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Abstract We consider the possibility of free receptor (antigen/cytokine) levels
rebounding to higher than the baseline level after the application of an antibody drug
using a target-mediated drug disposition model. It is assumed that the receptor syn-
thesis rate experiences homeostatic feedback from the receptor levels. It is shown for
a very fast feedback response, that the occurrence of rebound is determined by the
ratio of the elimination rates, in a very similar way as for no feedback. However, for
a slow feedback response, there will always be rebound. This result is illustrated with
an example involving the drug efalizumab for patients with psoriasis. It is shown that
slow feedback can be a plausible explanation for the observed rebound in this example.

Keywords Systems pharmacology · Feedback · Antibody · Receptor rebound ·
Pharmacokinetics · Pharmacodynamics

Mathematics Subject Classification 92C45 · 92C50 · 34E10 · 37L25

1 Introduction

In this paper, we continue our investigation into the phenomenon of receptor rebound,
i.e., a post-dose rise in receptor levels to higher than pre-dose (baseline). In our previous
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34 P. J. Aston et al.

paper (Aston et al. 2014), we showed that if no homeostatic feedback is present,
rebound will occur if and only if the elimination rate of the target-drug complex
is slower than both the elimination rate of the drug and the elimination rate of the
target. Binding to cell-surface receptors typically results in accelerated turnover of
the anti-body and hence complex, so it can be expected that rebound will occur in
rare cases only. However, Ng et al. (2005) describe a treatment for psoriasis patients
with efalizumab in which rebound is observed. They also derive a model that shows
good agreement with the experimental observations. A main difference between this
model and standard TMDD models is that the model includes receptor feedback for
the synthesis rate. In the basic TMDD model, reduction of free target levels does not
have any impact on the endogenous production or elimination rate of the free target,
i.e., no endogenous feedback control exists to compensate for the antibody effect on
target. The model in Ng et al. (2005) includes such feedback control via an additional
differential equation for the synthesis rate. Another indicator of the importance of
feedback in the synthesis rate is the recent paper by Kristensen et al. (2013), in which
it is postulated that the protein synthesis rate is the predominant regulator of protein
expression during differentiation.

In this paper we investigate how receptor feedback influences the occurrence of
rebound in the TMDD model. The receptor feedback is usually a dynamical process
via some moderators and we modify the TMDDmodel to include feedback by adding
an additional differential equation. If the feedback is very fast, a quasi-equilibrium
approach can be used and the feedback can be included in the synthesis term itself
Hek (2010). This approach is similar to the one leading to the Michaelis–Menten
approximation or the Quasi-Steady-State approximation. We will use the term “direct
feedback” for the quasi-equilibrium approximation. The modification to include feed-
back is presented in full detail in Sect. 3, after a review of the main results of our
first paper (Aston et al. 2014) on rebound in the basic TMDD model without feed-
back in Sect. 2. A wide class of feedback functions is considered with some natural
assumptions on their action.

The TMDD model with the direct feedback approximation is analysed in Sect. 4.
This analysis shows that the existence or non-existence of rebound is still linked to the
elimination rates, though rebound can be expected in a larger region in the elimination
parameter plane, see the left plot in Fig. 1. The general case of feedback via amoderator
is analysed in Sect. 5. Now the response speed of the feedback moderator plays an
important role as well as the elimination rates. It is shown that there is a similar
region in the elimination rate plane as for the basic TMDD model for which rebound
will occur for any response speed. Furthermore, if the feedback responds slowly to
a change in the receptor levels, rebound will occur for any value of the elimination
rates. A schematic overview of this result is in the right plot of Fig. 1.

The TMDD model is a one-compartment model. In Sect. 6, we consider briefly
two classes of more general models with feedback (one class is related to multiple
compartments, the other tomore general feedbackmechanisms) and show that rebound
will generically occur in such models for slow feedback moderator response. In this
paper, the word generic refers to the assumptions that the linearisation about the
baseline state has no degenerate eigenvalues and that trajectories approaching the
attracting baseline state do so tangent to the eigenvector associated with the least
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Fig. 1 A schematic overview of the elimination plane. On the horizontal axis is the elimination rate
of the ligand (antibody/drug), denoted by ke(L), and on the vertical axis is the elimination rate of the
receptor (antigen/target), denoted by kout . The elimination rate of the antibody–antigen complex (drug–
target product) is denoted by ke(P). On the left is an overview of the occurrence of rebound in the case of
the direct feedback approximation. In the red region, rebound will occur and in the green region no rebound
can occur. The symbols h, m and M are related to the feedback function and will be defined in Sect. 4. In
the case where there is no feedback, m = h = M = 0 and the region in which there is rebound is the red
region above the line kout = ke(P). On the right is an overview of the occurrence of feedback, depending
on the speed of the feedback response. There is a red region in the elimination plane, that equals the direct
feedback rebound region, for which rebound will occur for any speed of the feedback response. In addition,
if the response is slow, rebound will occur for any elimination values. The precise response speed for which
the rebound stops occurring will vary across the pink region (color figure online)

Fig. 2 The TMDD reaction mechanism

attracting eigenvalue. Section 7 illustrates the theory for two examples. The first
example is a standard TMDD model for the IgE mAb omalizumab. We discuss what
the effect of the two types of feedback mechanisms would be in this case . The second
example is the model in Ng et al. (2005) which describes the efficacy of efalizumab for
patients with psoriasis. Simulations show that themodel does not lead to rebound if the
feedback is turned off, but a significant rebound (about 140% of baseline) will occur
if feedback is included. These results can be predicted with our analysis and underpin
the observations of rebound in some patients. Finally, Sect. 8 contains a discussion of
the results obtained in this paper and poses some open questions. The proofs of some
of the technical results in the paper are given in the Appendix.
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2 Review of previous results

In our previous paper (Aston et al. 2014), we considered a one-compartment TMDD
model based on the original work of Levy (1994) where the ligand L binds reversibly
with the receptor R to form a receptor-ligand complex P as shown in Fig. 2. The
TMDD model assumes a mechanism-based reaction to explain the ligand-receptor
interaction. The parameters of the model are the binding rate constants kon and koff ,
the receptor turnover and elimination rates kin and kout, and the elimination rates of
the ligand and complex ke(L) and ke(P). The system is assumed to be initially at steady
state, into which a single bolus infusion L0 of the ligand into the central (plasma)
compartment is made (represented in Fig. 2 by ‘In’). The differential equations that
comprise the mathematical model for this system are given by

dL

dt
= −ke(L)L − konLR + koff P (1)

dR

dt
= kin − koutR − konLR + koff P (2)

dP

dt
= konLR − koff P − ke(P)P (3)

A steady state of this system is given by L = P = 0, R = kin/kout. Adding the bolus
injection L0 gives the initial conditions

L(0) = L0, R(0) = R0 = kin
kout

, P(0) = 0. (4)

After the ligand is added to the system in its baseline state, initially the receptor
level decreases, but after a while it goes up again and returns to its baseline value, since
the steady state is globally asymptotically stable (Aston et al. 2014). Rebound occurs
if, in the return to the baseline value, the receptor level increases to values above the
baseline R0. In Aston et al. (2014), we determined precise conditions for the existence
and non-existence of rebound. Our main result was the following.

Theorem 2.1 Rebound occurs in Eqs. (1)–(3) if and only if

ke(P) < ke(L) and ke(P) < kout.

This result shows that rebound occurs if and only if the elimination rate of the
product is slower than the elimination rates of both the ligand and the receptor. This
is represented graphically by different regions in the (ke(L), kout) plane, as shown in
Fig. 3. The above condition for rebound in terms of non-dimensional parameters is
given by

k4 < k1 and k4 < k3,
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Fig. 3 The green region shows
the part of the (ke(L), kout)
parameter plane where there is
no rebound, and the red region
shows where there is rebound.
The boundaries are given by the
lines ke(L) = ke(P) and
kout = ke(P). This figure is
similar to Fig. 2 in Aston et al.
(2014) (color figure online)
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.

Intuitively, if the clearance of the complex is slow relative to the other two clearance
rates, when there is a significant build-up of the complex due to the rapid binding of
ligand and receptor, then this complex is only eliminated slowly. This results in an
additional “production” of the receptor when the complex dissociates which is likely
to lead to rebound. Our analysis quantifies this and we now show how these thresholds
that we derived previously are affected if receptor feedback is added to the system.

3 Including feedback in the TMDD model

We now extend our previous work on rebound in the basic TMDDmodel by extending
the model to include feedback on the synthesis rate. The feedback gives an increase
in the production rate of the receptor if the receptor levels drop under the baseline.
Similarly, if the receptor level exceeds the baseline value, then the feedback induces
a decrease in the production rate. Thus, this mechanism can be classified as negative
feedback.

We start with the TMDD equations (1)–(3) but now assume that the rate of produc-
tion of R (kin) is not constant but varies as R changes. Thus, Eq. (2) is now modified
to have the form

dR

dt
= kinF − koutR − konLR + koff P. (5)

The new feedback variable F , which will be related to R, has the effect of varying
the production rate of the receptor. The feedback is usually via some moderator and

123
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its dynamics is described with the differential equation

dF

dt
= α(H(R) − F), F(0) = 1. (6)

The constant α ≥ 0 determines the strength of the feedback and determines the
time scale onwhich the feedbackmoderator responds to changes in the receptor levels.
Clearly, if α = 0, then F is a constant and themodel reduces to the basic TMDDmodel
with no feedback. If α is small, the feedback response is slow, while if α is larger,
there is a very fast feedback response. Formally, dividing (6) through by α and taking
the limit α → ∞, we see that the derivative term vanishes and the fixed relation

F = H(R) (7)

is obtained. Thismotivates a quasi-equilibrium approximation inwhich the differential
equation for F is replaced with the relation (7). We will call this the direct feedback
approximation.

Next we consider the function H(R). The function must be such that the model has
the following features:

• the production rate of the receptor, denoted by kinF , should be positive;
• the receptor concentration should have the baseline R = R0 = kin/kout;
• the feedback mechanism should reduce the production rate of the receptor when
the receptor level exceeds the baseline and should increase it when the receptor
level is below the baseline.

This leads to the following general assumptions on the function H(R):

(H1) H(R) > 0 for all R ≥ 0;
(H2) H(R0) = 1, where R0 = kin/kout;
(H3) H(R) > 1 when 0 ≤ R < R0 and 0 < H(R) < 1 when R > R0;
(H4) H ∈ C2([0,∞)).

We note that assumption (H1) ensures that in case of the direct feedback approxima-
tion (i.e, F is a function of R and (7) holds) the feedback F > 0, so that the production
rate of R is always positive. Alternatively, if the dynamics of F is described by the
differential equation (6), then this condition ensures that

dF

dt

∣
∣
∣
∣
F=0

> 0

and so the line F = 0 cannot be crossed from above to below. This also ensures that
F > 0 for all t > 0 and hence the production rate is always positive.

The basic TMMDmodel without feedback, Eqs. (1)–(3), has a steady state solution
given by L = P = 0, R = R0 = kin/kout. This will still be a steady state of our
modified equations in both the full model and the direct feedback approximation,
provided that (H2) holds. For the full model, we observe that the steady state value for
F is F = 1. Finally, the assumption (H3) ensures that the production of the receptor
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slows down when there is excess receptor, and increases when the receptor level is
below the baseline and (H4) is a technical assumption assuring sufficient smoothness.
Combining (H2)–(H4) implies that H ′(R0) ≤ 0.We note that if H is a positive, strictly
decreasing, smooth function with H(R0) = 1, then (H1)–(H4) are satisfied. However,
the stated conditions are more general and do not require H to be strictly decreasing.

We now have two modified TMDD models that incorporate feedback. For the
direct feedback approximation, we use (7) to replace F with H(R) which gives the
differential equations

dL

dt
= −ke(L)L − konLR + koff P (8)

dP

dt
= konLR − koff P − ke(P)P (9)

dR

dt
= kinH(R) − koutR − konLR + koff P (10)

Alternatively, the full feedback model involves an extra differential equation for the
moderator F and the modified TMDD model is given by

dL

dt
= −ke(L)L − konLR + koff P (11)

dP

dt
= konLR − koff P − ke(P)P (12)

dR

dt
= kinF − koutR − konLR + koff P (13)

dF

dt
= α(H(R) − F) (14)

The initial conditions for bothmodels are given by (4), with the extra condition F(0) =
1 for the feedback moderator.

Wenon-dimensionalise these equations in the sameway as inAston et al. (2014).We
note that our new variable F is non-dimensional, and so we define the dimensionless
variables

x = L

L0
, y = R

R0
, z = P

R0
, w = F, τ = konR0t.

We also define a new function

h(y) = H(R0y).

The above assumptions on the function H(R) translate into the following assumptions
on h(y):

(h1) h(y) > 0 for all y ≥ 0;
(h2) h(1) = 1;
(h3) h(y) > 1 when 0 ≤ y < 1 and 0 < h(y) < 1 when y > 1;
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(h4) h ∈ C2([0,∞)).

For later use, we define
h0 = −h′(1) (15)

and note that the assumptions (h2)–(h4) imply that h0 ≥ 0.
In terms of the non-dimensional quantities, the direct feedback equations (8)–(10)

become

ẋ = −k1x − xy + μk2z (16)

ż = xy

μ
− (k2 + k4) z (17)

ẏ = k3(h(y) − y) − xy

μ
+ k2z (18)

with initial conditions

x(0) = 1, z(0) = 0, y(0) = 1, (19)

where dot denotes differentiation with respect to τ and the dimensionless parameters
are defined as in Aston et al. (2014) by

μ = R0

L0
, k1 = ke(L)

konR0
, k2 = koff

konR0
, k3 = kin

konR2
0

= kout
konR0

, k4 = ke(P)

konR0
.

Clearly, this choice of non-dimensionalisation requires that kon �= 0 and kin �= 0 (so
that R0 �= 0). We note that all parameters must be non-negative due to their physical
meaning, and additionally we will assume that they are in fact all strictly positive.
The three variables x , y, and z are related to physical quantities and so must also be
non-negative.

Similarly, the non-dimensional equations for the full feedback model (11)–(14) are
given by

ẋ = −k1x − xy + μk2z (20)

ż = xy

μ
− (k2 + k4) z (21)

ẏ = k3(w − y) − xy

μ
+ k2z (22)

ẇ = ε(h(y) − w) (23)

with initial conditions

x(0) = 1, z(0) = 0, y(0) = 1, w(0) = 1. (24)

Furthermore,
ε = α

konR0
(25)

is a non-dimensional measure for the response speed of the feedback moderator.
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4 Analysis of the TMDD model with direct feedback

In this section, we will analyse the TMDD model with the direct feedback approx-
imation, i.e., the Eqs. (16)–(18), with initial conditions (19), and seek to determine
conditions for the existence or non-existence of rebound in this model. However, we
start by proving some basic results for the model equations.

4.1 Invariance, steady states and stability

For the basic TMDD model, we proved in Aston et al. (2014) that the positive octant
x, y, z ≥ 0 is invariant; that there is a unique steady state in the positive octant; and that
this steady state is a global attractor. In this section we show that the same properties
hold for the TMDD model with direct feedback. The proofs of these results can be
found in Appendix A. We start by stating invariance of the positive octant.

