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Abstract: Methicillin-resistant Staphylococcus aureus is a major human pathogen that poses a high
risk to patients due to the development of biofilm. Biofilms, are complex biological systems
difficult to treat by conventional antibiotic therapy, which contributes to >80% of humans infections.
In this report, we examined the antibacterial activity of Origanum majorana, Rosmarinus officinalis,
and Thymus zygis medicinal plant essential oils against MRSA clinical isolates using disc diffusion
and MIC methods. Moreover, biofilm inhibition and eradication activities of oils were evaluated
by crystal violet. Gas chromatography–mass spectrometry analysis revealed variations between
oils in terms of component numbers in addition to their percentages. Antibacterial activity testing
showed a strong effect of these oils against MRSA isolates, and T. zygis had the highest activity
succeeded by O. majorana and R. officinalis. Investigated oils demonstrated high biofilm inhibition and
eradication actions, with the percentage of inhibition ranging from 10.20 to 95.91%, and the percentage
of eradication ranging from 12.65 to 98.01%. O. majorana oil had the highest biofilm inhibition and
eradication activities. Accordingly, oils revealed powerful antibacterial and antibiofilm activities
against MRSA isolates and could be a good alternative for antibiotics substitution.

Keywords: methicillin-resistant Staphylococcus aureus; essential oils; Origanum majorana; Rosmarinus
officinalis; Thymus zygis; antibacterial; biofilm inhibition and eradication

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is considered a principal human pathogen and
the most common cause of nosocomial infections. MRSA causes several diseases ranging from skin
and soft tissue infections to serious invasive infections such as pneumonia, bacteremia, endocarditis
and osteomyelitis [1]. The number of MRSA infections, which are more frequently associated with
mortality than other bacterial infections, has increased considerably over recent years. S. aureus carries
20–40% mortality at 30 days despite appropriate treatment [2].

MRSA poses a high risk to patients due to the development of biofilm [3]. Biofilm is considered as
major virulence factor and is an organized structure built by almost all bacteria that is composed of
nucleic acids, lipids, proteins, and polysaccharides [4]. Biofilms contribute to >80% of human infections
and S. aureus is considered as the leading species in biofilm-associated infections [5]. In Biofilm,
MRSA like other bacteria, become more persistent in the host organism, environment, and medical
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surfaces, and show an increased resistance to antibiotics and host immune factors [6–8], which is
an important medical problem. Therefore, the development of novel compounds to treat biofilm is
urgently required; plant essentials oils (EOs) that act against bacterial biofilm are of great interest.

EOs are volatile compounds that have been used to combat a variety of infections during hundreds
of years as a natural medicine. It has been shown that EOs possess several significant antimicrobial
activities such as antibacterial, antiviral, antifungal, and anti-parasitic activities in addition to their
antioxidant, antiseptic, and insecticidal properties [9,10].

Rosmarinus officinalis L., Thymus zygis L., and Origanum majorana L. belong to the Lamiaceae family.
EOs obtained from aerial parts of the flowering stage of these plants, have been reported for their
antibacterial activities against S. aureus [11,12] and their antibiofilm activities against uropathogenic
E. coli [13]. Several reports have shown that tea tree, thyme, and peppermint EOs, are effective
against planktonic [14] and biofilm [15,16] MRSA. In addition, Cáceres et al. [17] demonstrated high
anti-biofilm activity of thymol-carvacrol-chemotype (II) oil from Lippia origanoides against E. coli and
S. epidermidis. However, these oils did not alter the growth rate of planktonic bacteria. The antibacterial
effect of EOs, which is manifested by alterations of the bacterial cell wall and cell membrane, depends
of their chemical composition [18]. The cell membrane compositions play an important role in the
high resistance of Gram-negative bacteria to EOs compared to Gram-positive [19]. The hydrophobic
molecules penetrate easily into the cells due to cell wall structure in Gram-positive bacteria and act on
the cell wall and within the cytoplasm [20].

This study aimed to investigate the antibacterial, biofilm inhibition, and eradication properties
of O. majorana, R. officinalis, and T. zygis medicinal plants’ EOs against clinical methicillin-resistant
Staphylococcus aureus.

