol. 40, no. W1, pp. W147–W151, 2012.

[20] R. Jansen, H. Yu, D. Greenbaum, and et al, “A bayesian
networks approach for predicting protein-protein interactions
from genomic data,” Science, vol. 302, no. 5644, pp. 449–453,
2003.

[21] X.-W. Chen, M. Liu, and Y. Hu, “Integrative neural network
approach for protein interaction prediction fromheterogeneous
data,” in Advanced Data Mining and Applications, C. Tang, C.
X. Ling, X. Zhou, N. J. Cercone, and X. Li, Eds., vol. 5139 of
LectureNotes inComputer Science, pp. 532–539, Springer, Berlin,
Germany, 2008.

[22] S. M. Gomez, W. S. Noble, and A. Rzhetsky, “Learning to
predict protein–protein interactions from protein sequences,”
Bioinformatics, vol. 19, no. 15, pp. 1875–1881, 2003.

[23] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, “Bias
in random forest variable importance measures: illustrations,
sources and a solution,” BMC Bioinformatics, vol. 8, no. 1, article
25, 2007.

[24] Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman, “Evaluation
of different biological data and computational classification
methods for use in protein interaction prediction,” Proteins:
Structure, Function, and Bioinformatics, vol. 63, no. 3, pp. 490–
500, 2006.

[25] Y. Zhang, D. Zhang, G. Mi et al., “Using ensemble methods
to deal with imbalanced data in predicting protein-protein
interactions,” Computational Biology and Chemistry, vol. 36, pp.
36–41, 2012.

[26] S. M. Augusty and S. Izudheen, “A survey: evaluation of
ensemble classifiers and data level methods to deal with imbal-
anced data problem in protein-protein interactions,” Review of
Bioinformatics and Biometrics, vol. 2, no. 1, 2013.

[27] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg,
and T. O. Yeates, “Assigning protein functions by comparative
genome analysis: protein phylogenetic profiles,” Proceedings of
the National Academy of Sciences, vol. 96, no. 8, pp. 4285–4288,
1999.

[28] T. Gaasterland and M. A. Ragan, “Constructing multigenome
views of whole microbial genomes,” Microbial & Comparative
Genomics, vol. 3, no. 3, pp. 177–192, 1998.

[29] E. S. Snitkin, A. M. Gustafson, J. Mellor, J. Wu, and C.
DeLisi, “Comparative assessment of performance and genome

dependence among phylogenetic profiling methods,” BMC
Bioinformatics, vol. 7, no. 1, article 420, 2006.

[30] R. Jothi, T. M. Przytycka, and L. Aravind, “Discovering func-
tional linkages and uncharacterized cellular pathways using
phylogenetic profile comparisons: a comprehensive assess-
ment,” BMC Bioinformatics, vol. 8, no. 1, article 173, 17 pages,
2007.

[31] J. Sun, Y. Li, and Z. Zhao, “Phylogenetic profiles for the pre-
diction of protein–protein interactions: how to select reference
organisms?” Biochemical and Biophysical Research Communica-
tions, vol. 353, no. 4, pp. 985–991, 2007.

[32] D. Herman, D. Ochoa, D. Juan, D. Lopez, A. Valencia, and
F. Pazos, “Selection of organisms for the co-evolution-based
study of protein interactions,” BMC Bioinformatics, vol. 12, no.
1, article 363, 2011.

[33] M. Simonsen, S. R. Maetschke, and M. A. Ragan, “Automatic
selection of reference taxa for protein-protein interaction pre-
diction with phylogenetic profiling,” Bioinformatics, vol. 28, no.
6, pp. 851–857, 2012.

[34] S. V. Date and E. M. Marcotte, “Discovery of uncharacterized
cellular systems by genome-wide analysis of functional link-
ages,” Nature Biotechnology, vol. 21, no. 9, pp. 1055–1062, 2003.

[35] J. Wu, S. Kasif, and C. DeLisi, “Identification of functional links
between genes using phylogenetic profiles,” Bioinformatics, vol.
19, no. 12, pp. 1524–1530, 2003.

[36] S. Cokus, S. Mizutani, andM. Pellegrini, “An improved method
for identifying functionally linked proteins using phylogenetic
profiles,” BMC Bioinformatics, vol. 8, supplement 4, article S7,
2007.

[37] S. Singh and D. P. Wall, “Testing the accuracy of eukaryotic
phylogenetic profiles for prediction of biological function,”
Evolutionary Bioinformatics, vol. 4, pp. 217–223, 2008.

[38] S. R. Maetschke, M. Simonsen, M. J. Davis, and M. A. Ragan,
“Gene Ontology-driven inference of protein-protein interac-
tions using inducers,” Bioinformatics, vol. 28, no. 1, pp. 69–75,
2011.

[39] C. Lin, W. Chen, C. Qiu, Y. Wu, S. Krishnan, and Q. Zou,
“LibD3C: ensemble classifiers with a clustering and dynamic
selection strategy,”Neurocomputing, vol. 123, pp. 424–435, 2014.

[40] L. Song, D. Li, X. Zeng, Y.Wu, L. Guo, andQ. Zou, “nDNA-prot:
identification of DNA-binding proteins based on unbalanced
classification,” BMC Bioinformatics, vol. 15, no. 1, article 298,
2014.

[41] C. Lin, Y. Zou, J. Qin et al., “Hierarchical classification of protein
folds using a novel ensemble classifier,” PLoS ONE, vol. 8, no. 2,
Article ID e56499, 2013.

[42] P. Smialowski, P. Pagel, P. Wong et al., “The Negatome database:
a reference set of non-interacting protein pairs,” Nucleic Acids
Research, vol. 38, supplement 1, pp. D540–D544, 2010.

[43] L. Zhang, S. Wong, O. King, and F. P. Roth, “Predicting co-
complexed protein pairs using genomic and proteomic data
integration,” BMC Bioinformatics, vol. 5, no. 1, article 38, 2004.

[44] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.