Lemma 4.1 The octant of R3 defined by x, y, z ≥ 0 is invariant under the flow of
Eqs. (16)–(18).

This result shows that the equations are a good model in the sense that the concen-
trations of the ligand, complex and receptor can never go negative. Next we consider
the steady states of Eqs. (16)–(18).

Lemma 4.2 In the region of R3 defined by x, y, z ≥ 0, the Eqs. (16)–(18) have a
unique steady state given by

x = 0, y = 1, z = 0. (26)

This steady state is globally asymptotically stable.

This result shows that for all non-negative initial conditions and for all positive
parameter values, each of the variables will converge to their unique steady state
value.

It is also straightforward to show that the eigenvalues of the Jacobian of Eqs. (16)–
(18) evaluated at the steady state (26) are very similar to those given in Aston et al.
(2014). In particular, the two eigenvalues λ1 and λ2 are the same as previously and
are given by

λ1 = 1

2

(

−(1 + k1 + k2 + k4) +
√

(1 + k1 − k2 − k4)2 + 4k2
)

(27)

λ2 = 1

2

(

−(1 + k1 + k2 + k4) −
√

(1 + k1 − k2 − k4)2 + 4k2
)

(28)

while the third eigenvalue, which previously was λ3 = −k3, is now given by

λ3 = −k3(h0 + 1), (29)
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where we recall that h0 = −h′(1). The corresponding eigenvectors are given by

vi = (

μ(λi + k3(1 + h0))(k2 + k4 + λi ) λi + k3(1 + h0)(λi + k4)
)

,

i = 1, 2; v3 =
⎛

⎝

0
0
1

⎞

⎠ . (30)

4.2 Receptor dynamics

Before considering the full model, we first consider the effect of feedback on the
dynamics of y, the non-dimensional form of the receptor, in the absence of the ligand
or product. As with the basic TMDDmodel, we note that x = z = 0 satisfies (16) and
(17). Substituting x = z = 0 into (18), we obtain the single differential equation

ẏ = k3(h(y) − y), y(0) = y0. (31)

Assumption (h2) ensures that the previous steady state value y = 1 is also a steady
state of this equation while assumption (h3) ensures that this is the only non-negative
steady state solution and that ẏ < 0 if y > 1 and ẏ > 0 if 0 ≤ y < 1. The theory
of scalar, autonomous differential equations (Jordan and Smith 2007) then tells us
that if the initial condition y0 is less than the steady state (y0 < 1) then y(τ ) will
increase monotonically to the steady state, whereas if y0 is greater than the steady
state (y0 > 1), then y(τ ) will decrease monotonically to the steady state. As y(τ ) is
monotonic, there is no possibility of rebound occurring in the dynamics of the receptor
on its own.

Assumptions (h2) and (h3) together with definition (15) imply that

h(y) − y = −(h0 + 1)(y − 1) + O((y − 1)2).

As h0 ≥ 0, the inclusion of the function h(y) ensures that the asymptotic rate
of convergence to the steady state (proportional to e−k3(h0+1)t ) will be faster than or
equal to the rate of convergence which occurs when h(y) = 1 (proportional to e−k3t ).
Thus, qualitatively, the direct feedback has the effect of speeding up the monotonic
convergence to the steady state in the absence of ligand and product, but there is no
rebound in this case, i.e., if y0 < 1, then y(τ ) < 1 for all τ ≥ 0.

4.3 Conditions for rebound

Having established that feedback does not lead to rebound in the absence of the
ligand, we now investigate the effect of adding the ligand. A local approximation of
the feedback near the baseline will give a linear feedback function. Sowe first consider
the special case that the feedback function h(y) is linear for y ≤ 1. It turns out to be
straightforward to extend our results for the TMDD model without feedback to this

123



A mathematical analysis of rebound in a target-mediated... 43

case. The general nonlinear case will be analysed next and builds on the ideas of the
linear analysis.

4.3.1 A mainly linear feedback function

We consider a feedback function which is linear on a y-interval including [0, 1]:

h(y) =
{

1 + h0(1 − y), 0 ≤ y ≤ 1 + β
h0

;
h1(y), y > 1 + β

h0

(32)

where h0 > 0, 0 < β < 1, and h1 ∈ C2
((

1 + β
h0

,∞
))

, h1(y) ∈ (0, 1), with

lim
y↓1+ β

h0

h1(y) = 1 − β, lim
y↓1+ β

h0

h′
1(y) = −h0, and lim

y↓1+ β
h0

h′′
1(y) = 0.

This function satisfies all the conditions (h1)–(h4). For the linear part of the function
h, we note that h(y) − y = (1 + h0)(1 − y) and so Eq. (18) becomes

ẏ =
{

k3(1 + h0)(1 − y) − xy
μ

+ k2z, 0 ≤ y ≤ 1 + β
h0

;
k3(h1(y) − y) − xy

μ
+ k2z, y > 1 + β

h0
.

(33)

We then have the following result.

Theorem 4.3 Rebound occurs in Eqs. (16), (17), (33) if and only if

k4 < k1 and k4 < k3(1 + h0).

Proof We note that for 0 ≤ y ≤ 1, Eqs. (16), (17) and (33) are the same as the basic
TMDD model that we studied in Aston et al. (2014) except that k3 has been replaced
by k3(1 + h0). We claim that the results of Theorem 3.1 of Aston et al. (2014) apply
in this case also after making this parameter replacement. To see this, we note that
when proving the absence of rebound the only relevant values of y are 0 ≤ y ≤ 1 and
so the matching point y = 1+ β/h0 in (33) is not reached and the feedback function
for y > 1 is therefore not relevant. Moreover, the proof of rebound in Aston et al.
(2014) involves only the asymptotic behaviour near to the globally stable steady state
(x, y, z) = (0, 1, 0) and the dynamics for 0 ≤ y ≤ 1 + β

h0
will give all the necessary

information to determine this asymptotic behaviour. Hence, we can conclude that
Theorem 3.1 in Aston et al. (2014) can be applied in this situation with k3 replaced by
k3(1 + h0). 
�

Converting back to the dimensional parameters gives the following result.

Corollary 4.4 Consider the mainly linear feedback function

H(R) =
{

1 + H0(R0 − R), 0 ≤ R ≤ R0 + β
H0

H1(R), R > R0 + β
H0

(34)
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44 P. J. Aston et al.

Fig. 4 The green region shows
the part of the (ke(L), kout)
parameter plane where there is
no rebound, and the red region
shows where there is rebound
for H(R) given by (34). The
solid line kout = ke(P) denotes
the boundary of the rebound
region when no feedback is
present and the dashed line
kout = ke(P)/(1 + R0H0)

denotes the boundary of the
rebound region when feedback
is present (color figure online)

ke(L)

0

kout

0

ke(P)

ke(P)

ke(P) /(1+R0H0)

where H0 > 0, 0 < β < 1, H1(R) ∈ C2((R0 + β
H0

,∞)), H1(R) ∈ (0, 1) and H1 and
its first and second derivatives match the linear function at R = R0 + β/H0.

Rebound occurs in the model given by Eqs. (8)–(10) with this feedback function if
and only if

ke(P) < ke(L) and ke(P) < kout(1 + R0H0).

The rebound region in this case is shown in Fig. 4.We note by comparison with Fig.
3 that this mainly linear feedback function has enlarged the region in which rebound
occurs compared to the case with no feedback.

4.3.2 A general nonlinear feedback function

We now consider the more general case where the feedback function h is nonlinear.
We express the function h(y) in the form

h(y) = 1 + (1 − y)h̃(y). (35)

Differentiating (35), evaluating at y = 1 and using (15), we see that

h̃(1) = h0. (36)

Condition (h3) implies that

h̃(y) > 0, when 0 ≤ y < 1, and 0 < h̃(y) <
1

y − 1
, when y > 1. (37)

With this form of h, Eq. (18) becomes

ẏ = k3(1 − y)(1 + h̃(y)) − xy

μ
+ k2z (38)
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Remark We note that expanding h(y) in a Taylor series with remainder gives that
h̃(y) = −h′(ξ(y)) where ξ(y) lies between y and 1. However, the fact that ξ(y) is an
unknown function is not helpful, which is why we use the form of h given in (35).

We now consider regions similar to the ones defined for themodel without feedback
in Aston et al. (2014). First we consider region II and show that no rebound occurs in
this region.

Theorem 4.5 Rebound does not occur if k1 ≤ k4.

Proof Following through the proof of Theorem 3.4 of Aston et al. (2014) for these
modified equations, the only difference is that

ẏ|y=0 = k3(1 + h̃(0)) + k2z.

Now h̃(0) > 0 by (37) and so ẏ|y=0 > 0 when z ≥ 0, which is the condition required
on this plane in the proof of Theorem 3.4 of Aston et al. (2014). Thus, the result holds
in this case also. 
�

The next result considers a region similar to region III and we show that rebound
does occur.

Theorem 4.6 Rebound occurs if k1 > k4 and k3(1 + h0) > −λ1(k1, k2, k4), where
λ1 is given by (27).

Proof The Jacobian matrix for Eqs. (16), (17) and (38) evaluated at the steady state
is the same as that for the simple TMDD model given in Aston et al. (2014) but with
k3 replaced by k3(1 + h0). The proof of Theorem 3.5 of Aston et al. (2014) (region
III) is entirely based on the eigenvalues and eigenvectors of this matrix, and so the
result holds in this case also, with the appropriate replacement of k3. Since λ1 does
not involve k3, there is no change to this eigenvalue. 
�

The proofs in regions I and IV of the (k1, k3) parameter plane in Aston et al. (2014)
both made use of the fact that for the model without feedback the plane v = y+ z = 1
is invariant when k3 = k4. However, this is no longer the case for our modified
equations which include feedback. The differential equation for the dimensionless
variable associated with the total amount of receptor v = y + z is now given by

v̇ = (1 − y)
(

k3(1 + h̃(y)) − k4
)

− k4(v − 1) (39)

and so
v̇|v=1 = (1 − y)

(

k3(1 + h̃(y)) − k4
)

. (40)

Clearly no condition on the parameters will give this derivative to be zero (unless
h̃ is constant, the case considered in the previous section), and so we see, as already
stated, that the plane v = 1 is no longer invariant. However, the function h(y) has
a continuous derivative by (h4) and this implies that h̃(y) is continuous. Thus the
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Extreme Value Theorem for continuous functions gives that h̃(y) has a minimum and
a maximum for y ∈ [0, 1]. So we define

m = min
y∈[0,1] h̃(y), M = max

y∈[0,1] h̃(y). (41)

Using (36), this immediately implies that

m ≤ h0 ≤ M. (42)

Also, since h̃(y) > 0 for all 0 ≤ y < 1 by (37), we get

m ≥ 0. (43)

Since m and M are the minimum and maximum of h̃(y), then clearly

m ≤ h̃(y) ≤ M for all 0 ≤ y ≤ 1,

and substituting for h̃(y) from (35) and rearranging gives

1 + m(1 − y) ≤ h(y) ≤ 1 + M(1 − y) for all 0 ≤ y ≤ 1. (44)

Graphically, this means that on the interval y ∈ [0, 1], the function h(y) is bounded by
two straight lines, both of which pass through the point (1, 1), and which have slopes
−m and−M . This situation is illustrated in Fig. 5. Note that the Mean Value Theorem
gives that −M ≥ min{h′(y) | 0 ≤ y ≤ 1} and −m ≤ max{h′(y) | 0 ≤ y ≤ 1}.

With the bounds m and M , we can give a slightly weaker version of Lemma 2.3
in Aston et al. (2014) and get regions in the (k3, k4)-plane for which the dimensionless
variable v associated with the total amount of receptor stays on one side of the plane
v = 1.

Lemma 4.7 For all τ ≥ 0, the dimensionless variable v associated with the total
amount of receptor satisfies

v(τ) ≤ 1, if k4 ≥ k3(1 + M);
v(τ) ≥ 1, if k4 ≤ k3(1 + m).

Proof We consider the vector field at the plane v = 1. Equation (40) gives

v̇|v=1 = (1 − y)
(

k3(1 + h̃(y)) − k4
)

.

Since we have restricted attention to the plane v = 1, this implies that y + z = 1 and
so y ≤ 1 as z must be non-negative. As 1− y is non-negative, we can use the bounds
on h̃(y) given in(41) to get
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Fig. 5 The function h(y) (solid curve) is bounded by two straight lines (dashed lines) with slopes −m and
−M for y ∈ [0, 1]

(1 − y) (k3(1 + m) − k4) ≤ v̇|v=1 ≤ (1 − y) (k3(1 + M) − k4) (45)

First we consider the case k4 ≥ k3(1 + M). In this case, (45) gives v̇|v=1 ≤ (1 −
y) (k3(1 + M) − k4) ≤ 0, hence the vector field on the plane v = 1 is either tangent
to v = 1 or points towards v < 1. This implies that the region of phase space defined
by x, y, z ≥ 0, v = y + z ≤ 1 is invariant in forward time since the vector field on
the four boundary planes is either tangent to the plane or points into the region (Smith
1995). This was proved for the planes x = 0, y = 0 and z = 0 in Lemma 4.1 and for
the plane v = 1 above. Since v(0) = 1 and this region is invariant, we conclude that
v(τ) ≤ 1 for all τ ≥ 0.

Next we consider the case k4 ≤ k3(1 + m). Now the other inequality in (45) gives
v̇|v=1 ≥ (1 − y) (k3(1 + m) − k4) ≥ 0, hence the vector field on the plane v = 1
is either tangent to v = 1 or points towards v > 1. This implies that the region of
phase space defined by x, y, z ≥ 0, v = y + z ≥ 1 is invariant in forward time. Since
v(0) = 1, this implies that v(τ) ≥ 1 for all τ ≥ 0. 
�

With this observation, we can now derive a result on rebound for regions similar to
regions I and IV in Aston et al. (2014).

Theorem 4.8 Define m and M as in (41), i.e., the function h(y) satisfies (44).

(i) Rebound does not occur if

k3 ≤ k4
1 + M

(46)

(ii) Rebound does occur if
k4

1 + m
< k3 < − λ1

1 + h0
(47)
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Using (42) and (43), we note that

0 <
k4

1 + M
≤ k4

1 + h0
≤ k4

1 + m
≤ k4.

This illustrates in particular that there is no overlap between the region for which
we have shown the existence of rebound and the region for which we have shown that
there is no rebound.

Proof of Theorem 4.8 (i) The case when (46) holds is similar to region I in Aston
et al. (2014) and has the property that v(τ) ≤ 1 for all τ ≥ 0 by Lemma 4.7. Thus
for all τ ≥ 0, we have y(τ ) ≤ v(τ) ≤ 1 and so rebound cannot occur in this case.

(ii) When (47) holds (a condition similar to the one for region IV in Aston et al.
(2014)), Lemma 4.7 ensures that v(τ) ≥ 1 for all τ ≥ 0. The right hand inequality
in (47) implies that λ1 < λ3 = −k3(1+ h0) and so the eigenvalue closest to zero
is λ3, as occurred in region IV previously. Thus, trajectories will generically
approach the steady state tangent to the y-axis, since the eigenvector associated
with the eigenvalue λ3 points along this axis. As the trajectory always satisfies
v ≥ 1 for all τ ≥ 0 then we again conclude that generically, almost all orbits will
approach y = 1 from above and hence rebound occurs.