2. Results

2.1. Distribution of the MRSA Isolates

Thirty clinical MRSA isolates were collected from King Abdulaziz Specialist Hospital, Taif,
Saudi Arabia. The isolates were obtained from infection sites: surgical site infection (SSI, n = 4),
skin and soft tissue (SST, n = 12), blood (n = 1), nasal (n = 8) and burn (n = 5). The distribution of
isolates based on the type of specimen is presented in Figure 1.
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Figure 1. Distribution of MRSA isolates.

2.2. Chemical Composition of the Essential Oils

O. majorana, T. zygis, and R. officinalis’ EOs chemical compositions are summarized in Table 1.
In total 37 components were detected in these oils: 10 compounds in R. officinalis and 31 compounds in
each of O. majorana and T. zygis.

GC-MS results showed variations between these oils regarding the compound numbers and
their percentages. The major constituents of O. majorana were terpinen-4-ol (25.9%), γ-terpinene
(16.9%), linalool (10.9%), sabinene (8%), and α-terpinene (7.7%); those of R. officinalis were α-pinene
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(37.7%), bornyl acetate (9.1%), camphene (7.3%), borneol (5.5%), verbenone (5.4%), camphor (5.2%),
and 1,8-cineole (4.7%). However, the main components of T. zygis were linalool (39.7%), terpinen-4-ol
(11.7%), β-myrcene (8.6%), and γ-terpinene (7.6%).

Table 1. Chemical composition of the essential oils.

Components O. majorana (%) [13] T. zygis (%) [13] R. officinalis (%)

α-Pinene 0.46 3.6 37.7
Sabinene 8 0.84
β-Pinene 1.4 0.33 1.1
β-Myrcene 1.1 8.6
α-phellandrene 0.30 0.48
Limonene 3.5 2.6 4.1
Terpinen-4-ol 25.9 11.7
Bornyl acetate 0.07 9.1
β-Caryophyllene 2.3 1.6
α-Thujene 0.33 0.21
Camphene 0.03 0.74 7.3
α-Terpinene 7.7 4.2
p-Cymene 3.4 2.2
1,8-Cineole 0.15 4.7
γ-Terpinene 16.9 7.6
Terpinolene 1.7 2
Linalool 10.9 39.7 1.8
Borneol 1.9 5.5
α-Terpineol 2.5 1.7
Camphor 0.22 5.2
α-Humulene 0.05
cis and trans-thujan-4-ol 2.2–2.3 0.88–2.2
cis and trans piperitol 0.13–0.18 0.13–0.08
Linalyl acetate 7 0.5
Carvacrol 0.03 0.08
Thymol 0.05 0.52
Bicyclogermacrene 0.41 0.16
Cis and trans-p-menth-2-en-1-ol 0.59–0.32 0.37–0.25
Caryophyllene oxide 0.04
Ocimene 0.07
Spathulenol 0.01
cis-Dihydrocarvone 0.17
trans-Dihydrocarvone 0.2
Verbenone 5.4

2.3. Antibacterial Activity of Essential Oils against MRSA

2.3.1. Disc Diffusion

The antibacterial activity of EOs against MRSA isolates was assessed by the disc diffusion method
(Table 2). T. zygis EO has shown strong inhibitory activity on 80% of the strains, succeeded by O. majorana
and R. officinalis that demonstrated a strong inhibitory action on 53.33% and 16.66% of the isolates,
respectively. Moreover, according to the high percentage of anti-MRSA activity, T. zygis and O. majorana’
EOs have a strong inhibitory action on 80% and 53.33% of the strains, respectively. However, R. officinalis
had a slight inhibitory action on 46.66% of the strains. Thereby, T. zygis’ EO appeared as the EO with
the highest antibacterial activity, succeeded by O. majorana and R. officinalis. According to the type of
specimen, globally, the same result was found as detected in cases of total isolates. T. zygis was regarded
as an EO with strong inhibitory activity, succeeded by O. majorana and R. officinalis.

Table 2. Antimicrobial effect of EOs against MRSA isolates using disc diffusion.