We must again eliminate the possibility that an orbit might approach the steady
state tangent to one of the other eigenvectors for a particular choice of parameters.
As previously, the linearised manifold in the direction of the eigenvector v2 is
outside of the phase space and so an orbit cannot approach tangent to this one-
dimensional manifold.

The one-dimensional linearised manifold in the direction of the eigenvector v1
given in (30) is

⎡

⎣

x
z
y

⎤

⎦ =
⎡

⎣

0
0
1

⎤

⎦+ a

⎡

⎣

μ(k2 + k4 + λ1)(λ1 + k3(1 + h0))
λ1 + k3(1 + h0)
−(λ1 + k4)

⎤

⎦ .

We note that λ1 + k3(1 + h0) < 0 from the right hand inequality in (47). Thus,
we must take a < 0 to ensure that this linearised manifold gives positive values
of x and z (since k2 + k4 + λ1 > 0 by Lemma 2.7 of Aston et al. 2014). The
linearised manifold for v = y + z is then given by

v = 1 + a (k3(1 + h0) − k4).

Using (42) and the left hand inequality of (47) gives k3(1 + h0) − k4 ≥ k3(1 +
m)−k4 > 0. Thus, this one-dimensional linearised manifold has a negative slope
and so occurs for v < 1. Since the trajectory in this case must satisfy v ≥ 1, it
is clearly not possible for it to approach the steady state tangent to this manifold.
Thus, we conclude that all trajectories must approach the steady state tangent to
the y-axis from above and hence rebound will occur. 
�
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In Theorems 4.6 and 4.8, we have proved that rebound occurs on both sides of the
line λ1 = λ3 with k3 > k4/(1 + m). We now show that there is also rebound along
this line.

Theorem 4.9 Rebound occurs if k3 = −λ1/(1 + h0) and k3 > k4/(1 + m).

Proof The proof uses exactly the same arguments as the proof of Theorem3.7 inAston
et al. (2014). Along the curve k3 = −λ1/(1 + h0), the eigenvalues λ1 and λ3 collide
and have one eigenvector, which is along the y-axis, and one generalised eigenvector.
Thus all solutions will asymptotically align with the y-axis. Since k4/(1 + m) < k3,
Lemma 4.7 gives that v(τ) ≥ 1 and the intersection of the y-axis and the region
v(τ) ≥ 1 is the part of the y-axis with y ≥ 1. Hence all orbits must approach the
steady state (x, y, z) = (0, 1, 0) from above and rebound will occur. 
�

We summarise the results of Theorems 4.5, 4.6, 4.8 and 4.9 as follows.

Theorem 4.10 Define

m = inf

{
h(y) − 1

1 − y

∣
∣
∣
∣
0 ≤ y < 1

}

and M = sup

{
h(y) − 1

1 − y

∣
∣
∣
∣
0 ≤ y < 1

}

.

(48)
For themodel equations (16)–(18) and for any function h(y) satisfying the assumptions
(h1)–(h4)

• there is no rebound if k1 ≤ k4 or k1 > k4 and k3 ≤ k4/(1 + M);
• rebound does occur if k1 > k4 and k3 > min (k4/(1 + m),−λ1/(1 + h0)).

We can also express these results in the terms of the dimensional parameters. Let
H(R) be a function satisfying the assumptions (H1)–(H4) and define

m = inf

{
(H(R) − 1)R0

R0 − R

∣
∣
∣
∣
0 ≤ R < R0

}

and M = sup

{
(H(R) − 1)R0

R0 − R

∣
∣
∣
∣

0 ≤ R < R0} .

For the model equations (8)–(10) with H0 = −H ′(R0)

• there is no rebound if ke(L) ≤ ke(P) or ke(L) > ke(P) and kout < ke(P)/(1 + M);
• rebound does occur if ke(L) > ke(P) and kout > min

(

ke(P)/(1 + m),−λ1konR0/

(1 + R0H0)).

These results are illustrated in Fig. 6.
We now focus on a few aspects of the theorem and compare it with the case where

there is no feedback (F = 1, and so h0 = 0 = H0).

• In the equations without feedback, rebound occurred in the region ke(P) < ke(L)

and ke(P) < kout (regions III and IV) and with feedback, rebound also occurs in
this region.

• In the equations without feedback, there was no rebound in the region ke(L) ≤ ke(P)

(region II) and with feedback, there is also no rebound in this region.
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Fig. 6 Regions in the
(ke(L), kout) plane where
rebound does and does not occur
for the nonlinear feedback
function H(R). Red indicates
regions where rebound will
occur and green indicates
regions where rebound does not
occur. In the white region,
rebound may or may not occur
depending on the particular
feedback function H (color
figure online)
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• In the equations without feedback, there was no rebound in the region kout <

ke(P) < ke(L) (the part of region I that lies outside region II), but with feedback,
there is rebound in some parts of this region but not in others, the precise details
depend on the function h.

• In the region ke(L) > ke(P), ke(P)/(1 + M) ≤ kout ≤ min
(

ke(P)/(1 + m),−λ1/

(1 + h0)), we have no general results, and the existence or otherwise of rebound
will depend on the particular function h.

• If H is mainly linear, i.e. F = H(R) = 1 + H0(R0 − R), for 0 < R < R0, then
m = M = R0H0. In this case, the region of uncertainly disappears and we get
that rebound will occur if and only if ke(P) < ke(L) and ke(P) < kout(1 + H0R0).

• If H is nonlinear but with m = R0H0 (in which case the lower bounding curve
for H(R) is the tangent to the curve at R = R0), then the red region where there
is rebound for kout > ke(P)/(1 + R0H0) in Fig. 4 is preserved and the region
of uncertainty is below this line. Conversely, if M = R0H0 (so that the upper
bounding curve for H(R) is the tangent at R = R0), then the green region where
there is no rebound for kout ≤ ke(P)/(1 + R0H0) in Fig. 4 is preserved and the
region of uncertainty is above this line.

• We note that when ke(L) < ke(P) (the left green region in Fig. 6), then there is
no rebound in the direct feedback model for any feedback function H(R). As
discussed above, when ke(L) > ke(P), then the form of the feedback function
determines whether or not rebound occurs.

In summary, the region where rebound occurs increases slightly to include some more
values with kout < ke(P) < ke(L) when direct feedback is introduced into the basic
TMDD model.

5 Analysis of the full TMDD with feedback model

In the full TMMD with feedback model, we have an extra differential equation that
governs the dynamics of the moderatorw and so our equations are now (20)–(23) with
initial condition (24). As mentioned previously, the parameter ε influences the time
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scale for the response dynamics. If ε is small, the feedback responds slowly and we
will show that this always leads to rebound. On the other hand, if ε is very large, the
feedback responds very fast and we will show that rebound will occur in the same
region as found with the direct feedback approximation.

5.1 Dynamics of the receptor with feedback, without ligand

Before considering the full model with feedback, we first consider the effect of feed-
back on the dynamics of the receptor y (or R in dimensional form) in the absence
of the ligand or product. We substitute x = z = 0 into (20)–(23) to give the two
equations

ẏ = k3(w − y), y(0) = y0 (49)

ẇ = ε(h(y) − w), w(0) = w0 (50)

Again, it is easily shown, using (h2) and (h3), that these equations have the unique
steady state y = w = 1, i.e. the baseline values. Below we will prove the following
rebound result.

Theorem 5.1 For any ε ∈ (0,∞), there are always some initial conditions with
y(0) < 1 which give rise to trajectories with rebound.

First we consider the linear stability of the baseline state as this gives the local
behaviour near to the baseline. The Jacobian matrix evaluated at this steady state is
given by

J0 =
[−k3 k3

−εh0 −ε

]

(51)

(recalling that h0 = −h′(1) ≥ 0). The eigenvalues of J0 can be found as solutions of
the quadratic characteristic polynomial derived from this matrix. The discriminant of
this quadratic equation is

D:=ε2 − 2k3(1 + 2h0)ε + k23 .

and the eigenvalues are

λ3 = 1

2

(

−(k3 + ε) − √
D
)

= 1

2

(

−(k3 + ε) −
√

(k3 − ε)2 − 4εk3h0
)

, (52)

λ4 = 1

2

(

−(k3 + ε) + √
D
)

= 1

2

(

−(k3 + ε) +
√

(k3 − ε)2 − 4εk3h0
)

, (53)

while the eigenvectors are of the form

vi = (k3, k3 + λi ), for i = 3, 4. (54)

Note that in this section, the definition of the eigenvalue λ3 is different from that used
in the previous section. The discriminant D is itself a quadratic function of ε which
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λ λ∞ −k −
* λ3+

*
0

Fig. 7 Movement of the eigenvalues λ3 and λ4 in the complex plane for increasing ε (indicated by the
direction of the arrows)

has two positive roots given by

ε±
1 = k3

(

1 + 2h0 ±√

4h0(1 + h0)
)

. (55)

Clearly the discriminant is negative between these roots and positive elsewhere, and
so we have the following result.

Lemma 5.2 The Eqs. (49)–(50) have a unique steady state at y = w = 1 and the
eigenvalues λ3 and λ4 of the Jacobian matrix J0 are

• both real and negative if 0 < ε ≤ ε−
1 or if ε ≥ ε+

1 ;• a complex conjugate pair with negative real part if ε−
1 < ε < ε+

1 .

Furthermore, when ε → ∞, λ3 → −∞ and λ4 → λ∞ = −k3(1 + h0).

For a proof of the last statement, see Appendix A. Lemma 5.2 is summarised in
Fig. 7 with the direction of movement of the eigenvalues indicated corresponding to
increasing ε.

When ε = 0, we see that λ3 = −k3 and λ4 = 0. As ε increases from zero,
the two eigenvalues move towards each other and collide on the negative real axis
when ε = ε−

1 . After this collision, the eigenvalues become complex with Re(λ3,4) =
−(k3 + ε)/2, which decreases monotonically with ε. As ε increases further, the two
complex eigenvalues collide on the real axis when ε = ε+

1 and become real again. As
ε increases from ε+

1 to ∞, λ4 increases from the point of collision to −k3(1+ h0) and
λ3 decreases to −∞ from this point. At the collision values ε = ε±

1 , the eigenvalues
λ3 = λ4 are given by

λ±∗ = −1

2
(k3 + ε±

1 ) = −k3
(

1 + h0 ±√

h0(1 + h0)
)

. (56)

Note that this implies that λ+∗ < λ∞ < λ−∗ , as λ∞ = −k3(1 + h0).
Lemma 5.2 implies linear stability, but a stronger stability result can be proved.

The proof of this result uses a Lyapunov function and is given in Appendix A.

123



A mathematical analysis of rebound in a target-mediated... 53

Lemma 5.3 In the region of R2 defined by y, w ≥ 0, the steady state y = w = 1 of
Eqs. (49), (50) is globally asymptotically stable when ε > 0.

Thus the trajectory for all non-negative initial conditions will eventually approach
the steady state (y, w) = (1, 1) and Theorem 5.1 can be proved by analysing the
solutions close to the steady states. The following lemma gives the detailed results,
with the proof again in Appendix A.

Lemma 5.4 • If 0 < ε ≤ ε−
1 and y(0) < 1, then rebound in Eqs. (49), (50) will

occur for all w(0) > 1 and for some values of w(0) ≤ 1.
• If ε−

1 < ε1 < ε+
1 then rebound occurs for any initial condition with y(0) < 1.

• If ε+
1 ≤ ε < ∞ and y(0) < 1, then rebound in Eqs. (49), (50) will occur for some

initial conditions which satisfy w(0) > 1.

Having established the effect of the feedback on the behaviour of the receptor
without ligand and product, we next consider the effect of adding the ligand.

5.2 Invariance, steady states and stability

Before considering rebound, we first state invariance and stability results for the full
TMDD system with feedback, similar to the results in Sect. 4.1 for the TMDD system
with direct feedback. The proofs of the statements in this section can be found in
Appendix A.

The first three of our variables are related to physical quantities and so must be
non-negative and we have also assumed that the feedback variable w is non-negative.
Therefore, we now establish the invariance of the region with x, y, z, w ≥ 0 for Eqs.
(20)–(23).

Lemma 5.5 The region of R4 defined by x, y, z, w ≥ 0 is invariant under the flow of
Eqs. (20)–(23) when ε > 0.

As with our previous model, this again shows that none of the variables can go
negative, which is an essential property of a good model. We now consider the steady
states of Eqs. (20)–(23).

Lemma 5.6 In the region of R4 defined by x, y, z, w ≥ 0, there is a unique steady
state of Eqs. (20)–(23), given by

x = 0, z = 0, y = 1, w = 1. (57)

The Jacobian matrix obtained from Eqs. (20)–(23) evaluated at the steady state
solution (57) is given by

⎛

⎜
⎜
⎝

−(k1 + 1) μk2 0 0
1
μ

−(k2 + k4) 0 0

− 1
μ

k2 −k3 k3
0 0 −εh0 −ε

⎞

⎟
⎟
⎠

(58)
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(recalling that h0 = −h′(1)). The eigenvalues of this matrix can be found from the
top left 2 × 2 matrix and the bottom right 2 × 2 matrix. From the top left matrix, we
obtain the eigenvalues λ1 and λ2 that we had previously, given by (27) and (28). The
bottom right matrix is the same as J0, defined in (51), and so the eigenvalues of this
matrix are λ3 and λ4 as defined in (52) and (53). The corresponding eigenvectors are
given by

vi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ(k2 + k4 + λi )

1

− (k4 + λi )(ε + λi )

(k3 + λi )(ε + λi ) + εk3h0
εh0(k4 + λi )

(k3 + λi )(ε + λi ) + εk3h0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i = 1, 2; vi =

⎛

⎜
⎜
⎝

0
0
k3

k3 + λi

⎞

⎟
⎟
⎠

, i = 3, 4.

(59)
We now immediately get the linear stability of the steady state solution as all eigen-
values λi are strictly negative.

Lemma 5.7 The steady state (57) of Eqs. (20)–(23) is linearly stable when ε > 0.

This result implies that all trajectories with initial conditions sufficiently close to
the steady state will converge to it. On its own , it does not guarantee convergence for
all initial conditions. However, for this model, a stronger stability result can again be
proved.

Lemma 5.8 The steady state (x, z, y, w) = (0, 0, 1, 1) of Eqs. (20)–(23) is globally
asymptotically stable when ε > 0.

This result ensures that for any non-negative initial conditions and for all positive
parameter values, each of the variables will converge to their unique steady state value,
as with the previous model.

The proofs of these two results are again in Appendix A.

5.3 Rebound

In this section, we focus on the analysis of rebound in the latter stages of the evolution,
i.e., the approach to the steady state. The linearised system will play an important role
in this, but first we consider the limiting case ε = 0 and derive some estimates on the
initial behaviour of the moderator.