Essential Oils
Inhibitory Action

Strong n (%) Complete n (%) Partial n (%) Slight n (%) No Action n (%)

O. majorana 16 (53.33%) 11 (36.66%) 3 (10%)
T. zygis 24 (80%) 6 (20%)

R. officinalis 5 (16.66%) 5 (16.66%) 6 (20%) 14 (46.66%)

n: number of isolates.
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2.3.2. Determination of MIC and MBC

Antibacterial activity of EOs was assessed by measuring MICs and MBCs for the 30 MRSA isolates
and the reference strain. The values of MIC extended from 0.78 mg/mL to 1.56 mg/mL, while the MBC
varied from 3.125 mg/mL to 12.5 mg/mL for O. majorana EO.

Concerning T. zygis EO, the MIC values ranged from 0.39 mg/mL to 0.78 mg/mL, while the
MBC value was 3.125 mg/mL. However, The MIC values of R. officinalis varied from 0.78 mg/mL to
1.56 mg/mL, but the MBC value was 12.5 mg/mL. Compared to O. majorana and R. officinalis, T. zygis
EO showed the greatest antibacterial activity against MRSA isolates. Person correlation (r) showed no
significant correlation between the type of specimen and MICs of oils (p > 0.05).

2.4. Biofilm Formation

MRSA strains were tested for their potentialities to form biofilm on a polystyrene surface. Table 3
indicated that 96.66% of the isolates were able to form biofilm and were distributed as follow: 40% were
highly positive biofilm producers with OD570 values ranged from 1.175 to 3.635, and 56.66% were
low-grade positive with OD570 values extended from 0.113 to 0.87. However, out of the 30 isolates
only one strain was isolated from the nasal sample was biofilm negative. Reference S. aureus ATCC
25923 was considered as a highly positive biofilm producer. Analysis of variance (ANOVA) indicated
that there is no significant effect of the specimen on biofilm formation (p > 0.05).

Table 3. Biofilm formation ability of MRSA isolates on polystyrene surface.

Isolates Specimen OD570 ± SD Biofilm Formation

1 Burn 0.24 ± 0.026 low-grade positive
2 Blood 2.609 ± 0.088 highly positive
3 SST 3.635 ± 0.052 highly positive
4 SST 1.437 ± 0.074 highly positive
5 Nasal 1.175 ± 0.03 highly positive
6 SSI 0.147 ± 0.028 low-grade positive
7 SST 0.135 ± 0.031 low-grade positive
8 Burn 1.971 ± 0.049 highly positive
9 Nasal 0.19 ± 0.079 low-grade positive

10 Nasal 1.378 ± 0.06 highly positive
11 SST 0.194 ± 0.075 low-grade positive
12 SST 1.554 ± 0.086 highly positive
13 SST 0.305 ± 0.021 low-grade positive
14 Nasal 2.157 ± 0.071 highly positive
15 Nasal 0.045 ± 0.007 Negative
16 SST 0.198 ± 0.078 low-grade positive
17 SSI 0.87 ± 0.023 low-grade positive
18 Nasal 0.221 ± 0.048 low-grade positive
19 Burn 0.428 ± 0.068 low-grade positive
20 Nasal 0.745 ± 0.018 low-grade positive
21 Nasal 0.319 ± 0.012 low-grade positive
22 SST 0.233 ± 0.087 low-grade positive
23 SST 0.788 ± 0.027 low-grade positive
24 SSI 0.642 ± 0.028 low-grade positive
25 SST 1.836 ± 0.038 highly positive
26 Burn 2.696 ± 0.054 highly positive
27 SST 0.418 ± 0.056 low-grade positive
28 Burn 0.438 ± 0.067 low-grade positive
29 SSI 0.113 ± 0.045 low-grade positive
30 SST 2.308 ± 0.039 highly positive

ATCC 25923 3.36 ± 0.098 highly positive

SST: skin and soft tissue; SSI: surgical site infection.

2.5. Biofilm Inhibition Activity of Essentials Oils

Biofilm inhibitory activities of O. majorana, T. zygis, and R. officinalis’ EOs are summarized in
Table 4. MRSA isolates that showed a biofilm formation potential were selected for this investigation.
In all, 29 isolates considered as highly positive biofilm and low-grade positive biofilm in addition to
the reference strain were used.
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Table 4. Biofilm inhibition activity of EOs against MRSA isolates.