For ε = 0, the full TMDD equations with feedback via a moderator, i.e., (20)–(23),
reduce to

ẋ = −k1x − xy + μk2z

ż = xy

μ
− (k2 + k4) z

ẏ = k3(w − y) − xy

μ
+ k2z

ẇ = 0
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Hence w is constant. With the initial condition (24), this implies w = 1 and the
system reduces to the TMDD equation without feedback as studied in our previous
paper (Aston et al. 2014). However, if w has a different initial condition, say w =
w0 �= 1, then the systemwill converge to the steady state (x, z, y, w) = (0, 0, w0, w0).
Within the hyperplane w = w0, this equilibrium is an attractor. Thus if w0 > 1, then
the receptor will converge to a value above the original baseline. Note that in this case,
we have λ4 = 0, corresponding to the invariance of the moderator w and the line of
steady states (0, 0, w0, w0).

For ε > 0 and the initial condition (24), we can show that initially the moderator w

will increase to values above its baseline and hence the production of the receptor will
be stimulated.

Lemma 5.9 For ε > 0 and h0 > 0, there exists a τ ∗ > 0 such that w(τ) > 1 for all
τ ∈ (0, τ ∗).

Proof The initial condition is w(0) = 1 and since this is also the steady state value of
w, we have ẇ(0) = 0. Differentiating (23) and evaluating at τ = 0 gives

ẅ(0) = εh0
μ

> 0

and the result follows immediately from this. 
�
The initial conditions give that ẏ(0) = − 1

μ
, hence initially y will decrease and take

values smaller than its baseline value 1. The following lemma implies that if there is
no rebound, then w(τ) must be larger than 1 for all time. This observation will be
used several times later to derive a contradiction on the assumption that there is no
rebound.

Lemma 5.10 If ε > 0, h0 > 0 and 0 ≤ y(τ ) ≤ 1 for all τ ≥ 0, then w(τ) > 1 for
τ > 0.

Proof Assume that ε > 0, h0 > 0 and 0 ≤ y(τ ) ≤ 1 for all τ ≥ 0. We evaluate ẇ

along the hyperplane w = 1 giving

ẇ|w=1 = ε(h(y) − 1).

By hypothesis (h3), h(y) > 1 if y < 1 and so ẇ|w=1 > 0 in this case. Sincew(τ) > 1
for sufficiently small τ by Lemma 5.9, this result shows that w(τ) cannot touch or
cross the line w = 1 when y(τ ) < 1.

Next we will show by contradiction that y(τ ) = 1 = w(τ) is impossible too. We
assume that there is some τ̃ > 0 such thatw(τ̃ ) = 1 withw(τ) > 1 for τ ∈ (0, τ̃ ), i.e.
τ̃ is the first moment that w(τ) equals one, and that y(τ̃ ) = 1 also. Using the model
equations (20)–(23), we obtain

ẏ(τ̃ ) = −
(
x(τ̃ )

μ
− k2z(τ̃ )

)

, ẇ(τ̃ ) = 0, ẅ(τ̃ ) = −εh0 ẏ(τ̃ ),

...
w(τ̃ ) = ε[h′′(1)(ẏ(τ̃ ))2 − h0 ÿ(τ̃ ) − ẅ(τ̃ )].
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Thus, using Taylor series, y and w near to τ̃ are given by

y(τ̃ + τ̂ ) = 1 + ẏ(τ̃ ) τ̂ + ÿ(τ̃ )

2
τ̂ 2 + O(τ̂ 3),

w(τ̃ + τ̂ ) = 1 − εh0
2

ÿ(τ̃ ) τ̂ 2 − εh0
6

ÿ(τ̃ ) τ̂ 3 + O(τ̂ 4).

The assumption w(τ) > 1 for τ < τ̃ and y(τ ) ≤ 1 for all τ together with h0 > 0
imply that ẏ(τ̃ ) = 0. Looking at the expressions for the derivatives at τ̃ , this gives
x(τ̃ ) = μk2z(τ̃ ), ẅ(τ̃ ) = 0 and

...
w(τ̃ ) = −εh0 ÿ(τ̃ ). Going to the next order in the

Taylor series, since y(τ ) ≤ 1, then we must have that ÿ(τ̃ ) ≤ 0. If ÿ(τ̃ ) < 0 then
this implies that w(τ̃ + τ̂ ) < 1 for τ̂ < 0 and |τ̂ | sufficiently small, which contradicts
our earlier assumption on w. Thus, the only possibility is that ÿ(τ̃ ) = 0. Using the
relation x(τ̃ ) = μk2z(τ̃ ) we then find that

ÿ(τ̃ ) = k2(k1 − k4)z(τ̃ )

and so this second derivative is zero if either z(τ̃ ) = 0 or k1 = k4. If z(τ̃ ) = 0, then
x(τ̃ ) = μk2z(τ̃ ) = 0 too. As we also have y(τ̃ ) = 1 = w(τ̃ ), this would imply that
the solution is at the equilibrium at t = τ̃ . Uniqueness of solutions gives that this is
not possible. With the alternative option k1 = k4, evaluating ẋ − μk2 ż, ẏ and ẇ on
the line

{x = μk2z, y = 1, w = 1}

shows that this line is invariant under the dynamics. At t = 0, x(0) − μk2z(0) = 1,
hence initially the solution is not on this line and therefore it can never be on the line
in finite time, which rules out the possibility that k1 = k4 and we have come to a
contradiction. We therefore conclude that w(τ̃ ) �= 1 and so it follows that w(τ) > 1
for all τ > 0. 
�
Corollary 5.11 If ε > 0, h0 > 0 and w(t∗) ≤ 1 for some t∗ > 0, then rebound
occurs.

Proof This result is simply the converse of Lemma 5.10. 
�
The observation that initially the moderator will be larger than 1, combined with

the fact that for ε = 0, the initial condition w(0) > 1 leads to rebound, makes it likely
that rebound will happen for all small values of ε. This is indeed the case as will be
shown below.

5.3.1 Relative position of the eigenvalues

To analyse rebound in the latter stages of the evolution, we focus on solutions near
to the baseline state. We are especially interested in the eigenvalue of the Jacobian
matrix (58) with real part closest to zero, since generically trajectories approach the
steady state tangent to the eigenvector corresponding to this eigenvalue. We note that
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Fig. 8 The relative positioning of the eigenvalues in the k1–k3 plane with k2 and k4 fixed. Recall that
λ∞(k3) = −k3(1 + h0) and λ±∗ (k3) = −k3(1 + h0 ± √

h0(1 + h0)), thus the three curves are relations
of the form k3 = λ1(k1, k2, k4)/ f (h0), with f (h0) the appropriate function

the eigenvalues λ1 and λ2 are always real, depend on k1, k2 and k4, do not depend
on ε and k3, and that λ2 < λ1. Furthermore, for k2 and k4 fixed, the eigenvalue
λ1(k1, k2, k4) is monotonic decreasing in k1 and

λ1(0, k2, k4) = − 1+k2+k4−
√

(1+k2+k4)2−4k4
2 ; λ1(k4, k2, k4) = −k4;

lim
k1→∞ λ1(k1, k2, k4) = −(k2 + k4). (60)

On the other hand, the eigenvalues λ3 and λ4 depend on k3 and ε, do not depend
on k1, k2 and k4, and Re(λ3) ≤ Re(λ4). Thus, the eigenvalue with real part closest
to zero will be either λ1 or λ4. As observed before, λ1 does not depend on ε, and for
small ε we have

λ4 = −(1 + h0)ε + O(ε2).

Thus, for sufficiently small ε, the eigenvalue closest to zero will be λ4. To describe
how this changes when ε increases, we consider four λ1 intervals that are defined in
terms of λ±∗ (see (56)) and λ∞ (see Lemma 5.2)—a summary is sketched in Fig. 8:

• λ−∗ (k3) ≤ λ1(k1, k2, k4) < 0 (i.e., k3 ≥ −λ1
1+h0−√

h0(1+h0)
):

Now λ1 is in the interval where λ4 takes real values, hence the eigenvalues λ4 and
λ1 cross at the point where λ4 = λ1 and solving this equation for ε gives

ε = ε2(λ1, k3) := −λ1

(
λ1 + k3

λ1 + k3(1 + h0)

)

= ε−
1 (k3) − (λ1 − λ−∗ )2

λ1 − λ∞

= ε+
1 (k3) + (λ1 − λ+∗ )2

λ∞ − λ1
. (61)
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Note that λ1 + k3(1 + h0) = λ1 − λ∞ �= 0 in this interval and so ε2(λ1, k3) is
well defined. Thus ε2(λ1, k3) = ε−

1 (k3), when λ1 = λ−∗ . Altogether, we conclude
that in this λ1 interval, we have that λ4 > λ1 if 0 < ε < ε2(λ1, k3).

• λ∞(k3) ≤ λ1(k1, k2, k4) ≤ λ−∗ (k3) (i.e.,
−λ1
1+h0

≤ k3 ≤ −λ1
1+h0−√

h0(1+h0)
):

Here λ1 is in the interval where λ4 takes complex values, hence for ε < ε−
1 (k3),

λ4 is real and will be the eigenvalue closest to zero. At ε = ε−
1 (k3), λ4 and λ3

merge and become a complex conjugate pair. For ε just larger than ε−
1 , the real

part of the complex pair will be closest to zero and this will be the case until the
real part of the complex eigenvalues crosses λ1. This occurs when Re(λ3,4) = λ1
and since Re(λ3,4) = −(k3 + ε)/2, this crossing occurs at ε = ε3, where

ε3(λ1, k3) := −(k3 + 2λ1)

Since ε±
1 = −(k3 + 2λ±∗ ), it follows immediately that

ε−
1 (k3) < ε3(λ1, k3) < ε+

1 (k3), for λ+∗ < λ1 < λ−∗ . (62)

Note that ε3(λ1, k3) = ε−
1 (k3) = ε2(λ1, k3), when λ1 = λ−∗ . Thus in this interval,

we have that Re(λ4) > λ1 for 0 < ε < ε3(λ1, k3).
• λ+∗ (k3) ≤ λ1(k1, k2, k4) < λ∞(k3) (i.e.,

−λ1
1+h0+√

h0(1+h0)
≤ k3 < −λ1

1+h0
):

Now λ1 is in the interval where λ4 takes both real and complex values. If ε >

ε+
1 (k3), then λ4 is real and we can use the calculation in the first point to conclude
that λ4 > λ1 if ε > ε2(λ1, k3). If ε−

1 (k3) < ε < ε+
1 (k3), then λ4 is complex and

the calculation above gives that Re(λ4) > λ1 if 0 < ε < ε3(λ1, k3). Note that
ε2(λ1, k3) > ε+

1 (k3) > ε3(λ1, k3) in the open λ1 interval and that ε3(λ1, k3) and
ε2(λ1, k3) collide with ε+

1 (k3) when λ1 = λ+∗ (k3). Furthermore, ε2(λ1, k3) → ∞
for λ1 → λ∞. So altogether we have that in this interval

Re(λ4) > λ1 if 0 < ε < ε3(λ1, k3) or ε > ε2(λ1, k3).

• λ1(k1, k2, k4) < λ+∗ (k3) (i.e., k3 < −λ1
1+h0+√

h0(1+h0)
):

Since Re(λ4) ≥ λ+∗ (k3), we see immediately that in this interval Re(λ4) > λ1 for
all ε > 0.

To visualise this information, we have sketched the λ1 intervals in the k1-k3 plane in
Fig. 8.

5.3.2 Rebound in the latter stages of the evolution

Now that we have determined the positioning of the eigenvalues, we can state when
rebound occurs in the latter stages of the evolution.

Theorem 5.12 Define m as in Theorem 4.10, i.e., m = inf{ h(y)−1
y−1 | 0 ≤ y < 1} and

define f +∗ (h0) = 1 + h0 + √
h0(1 + h0), hence λ+∗ = −k3 f +∗ (h0).
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Fig. 9 Rebound overview, on the left for k2 ≤ k4
f +∗ −(1+m)

1+m and on the right for k2 > k4
f +∗ −(1+m)

1+m .

Note that f +∗ (h0) > 1 + h0 ≥ 1 + m. Recall that λ+∗ = −k3 f
+∗ (h0) and λ∞ = −k3(1 + h0)

(i) If k3 < min
( −λ1

f +∗ (h0)
, k4
1+m

)

, then rebound occurs generically for 0 < ε <

ε+
1 (k3).

(ii) If k1 > k4 and

(a) −λ1
f +∗ (h0)

< k3 < min
( −λ1
1+h0

, k4
1+m

)

, then rebound occurs generically for 0 <

ε < ε2(λ1, k3);

(b) k3 > min
( −λ1
1+h0

, k4
1+m

)

, then rebound occurs generically for all ε > 0.

(iii) If k1 < k4 and
(a) − λ1

f +∗ (h0)
< k3 ≤ −λ1 then rebound occurs generically for 0 < ε <

ε3(λ1, k3);
(b) k3 > −λ1 then rebound occurs generically for 0 < ε < −λ1.

These results are summarised in Fig. 9.

The proof of this theorem will be given via two lemmas which determine when the
eigenvalue closest to zero can be associated with rebound. First we consider the case
that the eigenvalue λ4 (or its real part if complex) is closest to zero.

Lemma 5.13 If the eigenvalue λ4 (or its real part if complex) is closest to zero and

• 0 < ε < ε+
1 or

• ε ≥ ε+
1 , and k3 > k4

1+m ,

then rebound occurs (generically only for ε−
1 < ε < ε+

1 ).

The proof of this lemma can be found in Appendix B.
Next we consider the case that the eigenvalue λ1 is closest to zero.

Lemma 5.14 If λ1 is the eigenvalue closest to zero, then rebound occurs generically
if k1 > k4 or if ε < −λ1.

Again, the proof of this lemma can be found in Appendix B.
With the lemmas above, we are ready to prove Theorem 5.12.

Proof of Theorem 5.12 The results in this Theorem are essentially obtained by apply-
ing Lemmas 5.13 and 5.14 in each of the four regions described in Sect. 5.3.1. The
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Table 1 Summary of results obtained by applyingLemmas 5.13, 5.14 to the eigenvalue categories described
in Sect. 5.3.1. The ticks indicate that rebound occurs in the given intervals

Region Re(λ4) > λ1 Conditions for
rebound

Re(λ4) < λ1 Conditions for
rebound

λ−∗ ≤ λ1 < 0 0 < ε < ε2( < ε+
1 ) � ε > ε2 k1 > k4 or

ε2 < ε < −λ1

λ∞ ≤ λ1 ≤ λ−∗ 0 < ε < ε3( < ε+
1 ) � ε > ε3 k1 > k4 or

ε3 < ε < −λ1 if
λ1 > −k3

λ+∗ ≤ λ1 < λ∞ 0 < ε < ε3( ≤ ε+
1 )

ε > ε2( ≥ ε+
1 )

�
k3 >

k4
1+m

ε3 < ε < ε2 k1 > k4

λ1 < λ+∗ ε > 0 0 < ε < ε+
1 or

ε ≥ ε+
1 if

k3 >
k4

1+m

− −

Table 2 Summary of conditions for rebound derived from Table 1

Region k1 ≤ k4 k1 > k4

λ−∗ ≤ λ1 < 0 0 < ε < ε2, ε2 < ε < −λ1 0 < ε < ε2, ε2 < ε

λ∞ ≤ λ1 ≤ λ−∗ 0 < ε < ε3, ε3 < ε < −λ1 if λ1 > −k3 0 < ε < ε3, ε3 < ε

λ+∗ ≤ λ1 < λ∞ 0 < ε < ε3 0 < ε < ε3, ε3 < ε < ε2,
ε > ε2 if k3 >

k4
1+m

λ1 < λ+∗ 0 < ε < ε+
1 , ε ≥ ε+

1 if k3 >
k4

1+m 0 < ε < ε+
1 , ε ≥ ε+

1 if k3 >
k4

1+m

results from this process are summarised in Table 1. The observations about the rela-
tive position of ε2, ε3 and ε+ in the various regions follow from (61) and (62). In the
regions λ+∗ < λ1 < λ−∗ , the case Re(λ4) < λ1 leads to the range ε3 < ε < −λ1. This
range is not empty only when ε3 < −λ1. The definition of ε3 shows that this condition
holds if λ1 > −k3, which is why this condition is included in the second row. For the
third row, we observe that λ∞ = −k3(1 + h0) < −k3, so the range ε3 < ε < −λ1 is
always empty if λ1 < λ∞.

The two columns containing conditions for rebound in Table 1 can be com-
bined in some cases, as shown in Table 2, where we separate out two regions in
the parameter plane defined by k1 ≤ k4 and k1 > k4. For the third row, we have
used that λ1(k1, k2, k4) is monotonic decreasing in λ1. Hence if k1 ≤ k4, then
λ1(k1, k2, k4) ≥ λ1(k4, k2, k4) = −k4 (see (60)). Thus if λ1 < λ∞ = −k3(1 + h0)
and k1 ≤ k4, then k3 < − λ1

1+h0
≤ k4

1+h0
≤ k4

1+m .
We note in Table 2 that in many cases, there are neighbouring intervals with only

the boundary point between themmissing. Thus, filling in these specific points (which
are proved below) gives the results shown in Table 3. The results in Theorem 5.12 are
obtained by converting the eigenvalue ranges in Table 3 into conditions involving the
parameters, using that λ∞ = −k3(1 + h0) and λ+∗ = −k3 f +∗ (h0).
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Table 3 Summary of final conditions for rebound

Region k1 ≤ k4 k1 > k4

λ−∗ ≤ λ1 < 0 0 < ε < −λ1 ε > 0

λ∞ ≤ λ1 ≤ λ−∗ 0 < ε < ε3 or 0 < ε < −λ1 if λ1 > −k3 ε > 0

λ+∗ ≤ λ1 < λ∞ 0 < ε < ε3 0 < ε < ε2

or ε > 0 if k3 >
k4

1+m

λ1 < λ+∗ 0 < ε < ε+
1 or ε > 0 if k3 >

k4
1+m

We now consider a number of special cases that fill in the gaps that allow us to go
from Tables 2 to 3.

• λ−∗ < λ1 < 0, ε = ε2.
When ε = ε2, then λ1 = λ4 and so there are two repeated eigenvalues that are the
least negative. With some calculations, it can be seen that the eigenvectors v1 and
v4 collide (the denominator (k3 + λ1)(ε3 + λ1) + ε2k3h0 in the third and fourth
entry vanishes, so the eigenvector has to be rescaled first to see this), hence we
are in the case of an eigenvector and a generalised eigenvector. The eigenvector is
v4 = (0, 0, k3, k3 + λ4) and generically solutions will align with this eigenvector.
In the proof of LemmaB.1, it is shown that k3+λ4 > 0when ε ≤ ε−

1 .Now ε2 < ε−
1

for λ1 > λ−∗ by (61) and this implies that the third and fourth components of v4
have the same sign. The proof in Lemma B.1 now applies to prove that generically
rebound occurs in this case.

• λ1 = λ−∗ , ε = ε2 = ε3 = ε−
1 .

In this case there is triple eigenvector with one eigenvector v1 = v4 = v3 =
(0, 0, k3, k3 + λ4) together with two generalised eigenvectors. Again, generically
solutions alignwith this eigenvector and, as above, the third and fourth entries have
the same sign, thus and so rebound can be proved via a contradiction argument.

• λ+∗ < λ1 < λ∞, ε = ε2 with k3 > k4
1+m .

This is similar to the first case as the two eigenvalues λ1 and λ4 coincide when
ε = ε2 with an eigenvector and a generalised eigenvector in this case. Generically
solutions will align asymptotically with the eigenvector. The proof of Lemma B.2
can now be applied in this case.

• λ+∗ < λ1 < λ−∗ , ε = ε3 with k1 > k4 or k3 > −λ1.
In this case, the real part of the complex pair λ3,4 equals the eigenvalue λ1.
Approaching the steady state via the complex pair leads to rebound. The proof
of Lemma 5.14 also applies with ε = ε3 provided that ε3 +λ1 < 0 and this occurs
if k3 > −λ1 and so rebound occurs if the steady state is approached tangent to
v1. If the approach occurs via a linear combination of the three eigenvectors, then
clearly rebound will then occur in this case also. Hence we can conclude that
rebound will occur generically in this case.

The rebound results that are summarised in Table 3 are shown in Fig. 9. There are
two cases shown here, depending on whether or not the curve λ1 = λ+∗ intersects the

line k3 = k4
1+m . Since limk1→∞ = −(k2 +k4) (see (60)), if k2 < k4

f +∗ −(1+m)

1+m then the
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curve λ1 = λ+∗ is always below k3 = k4
1+m . Also, as λ1(k4, k2, k4) = −k4 (see (60)),

then it can be shown that the line k3 = k4
1+m is above the line λ+∗ at this point, and so

the line can never go below the curve as the curve is monotonically increasing with
k1. 
�

Remarks • Some of the rebound results that we proved in Lemmas 5.13 and 5.14
hold only generically, and some cases always give rebound. However, for the sake
of simplicity, we have not distinguished between these in Theorem 5.12 but simply
refer to the existence of generic rebound.

• In Theorem 5.12, we have proved the existence of rebound in a variety of cases.
However, it should be noted that we have not proved or disproved the existence of
rebound in other parameter regions, and so we do not have results for all possible
parameter values.

• From Theorem 5.12, we can conclude that there exists ε0 > 0 such that rebound
occurs for all ε satisfying 0 < ε < ε0 (see Fig. 9). Thus, for all parameter values,
rebound occurs for sufficiently small ε > 0. This might seem to contradict the
result for the limit ε = 0 (the no-feedback case) where there is a large region
in the parameter plane for which there is no rebound. The explanation is that for
those parameter values, the magnitude of the rebound decays to zero as ε goes to
zero.

6 Generalisations

Thus far, we have considered the basic TMDD model with feedback dynamics which
is linear in the feedback moderator F . We now extend this model in two directions.
First we extend the TMDD model to allow for more compartments and secondly we
consider more general types of feedback dynamics. Below we show that some of the
rebound results can be extended to these more general models.

6.1 Generalised TMDD model with feedback via a moderator

In this section we consider a generalisation of the basic TMDD model to more com-
partments. It is assumed that the receptor is still only in one compartment. In the basic
TMDDmodel, the variable y represents the normalised receptor in this compartment.
Now we will assign y to represent either the normalised free receptor (as before) or
it could be the normalised total amount of receptor. The normalised ligand-product
components (x and z) of the basic TMDD model are generalised to a vector x that
represents the ligand and product in the compartments. The generalised TMDDmodel
with feedback becomes

ẋ = f1(x, y) (63)

ẏ = k3(w − y) + f2(x, y) (64)

ẇ = ε(h(y) − w) (65)
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where x ∈ R
n , n ≥ 1 and y, w ∈ R. We note that if f1 depends only on x but not

on y, or if f2 depends only on y but not on x, then the coupling between x and y is
in one direction only. In this case, the model could not be classed as a generalised
TMDDmodel, although our results below still hold in these cases. We assume that the
assumptions (h1)–(h4) on the feedback function h(y) hold and we make the following
assumptions on the functions f1 and f2:

• There exists an x0 ∈ R
n such that the Eqs. (63)–(65) have the steady state solution

x = x0, y = w = 1. This implies that f1(x0, 1) = 0 and f2(x0, 1) = 0. We also
assume that this steady state is globally asymptotically stable.

• In the basic TMMD model, a change in the receptor level while the ligand and
product are at baseline does not move the ligand or product away from baseline
and we make a similar assumption for this model, i.e., f1(x0, y) = 0 for all y ≥ 0
which implies that ∂f1

∂y (x0, 1) = 0. Similarly, the function f2 is not affected by
the receptor dynamics if the ligand and product are at baseline, i.e., f2(x0, y) = 0
for all y ≥ 0 which implies that ∂ f2

∂y (x0, 1) = 0. In fact, in both cases, all that we
really require is the weaker derivative condition.

• The initial conditions are given by

x = x1, y = w = 1

for some x1 �= x0 with x1 such that f2(x1, 1) < 0. Hence initially the amount of
receptor will decrease.

• The Jacobian matrix Dxf1(x0, 1) has no zero or purely imaginary eigenvalues.

With these assumptions, the Jacobian matrix evaluated at the steady state is given by

J (x0, 1, 1) =
⎡

⎣

Dxf1(x0, 1) 0 0
Dx f2(x0, 1) −k3 k3

0 −εh0 −ε

⎤

⎦

Note that the condition ∂f1
∂y (x0, 1) = 0 leads to a block lower triangular structure in

this matrix. This implies that the eigenvalues of this matrix are the eigenvalues of the
Jacobian matrix Dxf1(x0, 1) and the eigenvalues of the 2 × 2 bottom right matrix in
J (x0, 1, 1). The global asymptotic stability of the steady state (x0, 1, 1) implies that
all eigenvalues have negative or zero real part. Note that the eigenvalues of Dxf1(x0, 1)
do not depend on ε and that our final assumption implies that the eigenvalue closest
to zero will have strictly negative real part. The 2× 2 bottom right matrix is the same
as in the basic TMDD model with feedback. We denote its eigenvalues by λn and
λn−1, where the eigenvalue λn corresponds to λ4 earlier and λn−1 to λ3. Thus λn is
the closest eigenvalue to zero for sufficiently small ε.

We define

ε̃0 = min{ε−
1 , ε̃2}

where ε̃2 is the value of ε at which the eigenvalue λn coincides with the eigenvalue
closest to zero of the matrix Dx f1(x0, 1). Recall that ε

−
1 is the value of ε for which λn

and λn−1 become a complex pair of eigenvalues. We then have the following result.
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Theorem 6.1 If the above assumptions on f1 and f2 hold, then rebound occurs gener-
ically for 0 < ε < ε̃0.

Proof The condition f2(x1, 1) < 0 ensures that ẏ(0) < 0, which is required in the
proof of Lemma 5.9. The w equation is unchanged in this setting and so Lemma 5.10
also holds. The proof of LemmaB.1 also holds in this setting, although the exceptional
case that the trajectory approaches the steady state tangent to a different eigenvector
cannot be excluded outright in this more general case, and so we only have a generic
result. 
�

If the bottom right 2 × 2 matrix in J (x0, 1, 1) has complex eigenvalues with real
part closest to zero of all the eigenvalues, then again there will be oscillation about
the steady state in y as the steady state is approached and so rebound occurs infinitely
often but with exponentially decreasing amplitude.

6.2 Generalisation of the dynamics of the feedback

In our considerations so far, the feedback dynamics has been linear in the feedback
moderator F (or w in the non-dimensional equations), see (14) or (23). In this section
we will consider a more general form of feedback, and focus on the case of a small
value of the parameter α (ε). In particular, we again assume that the receptor equation
is described by (13) and describe the dynamics of F by

dF

dt
= αG(R, F). (66)

Non-dimensionalising as before, we obtain a new equation for the feedback variable
w (= F) given by

ẇ = εg(y, w), (67)

where

g(y, w) = G(R0y, w)

and ε is defined by (25). We make a number of assumptions regarding the function g:

(h1’) g(1, 1) = 0
(h2’) −g1 := ∂g

∂y (1, 1) < 0

(h3’) −g2 := ∂g
∂w

(1, 1) < 0

The assumption (h1’) ensures that the equations retain the steady statewith y = w = 1.
Assumption (h2’) ensures that when the system is perturbed from the steady state by
reducing y, which is what happens when the ligand is injected, then w will increase,
resulting in greater production of the receptor. Finally, assumption (h3’) ensures that
the steady state w = 1 of (67), assuming that y = 1 is held fixed, is stable.

We now show that some of the results obtained previously also hold in this more
general setting. We again start by considering the Jacobian matrix of Eqs. (20)–(22),
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(67) evaluated at the steady state (57), which is given by

⎛

⎜
⎜
⎝

−(k1 + 1) μk2 0 0
1
μ

−(k2 + k4) 0 0

− 1
μ

k2 −k3 k3
0 0 −εg1 −εg2

⎞

⎟
⎟
⎠

(68)

Theorem 6.2 If assumptions (h1′), (h2′) and (h3′) hold, and if g(y, 1) > 0 for all
y ∈ [0, 1), then there exists ε0 > 0 such that rebound occurs in the model given by
Eqs. (20)–(22), (67) for all ε satisfying 0 < ε < ε0.

Proof We note that assumptions (h1′) and (h2′) imply that g(y, 1) > 0 for y < 1
sufficiently close to 1. The extra assumption requires that this holds for all y ∈ [0, 1).
The proofs of Lemmas 5.9, 5.10 and B.1 can easily be adapted to this modified model.
In particular, for Lemma 5.9, ẇ(0) = 0 as before and in this case, we have

ẅ(0) = − ε

μ

∂g

∂y
(1, 1) = ε

μ
g1 > 0

and so Lemma 5.9 holds.
For Lemma 5.10, we note that

ẇ|w=1 = εg(y, 1) > 0

using our stated assumption. Combinedwith Lemma 5.9, this implies thatw(τ) cannot
touch or cross the line w = 1 when y(τ ) < 1. The second part of the proof of
Lemma 5.10 shows by contradiction that y(τ ) = w(τ) = 1 is impossible and the
same proof holds in this case with h0 replaced by g1.

The Jacobian matrix associated with Eqs. (49) and (67) (analogous to (51)) is given
by

J0 =
[−k3 k3

−εg1 −εg2

]

(69)

which has eigenvalues λ3 = −k3, λ4 = 0 when ε = 0 as previously. These two
eigenvalues collide when the discriminant of the characteristic polynomial is zero,
and this first occurs when

ε = ε−
1 = k3

g22

(

2g1 + g2 −√

4g1(g1 + g2)
)

.

With this definition of ε−
1 , we claim that Lemma B.1 holds also. To see this, we note

that the eigenvector v4 given by (59) is the same in this case, but with λ4 as the
eigenvalue of (69) that is closest to zero. We now have

k3 + λ4 = 1

2

(

k3 − εg2 +
√

(k3 − εg2)2 − 4εk3g1

)

.
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It is easily verified that k3 > ε−
1 g2 and this implies that k3 + λ4 > 0 for 0 < ε < ε−

1 .
Thus, if 0 < ε < ε−

1 , then the third and fourth components of the eigenvector v4 have
the same sign and the proof of Lemma B.1 again implies that rebound occurs.