Isolates Control
OD570 ± SD

O. majorana
OD570 ± SD

Inhibition
(%)

T. zygis
OD570 ± SD

Inhibition
(%)

R. officinalis
OD570 ± SD

Inhibition
(%)

1 0.24 ± 0.026 0.061 ± 0.004 * 74.58 0.112 ± 0.015 53.33 0.238 ± 0.028 0
2 2.609 ± 0.088 2.603 ± 0.093 0 2.61 ± 0.019 0 2.595 ± 0.098 0
3 3.635 ± 0.052 2.701 ± 0.082 25.69 3.658 ± 0.01 0 2.744 ± 0.066 24.51
4 1.437 ± 0.074 0.131 ± 0.038 ** 90.88 0.965 ± 0.022 ** 32.84 0.728 ± 0.084 ** 49.33
5 1.175 ± 0.03 0.048 ± 0.006 *** 95.91 0.1 ± 0.038 ** 91.48 0.051 ± 0.004 *** 95.65
6 0.147 ± 0.028 0.03 ± 0.008 * 79.59 0.124 ± 0.043 15.64 0.132 ± 0.023 10.20
7 0.135 ± 0.031 0.114 ± 0.023 15.55 0.136 ± 0.073 0 0.134 ± 0.011 0
8 1.971 ± 0.049 0.105 ± 0.018 ** 94.67 0.239 ± 0.088 ** 87.87 0.346 ± 0.018 ** 82.44
9 0.19 ± 0.079 0.049 ± 0.009 * 74.21 0.138 ± 0.043 27.36 0.146 ± 0.093 23.15

10 1.378 ± 0.06 1.387 ± 0.038 0 1.369 ± 0.054 0 0.828 ± 0.082 ** 39.91
11 0.194 ± 0.075 0.02 ± 0.005 * 89.69 0.142 ± 0.058 26.80 0.111 ± 0.044 42.78
12 1.554 ± 0.086 0.162 ± 0.077 ** 89.57 0.22 ± 0.077 ** 85.84 0.17 ± 0.023 ** 89.06
13 0.305 ± 0.021 0.027 ± 0.006 * 91.14 0.303 ± 0.032 0 0.301 ± 0.069 0
14 2.157 ± 0.071 1.935 ± 0.014 10.29 2.154 ± 0.04 0 1.724 ± 0.092 20.07
16 0.198 ± 0.078 0.038 ± 0.009 * 80.80 0.072 ± 0.008 * 63.63 0.053 ± 0.006 * 73.23
17 0.87 ± 0.023 0.043 ± 0.017 * 95.05 0.124 ± 0.089 85.74 0.16 ± 0.026 81.60
18 0.221 ± 0.048 0.105 ± 0.028 52.48 0.142 ± 0.037 35.74 0.122 ± 0.038 44.79
19 0.428 ± 0.068 0.053 ± 0.039 87.61 0.095 ± 0.002 * 77.80 0.226 ± 0.077 47.19
20 0.745 ± 0.018 0.055 ± 0.033 * 92.61 0.11 ± 0.082 85.23 0.562 ± 0.065 24.56
21 0.319 ± 0.012 0.072 ± 0.013 * 77.42 0.317 ± 0.075 0 0.085 ± 0.004 * 73.35
22 0.233 ± 0.087 0.231 ± 0.032 0 0.131 ± 0.012 43.77 0.089 ± 0.003 * 61.80
23 0.788 ± 0.027 0.554 ± 0.065 29.69 0.696 ± 0.028 11.67 0.465 ± 0.073 40.98
24 0.642 ± 0.028 0.192 ± 0.013 70.09 0.639 ± 0.087 0 0.241 ± 0.053 62.461
25 1.836 ± 0.038 1.325 ± 0.078 27.83 1.84 ± 0.042 0 1.821 ± 0.096 0
26 2.696 ± 0.054 2.196 ± 0.04 18.54 2.206 ± 0.07 18.17 2.012 ± 0.014 25.37
27 0.418 ± 0.056 0.254 ± 0.068 39.23 0.415 ± 0.069 0 0.065 ± 0.008 * 84.44
28 0.438 ± 0.067 0.034 ± 0.005 * 92.23 0.217 ± 0.016 50.45 0.069 ± 0.002 * 84.24
29 0.113 ± 0.045 0.11 ± 0.022 0 0.016 ± 0.006 * 85.84 0.114 ± 0.032 0
30 2.308 ± 0.039 1.533 ± 0.055 33.57 2.306 ± 0.086 0 0.907 ± 0.048 ** 60.70