The second part of the proof of Lemma B.1 considered the non-generic cases of the
trajectory approaching the steady state tangent to one of the other eigenvectors. For
the eigenvector v3 in (59), we note that it is easily verified that k3 +λ3 > 0 and so the
same arguments apply in this case. The argument for the eigenvector v2 is unchanged,
while for v1, the requirement for the third and fourth components of the eigenvector
to be the same is εg2 + λ1 < 0 and it is easily verified that this holds.

If ε = ε2 corresponds to the point at which the eigenvalues λ1 = −k4 and λ2
coincide, then the conditions of Lemma B.1 hold with ε0 = min(ε−

1 , ε2) and so we
conclude that rebound therefore occurs for all ε satisfying 0 < ε < ε0. 
�

This result shows that for this generalised model, rebound always occurs for suf-
ficiently small ε > 0 even if there is no rebound without feedback (ε = 0), as is the
case for the original TMDD model with feedback moderator.

Clearly, if the bottom right 2 × 2 matrix in (68) has complex eigenvalues which
have real part closest to zero of all the eigenvalues, then there will again be oscillation
about the steady state in y and so rebound occurs infinitely often but with exponentially
decreasing magnitude.

7 Applications

We now consider two applications of these results to two different models. The first is
the standard TMDD model with feedback. The second is a more complicated model
of the effect of efalizumab on patients with psoriasis. This model is an application of
the generalizations in Sect. 6.

7.1 Example 1

We consider the TMDD equations including feedback with moderator given by (11)–
(14). We use parameter values for the IgE mAb omalizumab (Sun 2001; Agoram
et al. 2007), namely ke(L) = 0.024 day−1, ke(P) = 0.201 day−1, kout = 0.823 day−1,
R0 = 2.688 nM, koff = 0.900 day−1, kon = 0.592 (nMday)−1, kin = koutR0 =
2.212224 nMday−1, and initial drug dose L0 = 14.8148 nM. These parameter values
have ke(L) < ke(P) and so no rebound will occur when there is no feedback or in the
case of direct feedback for any feedback function H(R). This follows directly from
Theorem 2.1, Corollary 4.4, and Theorem 4.10 since ke(L) < ke(P) implies that the
parameter values are in the left green region in Figs. 3, 4, and 6.

However if there is feedback via a moderator then Theorem 5.12 implies that
rebound occurs for all sufficiently small α > 0, even though there is no rebound
at α = 0. The parameters for this example give

λ1 = −0.084, λ4 = 0.126, k3 = 0.517.
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Fig. 10 Left a plot of the relative magnitude of rebound Rmax/R0 for feedback with a moderator and the
mainly linear feedback function (34) with H0 = 1 for a range of values of α. Right a plot of the time at
which the maximum rebound occurs

Thus Theorem 5.12 gives that the parameters are in the upper left region of Fig. 9
and that rebound will happen for α < 0.135 (using α = ε/0.625). However, this is
a lower bound on the region of rebound. To illustrate this, we have used the mainly
linear feedback function H(R) in (34) with H0 = 1. The magnitude of the rebound
is sufficiently small in this case that a nonlinear function H1(R) is not required. The
maximum rebound is plotted in Fig. 10 for a range of values of α which does indeed
show that there is rebound for all α > 0 and sufficiently small. For this example,
the rebound ends at approximately α = 0.98. In this case, a local maximum for R
persists for larger values of α, but with Rmax/R0 < 1. The value of time tmax at which
the maximum rebound occurs is also shown in Fig. 10. We note that as α → 0 then
tmax → ∞ and so the time of maximum rebound moves to infinity as the magnitude
decreases. The same mechanism does not apply when the rebound disappears around
α = 1 since a local maximum persists in this case but at values lower than baseline,
as already discussed.

We have numerically sampled larger values of α and there is no indication of
further rebound occurring. Of course we know that when α → ∞, the feedback with
moderator becomes the direct feedback case, for which there is no rebound in this
example.

7.2 Example 2

In a study on the effect of efalizumab on patients with psoriasis (Ng et al. 2005),
rebound was reported in some patients. The model equations proposed in Ng et al.
(2005) are

dXsc

dt
= −ka Xsc,

dX1

dt
= −(k10 + k12)X1 + k21X2 − VmX1

KmcVc + X1
+ FakaXsc,

dX2

dt
= k12X1 − k21X2,
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dX3

dt
= X4 − k30X3 − Vm2X3X1

KmcVc + X1
,

dX4

dt
= koff

[

k03max

(
Kmc03

Kmc03 + X3

)

− X4

]

,

where Xsc, X1 and X2 are the amounts of efalizumab in thedepot, central andperipheral
compartments respectively, X3 is the total %CD11a on the surface of each T cell and
X4 is the production rate of %CD11a to the T cell surface. In this section we will
show that this model can be written as a generalised model with feedback as studied
in Sect. 6.1. Strictly speaking, this model is not a TMDD model as the efalizumab
equations decouple from the %CD11a equations. As indicated in Ng et al. (2005), one
could use X1X3

KmcVc+X1
instead of X1

KmcVc+X1
in the PK equations and have a more TMDD-

likemodel. InNg et al. (2005), the simplermodelwas chosen as therewas no difference
in the fit of the data. If one would use the more complicated model, the parameters
would need to be fitted again. So we focus in this section on the same model as in Ng
et al. (2005). However, our analysis also applies to the more complicated model and
the observed rebound would again be due to the slow feedback response.

In this model, X3 is the total receptor, free and bound, and X4 is the feedback
moderator. The plots in Fig. 3 of Ng et al. (2005) show rebound in the total receptor,
which of course is not the same as rebound in the free receptor. However, we first
show that this model fits with the generalised model that we considered in Sect. 6.1
and we will then discuss the issue of rebound in the free receptor. To put this model
into our framework, we take X = [Xsc, X1, X2], Y = X3 and F = X4/k03max. The
differential equations for Y and F are then given by

dY

dt
= k03maxF − k30Y + F2(X,Y ), (70)

dF

dt
= koff

(
Kmc03

Kmc03 + Y
− F

)

, (71)

where

F2(X,Y ) = − Vm2Y X1

KmcVc + X1
.

The non-dimensional form of these equations is precisely in the form of Eqs. (63)–
(65). These equations have the unique steady state in the region of interest given by

X0
sc = X0

1 = X0
2 = 0, Y 0 = k03maxF0

k30
,

where F0 is the positive root of the quadratic equation

k03maxF
2 + k30Kmc03F − k30Kmc03 = 0. (72)

Substituting F = 1+δF into (72) gives a quadratic equation for δF which has two
negative roots, and this implies that F0 ∈ (0, 1). It is then easily verified that all the
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conditions stated in Sect. 6.1 on the functions F1 and F2 hold. The particular function
H that is used in this model is given by

H(Y ) = Kmc03

Kmc03 + Y
.

We non-dimensionalise, considering only Y and F , by defining the new variables

y = Y

Y 0 , w = F

F0 , τ = Vm2t.

The non-dimensional form of equations (70)–(71) is then

ẏ = k3(w − y) + f2(x, y),

ẇ = ε(h(y) − w),

where dot denotes differentiation with respect to τ , x is the (unspecified) non-
dimensional form of X, and

k3 = k30
Vm2

, ε = koff
Vm2

, f2(x, y) = F2(X,Y 0y)

Vm2
, h(y) = 1

F0 + (1 − F0)y
.

Note that we have used (72) in deriving h(y). All of our assumptions (h1)–(h4) on the
function h(y) are now satisfied and

h0 = −h′(1) = 1 − F0 > 0

since F0 ∈ (0, 1). We tried to reproduce the numerical results shown in Fig. 3B
(dashed line) of Ng et al. (2005) but found that this was only possible by changing
koff from the stated value of 0.00154 day−1 to 0.0154 day−1 (the smaller value of
koff did show rebound, but with a smaller magnitude of about 110% of baseline).
Moreover, the authors in Ng et al. (2005) report an affinity of 0.033 µg/ml, which is
(0.033/150,000) × 10−3M = 2 × 10−10M, or 200pM. If we use the reported koff of
0.00154 day−1 and assume a typical kon (see Aston et al. 2011) of 0.592 nM−1/day,
the ratio koff/kon ≈ 2pM, i.e. 100-fold more potent than reported. A ten-times higher
koff still does not give the right affinity but at least it is closer. The values of the other
parameters used, from Tables II and III of Ng et al. (2005), are ka = 0.242 day−1,
k10 = 0.114 day−1, k12 = 0.097 day−1, k21 = 0.193 day−1, k30 = 0.444 day−1,
Vc = 64.3 mL/kg, Vm = 26.9 µg/mL, Vm2 = 2.16 day−1, Kmc = 0.033 µg/mL,
Fa = 0.564, k03max = 334 %CD11a/day. The plot of the total receptor X3 in this
case is the solid blue line shown on the left in Fig. 11.

To find out how feedback influences the model, we ran a simulation of the model
when the feedback was turned off, i.e., we took X4 to be constant at its baseline value.
As can be seen on the right in Fig. 11, without feedback there is no rebound. So clearly
the rebound in this example is caused by the feedback.
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Fig. 11 The total and free %CD11a relative to baseline after a single 3 mg/kg intravenous dose of efal-
izumab. On the left is the plot with feedback turned on and rebound can be observed. On the right is the
plot without feedback and no rebound occurs

Next we will interpret these results using our analysis. Using the parameter values
in Ng et al. (2005), but the modified value of koff , we find that

ε = 7.13 × 10−3,

and since this is so small, we expect that the eigenvalue closest to zero of the Jacobian
matrix evaluated at the steady state will come from the lower 2×2 diagonal block. This
is indeed the case since the eigenvalue closest to zero of this block is −1.37 × 10−2

while the eigenvalue closest to zero from the remaining 3 × 3 block Dxf1(0, 1) is
−8.87× 10−2. Thus, in the notation of Theorem 6.1, we have 0 < ε < ε0 and so this
Theorem says that we generically have rebound in the total receptor X3, as confirmed
in Fig. 11 and by the numerical results in Ng et al. (2005).

The two eigenvalues of the lower 2×2 diagonal block collide at λ = −0.122 when
ε = 0.0390, but since there are eigenvalues of Dxf1(0, 1) that are closer to zero than
this, we would not expect to see oscillatory convergence to the steady state in this
model by simply increasing ε (koff ), as described in Lemma B.3.

Finally, we recall that the variable X3 in the above model is the total of the free and
bound receptor. The free receptor on T cells is given by KmcVcX3/(KmcVc + X1) (Ng
et al. 2005) and we note that if X1 = 0, then the free receptor is the same as the total
receptor. Now X1 is the amount of efalizumab in the central compartment and while
this is present, the total receptor X3 is kept at a low level. However, once X1 has been
almost depleted, then X3 starts to rise again and rebound occurs. Thus, X1 is very low
in the phase of the dynamics in which rebound in X3 occurs, and this implies that the
free receptor is very similar to X3 and so will also rebound. The free receptor for the
above example is also shown in Fig. 11 as the red dashed line and it can clearly be
seen that this also has rebound which is very similar to that for the total receptor as
anticipated.
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8 Conclusions and discussion

In this paperwehave extendedour previousworkon rebound in the basicTMDDmodel
by including feedback. The feedback is negative, thus the rate of receptor production
increases when the concentration drops below baseline (and vice versa). We modelled
the feedback with an additional dynamic equation for the feedback moderator. If the
feedback responds very fast, a quasi equilibrium approximation can be used and the
feedback can be incorporated into the synthesis term itself.

We have shown that rebound is more likely to occur if feedback is present and that
the likelihood of feedback occurring depends on the response speed of the feedback. If
the feedback responds sufficiently slowly therewill always be rebound. In the psoriasis
example presented in Sect. 7.2, it can be seen that the rebound can be significant, an
increase of over 40% of baseline is observed. The TMDD example in Sect. 7.1 shows
that this is not always the case. In general, it is a challenge to describe the main
parameters that influence the magnitude of the rebound. One important parameter is
obviously the response speed of the feedback. If the response of the feedback goes
to zero, then we converge to the case without feedback. Thus for many values of the
elimination parameters the magnitude of the rebound will diminish if the response
of the feedback slows down to zero and in the limit the rebound will have gone.
The exceptions are of course those elimination parameter values for which rebound
is observed if no feedback is present (the elimination rate of the antibody-protein
complex is less than both the elimination rate of the antibody and the elimination rate
of the protein (ke(P) < ke(L) and ke(P) < kout)).

At first sight, it might be surprising that there is always rebound for a very slow
feedback response rate (0 < α � 1), while there are large regions without rebound
when the feedback moderator does not change and there is no feedback (α = 0).
However, it can be seen that, in the absence of feedback dynamics (α = ε = 0), a
larger initial condition for themoderatorwwill lead to a steady statewith y = wwhich
is above the baseline. Furthermore, Lemma 5.9 shows that when the moderator starts
at baseline, ligand is added and feedback is turned on (α, ε > 0), then the moderator
w initially increases to above its baseline value, albeit on a slow time scale since α

is small. However, this implies that w will also only decrease back to its steady state
value of 1 on a slow time scale. While w > 1, y converges towards w on a faster
time scale and will therefore itself exceed 1, resulting in rebound, followed by a slow
relaxation of y and w back to their final steady state.

For moderately slow feedback response rates, the rebound is expected to be maxi-
mal, while for very fast feedback responses (α � 1), the reboundwill be approximated
by the direct feedback limit. The results for the direct feedback model are qualitatively
very similar to the results without feedback: the existence or non-existence of rebound
again depends only on the three elimination rates ke(L), kout and ke(P). An extra feature
now is that the characteristics of the feedback function H(R) play a role as well if
ke(L) > ke(P). In particular, in both the direct feedback and no feedback models, there
is no rebound if the elimination rate of the ligand is less than the elimination rate of
the antibody-protein complex (ke(L) < ke(P)). Furthermore, in both models there will
be rebound if the elimination rate of the antibody-protein complex is less than both the
elimination rate of the antibody and the elimination rate of the protein (ke(P) < ke(L)
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and ke(P) < kout). However, if kout < ke(P) < ke(L), then the presence of feedback
will increase the region in which rebound occurs. The details depend on the charac-
teristics of the feedback function H(R) and can be found in Theorem 4.10. Again,
in both models, the association and dissociation rate parameters kon and koff do not
influence the occurrence of rebound, though they will play a role in the magnitude of
the rebound if it occurs. There are some preliminary observations that a large kon will
dampen rebound, but this needs further work.

In the general feedbackmodel,wehave focusedonproving the existence of rebound.
In general, it is challenging to prove the non-existence of rebound as it has to be shown
that the receptor is bounded by its baseline for all time.We expect that no rebound will
occur for ke(L) < ke(P) or small kout for a sufficiently fast response rate (α large), but
we have not yet obtained analytical results about this. The fast response is a singular
limit and it can be shown that the dynamics has to be close to the limiting case. Thus
if any rebound did happen, it would have to be very small.

Furthermore, we have also shown in this paper that most of the results obtained on
rebound in the model with slow feedback can be extended to more general systems of
TMDD equations such as equations with more compartments. We illustrated this with
the example of psoriasis, where rebound is predicted by the model and underpins the
observations in patients (see Sect. 7).

It must be acknowledged that during target discovery and validation, knowledge
of the quantitative relationship between the target neutralisation and the nature of the
negative feedback is often not known. However, using prior knowledge on the target
of interest and similar targets, the model can be used to evaluate the possibility of
feedback and its potential magnitude, and thus confirm the suitability of the target.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A Proofs of invariance and stability results

Proof of Lemma 4.1 The phase space is bounded by the three planes x = 0, y = 0
and z = 0. If the vector field given by the Eqs. (16)–(18) on these planes is directed
inside or is tangent to the octant, then the given region is invariant (Smith 1995).

Equations (16) and (17) are the same as in the simple TMDD model, and so the
direction of the vector field on the planes x = 0 and z = 0 was established in the
proof of Lemma 2.1 of Aston et al. (2014) (see also Peletier and Gabrielsson 2012).

The only difference in this case is in the derivative normal to the plane y = 0, which
is now

ẏ|y=0 = k3h(0) + k2z.

From assumption (h3), we see that h(0) > 1 and so ẏ|y=0 > 0 when z ≥ 0 as before.
The rest of the proof is unchanged. 
�
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Proof of Lemma 4.2 Setting the derivatives to zero in (16) and (17) and solving for x
and z, the only valid solution possible is x = z = 0. Substituting these into (18) with
the derivative set to zero, we obtain

k3(h(y) − y) = 0.

By assumptions (h2) and (h3), y = 1 is the unique non-negative solution of this
equation. Thus the unique steady state in the positive octant of Eqs. (16)–(18) is given
by x = z = 0 and y = 1.

To show the global stability, we note that u = x+μz again decreasesmonotonically
to zero using the same approach as in Lemma 2.3 of Aston et al. (2014) and since x
and z must be non-negative, we conclude that limτ→∞ x(τ ) = limτ→∞ z(τ ) = 0,
as for the original TMDD model. Similar to the original TMDD model, the y-axis,
i.e, the manifold x = 0, z = 0, forms an invariant manifold as ẋ |x=0, z=0= 0 and
ż |x=0, z=0= 0. On this invariant manifold, the y-dynamics is given by

ẏ = k3(h(y) − y).

From the assumptions on the function h, it follows immediately that for 0 < y < 1,
h(y) − y > 1 − y > 0; for y > 1, h(y) − y < 1 − y < 0; and for y = 1, we have
h(y) − y = 1 − 1 = 0. Thus y = 1 is an attractor for the positive y-axis. Intuitively,
these twoobservations together give that the steady state (x, y, z) = (0, 1, 0) is a global
attractor for the positive octant. To make this formal, we consider the y-dynamics in
a neighbourhood of the y-axis.

Let ε > 0. Since limτ→∞ x(τ ) = limτ→∞ z(τ ) = 0, then there is some T > 0
such that for τ > T , we have

0 ≤ x(τ ) ≤ εμk3 and 0 ≤ z(τ ) ≤ εk3/k2.

Thus for τ > T , the y-dynamics (18) can be estimated by

k3 [h(y) − (1 + ε)y)] ≤ ẏ ≤ k3 [h(y) + ε − y] .

If y(T ) > 1, then y(τ ) ≥ 1 on some τ -interval beyond T . In this interval we have
h(y(τ )) ≤ 1, thus

ẏ ≤ k3 [1 + ε − y] or
d

dτ

[

ek3τ (y − (1 + ε))
]

≤ 0.

Thus
y(τ ) ≤ (1 + ε) + e−k3(τ−T ) (y(T ) − (1 + ε)) . (73)

Similarly, if y(T ) < 1, then y(τ ) ≤ 1 on some τ -interval beyond T . In this interval
we have h(y(τ )) ≥ 1, thus

ẏ ≥ k3 [1 − (1 + ε)y)] or
d

dτ

[

ek3(1+ε)τ

(

y − 1

1 + ε

)]

≥ 0
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Thus

y(τ ) ≥ 1 − ε

1 + ε
+ e−k3(1+ε)(τ−T )

(

y(T ) − 1

1 + ε

)

. (74)

If y(τ ) > 1 for all τ ≥ T , then the estimate (73) is valid for all τ > T and we can
conclude that there is some T1 > 0 such that 1 ≤ y(τ ) ≤ 1+2ε for τ > T1. Similarly,
if y(τ ) < 1 for all τ ≥ T , then the estimate (74) is valid for all τ > T and we can
again conclude that there is some T1 > 0 such that 1 ≥ y(τ ) ≥ 1 − 2ε for τ > T1

However, it is also possible that there is some T̂ ≥ T such that y(T̂ ) = 1. In this
case, (73) gives that if y(τ ) ≥ 1 in some interval [T̂ , T̂1], then we can estimate for τ

in this interval

1 ≤ y(τ ) ≤ (1 + ε) + e−k3(τ−T )
(

y(T̂ ) − (1 + ε)
)

= (1 + ε) + e−k3(τ−T ) (1 − (1 + ε)) ≤ (1 + ε)

Similarly, if y(τ ) ≤ 1 in some interval [T̂ , T̂1], then (74) gives that for τ in this interval,
we have

1 ≥ y(τ ) ≥ 1 − ε

1 + ε
+ e−k3(1+ε)(τ−T )

(

y(T̂ ) − 1

1 + ε

)

= 1 − ε

1 + ε
+ e−k3(1+ε)(τ−T )

(

1 − 1

1 + ε

)

≥ 1 − ε

Thus if there is some T̂ ≥ T such that y(T̂ ) = 1, then the interval [T̂ ,∞) can be
divided into intervals [a, b) such that y(a) = 1 = y(b) and y(τ )−1 is either negative
or positive for τ ∈ (a, b). On each of those intervals, one of the two estimates above
can be used and hence we get that |y(τ ) − 1| < ε < 2ε for all τ ≥ T̂ .

Combining these three cases, we can conclude that for all ε > 0, there is some
T̃ > 0 such that |y(τ ) − 1| < ε < 2ε for all τ > T̃ . Thus limτ→∞ y(τ ) = 0 and we
can conclude that all trajectories must converge to the steady state (x, y, z) = (0, 1, 0)
as t → ∞. 
�
Proof of Lemma 5.2 From (53) we note that

λ4 = 1

2
(k3 + ε)

(

−1 +
√

1 − 4εk3(1 + h0)

(k3 + ε)2

)

= 1

2
(k3 + ε)

⎛

⎝

4εk3(1+h0)
(k3+ε)2

−1 −
√

1 − 4εk3(1+h0)
(k3+ε)2

⎞

⎠

=
2εk3(1+h0)

(k3+ε)

−1 −
√

1 − 4εk3(1+h0)
(k3+ε)2

Taking the limit in this expression as ε → ∞ gives the stated result. 
�
Proof of Lemma 5.3 We define the Lyapunov function

V (y, w) = 1

k3

∫ y

1
(1 − h(y′)) dy′ + 1

2ε
(w − 1)2.

123



A mathematical analysis of rebound in a target-mediated... 75

For the steady state to be globally asymptotically stable, we have to prove that V is
positive definite and continuous and that V̇ is negative definite and continuous relative
to the steady state y = w = 1 on the whole of the phase space (Jordan and Smith
2007).

By hypothesis (h4), V and V̇ are continuous. To show that V is positive definite,
we note that V (1, 1) = 0 and that hypothesis (h3) implies that

1 − h(y)

⎧

⎨

⎩

< 0 if y < 1
= 0 if y = 1
> 0 if y > 1

(75)

Thus,

∫ y

1
(1 − h(y′)) dy′

{

> 0 if y �= 1
= 0 if y = 1

and so V (y, w) > 0 if (y, w) �= (1, 1).
Differentiating V with respect to τ gives

V̇ = 1

k3
(1 − h(y))ẏ + 1

ε
(w − 1)ẇ

= (1 − h(y))(w − y) + (w − 1)(h(y) − w)

= −(w − 1)2 − (1 − h(y))(y − 1).

We note that (75) implies that (1 − h(y))(y − 1) > 0 if y �= 1 and so V̇ < 0 if
(y, w) �= (1, 1). Also, V̇ (1, 1) = 0. Thus, V̇ is negative definite.

As all the above conditions are satisfied, we conclude that the steady state (y, w) =
(1, 1) is globally asymptotically stable. 
�
Proof of Lemma 5.4 We first observe that the nullclines for Eqs. (49), (50) are given
by the two curves

w = y, w = h(y)

which intersect at the steady state y = w = 1. These two curves divide the phase
plane into four regions in which the signs of ẏ and ẇ do not change, as illustrated in
Fig. 12.

We note from (55) that

k3 − ε±
1 = k3

(

−2h0 ∓√

4h0(1 + h0)
)

= −2k3h0

(

1 ±
√

1 + 1

h0

)

and it follows from this that
ε−
1 < k3 < ε+

1 . (76)
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Fig. 12 The two nullclines for
Eqs. (49), (50) divide the phase
plane into four regions in which
ẏ and ẇ have one sign

We next observe from (52) and (53) that

λi + k3 = 1

2

(

k3 − ε ±
√

(k3 − ε)2 − 4εk3h0
)

, i = 3, 4

and it is easily verified from this that

λi + k3

{

< 0 if ε > k3,
> 0 if ε < k3,

i = 3, 4. (77)

We now consider the two eigenvectors associated with the eigenvalues λ3 and λ4,
which are given by (54). The slopes of the linearised manifolds E3,4 associated with
the eigenvectors v3,4 in the (y, w) plane are (k3 + λi )/k3, i = 3, 4. We now consider
separately the two ranges in ε for which the eigenvalues are real.

If 0 < ε < ε−
1 , then from (76), we also have that ε < k3. From (77), this implies

that λi + k3 > 0, i = 3, 4 and so the slopes of E3 and E4 are both positive and as
λ3,4 < 0, the slopes are also both less than one. Since λ3 < λ4, themanifold associated
with λ4 has the steepest slope. This situation is shown in Fig. 13a.

Since λ4 is the eigenvalue closest to zero, a generic trajectory will approach the
steady state tangent to the linearised manifold E4. Now the global one-dimensional
stable manifolds which are tangent to E3 and E4 at the steady state are invariant, and
hence no trajectory can cross them. Thus, all initial conditions with y(0) < 1 but
above the global stable manifold tangent to E3 will rotate round the fixed point in a
clockwise direction, as indicated in Fig. 12, and will approach the steady state tangent
to E4 from the right of the steady state, for which y > 1. Now this global manifold
must itself spiral in to the steady state in a clockwise direction as shown in Fig. 12
and so cannot cross the line w = 1, 0 ≤ y ≤ 1, at least not unless it circles the steady
state first. Thus, all initial conditions satisfying w(0) > 1, y(0) < 1 will give rise to
trajectories with rebound as they approach the steady state, as will initial conditions
with w(0) < 1, y(0) < 1 that lie above the global manifold that is tangent to E3 at
the steady state.
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(a) (b)

Fig. 13 The linearised manifolds E3,4 associated with the eigenvalues λ3,4 a ε < ε−
1 , b ε > ε+

1

When ε > ε+
1 , an analogous process can be followed to show that E3 and E4 both

have negative slopes which are less than h′(1) and this is shown in Fig. 13b. Again, any
initial conditions to the right of the global manifold tangent to E3 will rotate around
the steady state in a clockwise direction and will approach the steady state with y > 1,
giving rebound. As ε → ∞, we have already seen that λ3 → −∞, and in this case, E3
becomes vertical and so the region of initial conditions that gives rise to rebound, near
to the steady state at least, becomes smaller as ε increases. Thus, for all ε ∈ (ε+

1 ,∞),
there are always some initial conditions with w(0) > 1, y(0) < 1 which will give rise
to rebound, as claimed.

We note that as the global stable manifolds may spiral in to the steady state in a
clockwise direction, we cannot say whether initial conditions satisfying w(0) < 1,
y(0) < 1 are above or below this global manifold, and so we cannot comment on the
existence or non-existence of rebound in this case.

When ε = ε±
1 , the eigenvalues λ3 and λ4 collide as well as their eigenvectors.

Instead of two eigenvectors, there is now one eigenvector v3 = v4 and a generalised
eigenvector. All solutions will approach the steady state via the eigenvector, see Jordan
and Smith (2007). The analysis for the approach to the steady state for the case 0 <

ε < ε−
1 can be extended to the case ε = ε−

1 and similarly, the case ε > ε+
1 can be

extended to ε = ε+
1 .

The last case to consider are the complex eigenvalues when ε−
1 < ε < ε+

1 . When
ε is in this range, the eigenvalues λ3,4 are a complex conjugate pair. Thus close to the
steady state, trajectories will spiral around it. Each time the trajectory loops round the
steady state, there will be a part of the trajectory with y > 1 and so rebound occurs
infinitely often, but with exponentially decreasing magnitude, which is determined by
Re(λ3,4) = −(k3 + ε)/2. 
�
Proof of Lemma 5.5 The phase space is bounded by the planes x = 0, y = 0, z = 0
and w = 0. As in the proof of Lemma 4.1, we have to show that the derivative normal
to each of these planes is non-negative (Smith 1995).

The proof that the derivative normal to the planes x = 0 and z = 0 is non-negative
is the same as in the proof of Lemma 4.1. On the plane y = 0, we find from (22) that

ẏ|y=0 = k3w + k2z
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and so ẏ|y=0 ≥ 0 when w, z ≥ 0. Similarly on the plane w = 0, from (23), we obtain

ẇ|w=0 = εh(y)

and so ẇ|w=0 > 0 for all y ≥ 0 using assumption (h1).
Thus, we conclude that any trajectory with x(0), y(0), z(0), w(0) ≥ 0 must satisfy

x(τ ), y(τ ), z(τ ), w(τ) ≥ 0 for all τ > 0. 
�
Proof of Lemma 5.6 Solving the equations ẋ = ẏ = ż = 0 for x , y and z again gives
two solutions, but one of these has y negative, so is not physically relevant and is not
in the positive part of the phase plane considered in this lemma. The other solution is
given by

x = z = 0, y = w.

Substituting for y into the equation ẇ = 0 gives

h(w) − w = 0. (78)

As in the proof of Lemma 4.2, we see that w = 1 is a solution of this equation using
(h2) and assumption (h3) ensures that this solution is unique. 
�
Proof of Lemma 5.7 We showed in Aston et al. (2014) that λ1 and λ2 are always real
and negative. Furthermore, Lemma 5.2 gives that λ3 and λ4 are always negative and
real or complex with negative real part. So the steady state is linearly stable. 
�
Proof of Lemma 5.8 The linear stability proved in Lemma 5.7 implies local sta-
bility, i.e., there is some δ > 0 such that all solutions in a δ neighbourhood of
the fixed point (0, 0, 1, 1) will converge to this fixed point as τ → ∞. Or for-
mally, if at some τ0 we have ||(x(τ0), z(τ0), y(τ0), w(τ0)) − (0, 0, 1, 1)|| < δ, then
limτ→∞(x(τ ), z(τ ), y(τ ), w(τ)) = (0, 0, 1, 1). For later use, we define the following
quantities

b1 = min

{

h(y) − 1 | 0 ≤ y ≤ 1 − δ

2

}

, b2 = min

{

1 − h(y) | y ≥ 1 + δ

2

}

,

b = min(b1, b2);

and

B = sup{|h(y) − 1| | y ≥ 0}.

The assumptions (h1)–(h4) ensure that b > 0 and |h(y) − 1| is bounded, hence B is
well defined.

Let (x(τ ), z(τ ), y(τ ), w(τ)) be a solution of the TMDD system with modera-
tor feedback (20)–(23). Following the same arguments as in Lemma 2.3 of Aston
et al. (2014), it follows that the normalised total amount of drug u = x + μz
decreases monotonically to zero. Since x and z must be non-negative, this implies
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that limτ→∞ x(τ ) = limτ→∞ z(τ ) = 0, as for the original TMDD model. Thus there
is some T > 0 such that for all τ > T , we have

|x(τ )| < min

(
bδ

8
,

δ2

16

)

min

(
μk3
B

, 1

)

and |z(τ )| < min

(
bδ

8
,

δ2

16

)

min

(
k3
k2B

, 1

)

.

(79)

Next we consider the function V (y, w) as defined in the proof of Lemma 5.3, i.e.,

V (y, w) = 1

k3

∫ y

1
(1 − h(y′)) dy′ + 1

2ε
(w − 1)2.

It is shown in that proof that V is non-negative for y ≥ 0 and w ≥ 0. We will show
here that V (y(τ ), w(τ)) is decreasing when τ > T and |y(τ )−1| ≥ δ

2 or |w(τ)−1| ≥
δ
2 and that this implies that any solution has to enter the local δ neighbourhood inwhich
solutions get attracted to the fixed point.

Let τ > T , i.e, x(τ ) and z(τ ) satisfy (79). Then we have

V̇ (y, w) = 1

k3
(1 − h(y)) ẏ + (w − 1)ẇ

ε

= 1

k3
(1 − h(y))

(

k3(w − y) − xy

μ
+ k2z

)

+ (w − 1)(h(y) − w)

= −(w − 1)2 − (1 − h(y))(y − 1) − (1 − h(y))

k3

(
xy

μ
− k2z

)

.

Next we consider each term. First we note that for everyw ≥ 0 and y ≥ 0, we have
that −(w − 1)2 ≤ 0 and −(1 − h(y))(y − 1) ≤ 0. Furthermore, if |w − 1| ≥ δ

2 , then

−(w − 1)2 ≤ − δ2

4 . Also, if |y − 1| ≥ δ
2 then the fact that (1− y)(h(y) − 1) > 0 and

the definition of b give that −(1 − y)(h(y) − 1) ≤ − bδ
2 . The definition of B gives

that (1−h(y))k2z
k3

≤ Bk2|z|
k3

< min
(
bδ
8 , δ2

16

)

. Finally, if y > 1, then 1 − h(y) > 0, thus

− (1−h(y))
k3

xy
μ

≤ 0. If 0 ≤ y ≤ 1, then the definition of B gives − (1−h(y))
k3

xy
μ

≤ B
k3

x
μ
.

So together we get that − (1−h(y))
k3

xy
μ

< min
(
bδ
8 , δ2

16

)

. With these four estimates we

get that if |w − 1| ≥ δ
2 or |y − 1| ≥ δ

2 , then

V̇ (y(τ ), w(τ)) < −min

(
bδ

2
,
δ2

4

)

+ 2min

(
bδ

8
,
δ2

16

)

= −min

(
bδ

4
,
δ2

8

)

.

If we assume that for all τ > T , either |w(τ)− 1| ≥ δ
2 or |y(τ )− 1| ≥ δ

2 (or both),
then integration of the estimate above gives that

V (τ ) < V (T ) − min

(
bδ

4
,
δ2

8

)

(τ − T ) < 0
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for τ sufficiently large. However this contradicts the fact that V is non-negative, hence
our assumption is incorrect and we can conclude that there is some τ0 > T such that
|w(τ0) − 1| < δ

2 and |y(τ0) − 1| < δ
2 . Since τ0 > T , we also have |x(τ0)| < δ2

16

and |z(τ0)| < δ2

16 . Thus ||(x(τ0), z(τ0), y(τ0), w(τ0))− (0, 0, 1, 1)|| < δ and the local
stability implies that the solution will converge to the steady state as τ → ∞. 
�

Appendix B Proof of rebound lemmas

Lemma 5.13 is proved by assuming that λ4 is closest to zero and then considering the
three ε intervals for which the value of λ4 is qualitatively different.

Lemma B.1 If 0 < ε ≤ ε−
1 and the eigenvalue λ4 is closest to zero then rebound

occurs.

Proof Firstwe consider the case 0 < ε < ε−
1 .Generically the trajectorymust approach

the steady state tangent to the eigenvector v4 given in (59) since λ4 is real and is the
eigenvalue closest to zero. We note that

k3 + λ4 = 1

2

(

k3 − ε +
√

(k3 − ε)2 − 4εk3h0
)

.

We see from (53) that the term under the square root is positive if λ4 is real (i.e.,
ε /∈ (ε−

1 , ε+
1 )), and thus the expression above immediately implies that k3 + λ4 > 0 if

ε < ε−
1 < k3 and k3+λ4 < 0 if ε > ε+

1 > k3. Therefore, if 0 < ε < ε−
1 , then the third

and fourth components of the eigenvector v4 have the same sign. We therefore have
two cases to consider. In the first case, y and w both approach the steady state from
above, and clearly rebound occurs in this case. Alternatively, y and w both approach
the steady state from below and Corollary 5.11 implies that there is rebound in this
case also.

As in the proof of Theorem 3.5 in Aston et al. (2014), we must again consider the
possibility that for particular parameter values, the generic situation considered above
does not occur, and so the trajectory approaches the steady state tangent to one of the
other eigenvectors.

We first consider the eigenvector v3 (see (59)). For this vector, we note that k3 +
λ3 > 0, by a similar argument to the one above for k3 + λ4, and so the third and
fourth components of the eigenvector v3 have the same sign. Thus, the above proof by
contradiction also holds if the trajectory approaches the steady state tangent to v3.

For the eigenvector v2, we note, as in the proof of Theorem 3.5 of Aston et al.
(2014), that this eigenvector points out of the phase space, since the first and second
components have opposite sign, and so no trajectory can approach the steady state
tangent to this eigenvector.

Finallywe consider the eigenvector v1.Wenote that the third and fourth components
of this eigenvector will have the same sign if ε + λ1 < 0. Since λ4 is real and closest
to zero, the definition of λ4 (53) gives

ε + λ1 < ε + λ4 = 1

2

(

ε − k3 +
√

(k3 − ε)2 − 4εk3h0
)

< 0
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as ε < ε−
1 < k3. So we can conclude that the third and fourth entries in the eigenvector

v1 have the same sign, and so the above proof by contradiction also holds if the
trajectory approaches the steady state tangent to v1.

This covers all possible cases for ε < ε−
1 , and so we conclude that rebound must

occur for those ε values.
Finally we consider the case ε = ε−

1 , which is when the Jacobian matrix has two
repeated real eigenvalues λ3 = λ4(= λ−∗ ) that are the least negative. In this case, the
two corresponding eigenvectors satisfy v3 = v4 and there is a generalised eigenvector
vg which is given by

vg = (0, 0, 0, 1)

The solutions on the two-dimensional linearised manifold spanned by v3 and vg are
linear combinations of eλ3t (vg + tv3) and eλ3tv3 (Jordan and Smith 2007) and asymp-
totically will align with the eigenvector v3. It is easily verified that k3 + λ−∗ > 0, and
so the third and fourth components of v3 have the same sign. The same arguments as
above show that rebound must then occur in this case, and that the trajectory cannot
approach the steady state tangent to v1 or v2. 
�

Next we consider the case that ε > ε+
1 (k3) and λ4 is real and the eigenvalue closest

to zero. This can only happen if λ1 < λ∞. In the case of the direct feedback, we
analysed this region by using that the total amount of receptor (v = y + z) stays on
one side of the plane v = 1, see Lemma 4.7. As observed earlier, this property does not
hold any more for the feedback with a moderator, but we can define a related quantity
and show a partial result.

We write h(y) as in (35), i.e., h(y) = 1 + (1 − y)h̃(y) and define the bounds m
and M as in (41). Next we define

ṽ = y + z + k3 w

ε
.

At baseline, we have ṽ = 1+ k3
ε
and the initial condition is also in the plane ṽ = 1+ k3

ε
.

By using this plane, we will now prove that there is rebound if k3 is sufficiently large
compared to k4.

Lemma B.2 If ε ≥ ε+
1 , the eigenvalue λ4 is closest to zero, and k3 > k4

1+m , then
rebound occurs.

Proof Using the definition of ṽ, we get that

˙̃v = −k4z + k3(h(y) − y)

= (1 − y)(k3(1 + h̃(y)) − k4) + k4

(

1 + k3
ε

− ṽ

)

+ k3k4
ε

(w − 1). (80)

Evaluating this expression at τ = 0, gives ˙̃v(0) = 0. Differentiating once more shows
that

¨̃v(0) = 1

μ
(k3(1 + h0) − k4) > 0,
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as k4 < k3(1 + m) < k3(1 + h0). Thus ṽ(τ ) > 1 + k3
ε
for sufficiently small τ > 0.

We will prove the occurrence of rebound with a contradiction argument and so we
assume that there is no rebound, i.e., y(τ ) < 1 for all τ > 0. With Lemma 5.10, this
implies that w(τ) > 1 for all τ > 0. Hence on the plane ṽ = 1 + k3

ε
, Eq. (80) gives

˙̃v|
ṽ=1+ k3

ε

=(1 − y)(k3(1 + h̃(y)) − k4) + k3k4
ε

(w − 1) > (1 − y)(k3(1 + m) − k4).

Since k3(1+m) > k4, this implies that ˙̃v|
ṽ=1+ k3

ε

> 0, hence ṽ(τ ) > 1+ k3
ε
for all

τ > 0.
Since λ4 is the eigenvalue closest to zero, generically the solution will approach the

steady state along the line spanned by the eigenvector v4. Furthermore, the outward
normal to the plane ṽ = 1 + k3

ε
is ∇ṽ = (0, 1, 1, k3/ε). Thus with the expression for

v4 in (59) and ε > ε+
1 , it follows that its fourth component is

k3 + λ4 < k3 + λ∞ = k3 − k3(1 + h0) = −k3h0 < 0.

As the solution has y < 1 and w > 1, the solution comes in via −v4. But this vector
is below the plane ṽ = 1 + k3

ε
as

(∇ṽ,−v4) = −k3
ε

(ε + k3 + λ4) < 0,

as, by the definition of λ4, we have ε + k3 + λ4 = 1
2 (k3 + ε + √

D) > 0. This
contradicts the fact that the solution is always above the plane, hence our assumption
that there is no rebound is false.

Finally, we consider the case ε = ε+
1 . This case is similar to that when ε = ε−

1 in the
proof of LemmaB.1 in that there is a repeated eigenvalueλ3 = λ4 with one eigenvector
v3 = v4 and a generalised eigenvector vg . The solution will again asymptotically align
with the eigenvector v4 which has fourth component k3 + λ+∗ < 0 and so the above
proof by contradiction works in this case also. 
�

Next we look at the case that the eigenvalue λ4 is complex (i.e, ε−
1 < ε < ε+

1 ) and
its real part is closest to zero.

Lemma B.3 If the eigenvalue λ4 is complex and its real part is larger than λ1, hence
closer to zero, then y generically converges to its steady state value y = 1 in an
oscillatory fashion, and so rebound occurs infinitelymany times, butwith exponentially
decreasing magnitude.

Proof If the complex conjugate pair of eigenvalues λ3,4 have real part that is closer
to zero than λ1, then the Hartman–Grobman Theorem (Crawford 1991) gives that
generically trajectories will converge to the steady state in the phase space tangent to
the (y, w) plane and will spiral around the steady state (y, w) = (1, 1). Each time the
trajectory loops round the steady state, there will be a part of the trajectory with y > 1
and so rebound occurs infinitely often, but with exponentially decreasing magnitude,
which is determined by Re(λ3,4) = −(k3 + ε)/2.
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As in the previous case, we also need to consider the possibility that for particular
parameter values, the trajectory might approach tangent to a different eigenvector. We
again note that the eigenvector v2 points out of the phase space, and so a trajectory
cannot approach the steady state tangent to this eigenvector. However, the eigenvector
v1 points into the phase space, since the first and second components of the eigenvector
are both positive. Thus, we are unable to exclude the possibility that an orbit could
approach the steady state tangent to this eigenvector for particular parameter values.
However, this is very unlikely to occur in practice and is not a generic case. 
�
Proof of Lemma 5.13 This follows immediately by combining Lemmas B.1–B.3 and
using that ε−

1 < ε < ε+
1 implies that λ4 is complex. 
�

Next we will consider the case that λ1 is the eigenvalue closest to zero. The eigen-
vector v1 corresponding to the eigenvalue λ1 is given in (59). The first two entries in
this eigenvector are the same as we had previously for the case with no feedback, and
since both of these quantities are positive (see Lemma 2.7 of Aston et al. 2014), we
must take a positive multiple of v1 to ensure that x and z are positive in the direction of
this eigenvector. We now consider the signs of the third and fourth components of this
vector, although we note that since the steady state values for y and w are non-zero,
there is no requirement that these entries be positive. First we determine the sign of
the denominator in the expressions for the third and fourth components of v1.

Lemma B.4 If λ1 is the least negative eigenvalue of the matrix (58) then

(k3 + λ1)(ε + λ1) + εk3h0 > 0.

Proof The eigenvalues λ3 and λ4 are found from the bottom right 2×2 matrix in (58)
and hence are roots of the characteristic polynomial

p(λ) = (k3 + λ)(ε + λ) + εk3h0.

We note that the quantity of interest is given by p(λ1).
Now p(0) = εk3(1 + h0) > 0. If the eigenvalues λ3 and λ4 are real and negative

(with λ3 < λ4) then p(λ) > 0 for λ ∈ (λ4, 0]. Since λ1 is the eigenvalue closest to
zero, it must lie in this range and so in this case p(λ1) > 0.

Alternatively, if the eigenvalues λ3 and λ4 are complex, then p(λ) has no real roots
and so p(λ) > 0 for all λ, and in particular p(λ1) > 0.

Thus, in both cases, p(λ1) > 0 as required. 
�
Proof of Lemma 5.14 The ratio of the third and fourth components of v1 (which we
denote by v1,3 and v1,4 respectively) is given by

v1,3

v1,4
= −ε + λ1

εh0
.

Thus, if ε + λ1 < 0, then v1,3 and v1,4 have the same sign and the proof of rebound
given in Lemma B.1 holds in this case also.
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If k1 > k4, then we note from Lemma 2.8 of Aston et al. (2014) that k4 + λ1 < 0
and so, using the result of Lemma B.4, we then see that v1,4 < 0 in this case. Since we
are taking a positive multiple of the eigenvector, this implies that w must approach its
steady state value from below and so, by Corollary 5.11, rebound must occur in this
case also.

As in previous cases, we should again consider the possibility that a trajectory
could approach the steady state tangent to a different eigenvector. As previously, the
eigenvector v2 again points out of the invariant region since the first two entries have
opposite sign. However, it is not possible to determine the global invariant manifold
that approaches the steady state tangent to the eigenvectors v3 or v4 and so we can
only state a generic result. 
�
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