ATCC 25922 3.36 ± 0.098 1.838 ± 0.066 45.29 3.352 ± 0.014 0 3.345 ± 0.029 0

* Isolates changed from low-grade positive to biofilm negative after treatment with EOs. ** Isolates changed from highly positive to low-grade positive after treatment with EOs. *** Isolates
changed from highly positive to biofilm negative after treatment with EOs.
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O. majorana EO demonstrated an antibiofilm activity on 89.66% of the isolates (26 strains) in
addition to the reference strain. Among them, 11 isolates (39.93%) were passed from low-grade positive
to biofilm negative, three highly positive biofilm isolates (10.34%) become low-grade positive, and
one strain isolated from nasal samples was changed from highly positive to biofilm negative after
treatment with O. majorana EO. The percentage of inhibition ranged from 10.29 to 95.91%.

Concerning R. officinalis EO, we detected an antibiofilm effect on 79.31% of the isolates (23 strains).
Furthermore, two groups of five isolates (17.24%) were changed. The first group was varied from
low-grade positive to biofilm negative, and the second group was passed from highly positive to
low-grade positive. In addition, the same isolate that changed from highly positive to biofilm negative
under O. majorana EO, also became biofilm negative under R. officinalis EO. The percentage of inhibition
extended from 10.20 to 95.65%.

Antibiofilm activity of T. zygis was observed on 62.06% of the isolates (18 strains). The percentage
of biofilm inhibition ranged from 11.67 to 91.48%. Moreover, three low-grade positive isolates (10.34%)
were changed to biofilm negative, and four highly positive isolates (13.79%) become low-grade positive.

The outcomes of this study indicated that O. majorana EO had the greatest antibiofilm activity
against MRSA isolates succeeded by R. officinalis and T. zygis.

Person correlation (r) indicated a non-significant correlation between MIC and antibiofilm of EOs
(p > 0.05). ANOVA test showed a non-significant effect of the specimen on biofilm inhibition (p > 0.05).

2.6. Biofilm Eradication Activity of Essentials Oils

The results of biofilm eradication activities of EOs are shown in Table 5. The same isolates selected
for biofilm inhibitory investigation were used. O. majorana, T. zygis, and R. officinalis EOs showed
eradication activities on 41.37% (12 strains) of the MRSA isolates independently of the specimen,
including the reference strain. The highest percentage of eradication was recorded with O. majorana.
The percentage of eradication ranged from 18.31 to 98.01%, from 12.65 to 94.39%, and from 13.45 to
92.69%, respectively, for O. majorana, T. zygis, and R. officinalis EOs.
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Table 5. Biofilm eradication activity of EOs against MRSA isolates.

Isolates Control
OD570 ± SD

O. majorana
OD570 ± SD

Eradication
(%)

T. zygis
OD570 ± SD

Eradication
(%)

R. officinalis
OD570 ± SD

Eradication
(%)

1 0.418 ± 0.024 0.417 ± 0.015 0 0.415 ± 0.019 0 0.413 ± 0.021 0
2 3.13 ± 0.096 1.754 ± 0.055 43.96 1.626 ± 0.06 48.05 2.709 ± 0.084 13.45
3 4.362 ± 0.086 2.92 ± 0.071 33.05 3.468 ± 0.091 20.49 2.15 ± 0.079 50.71
4 1.939 ± 0.078 1.941 ± 0.069 0 1.931 ± 0.074 0 1.115 ± 0.063 42.49
5 1.41 ± 0.088 0.237 ± 0.025 ** 83.19 0.079 ± 0.008 *** 94.39 0.103 ± 0.011 ** 92.69
6 0.176 ± 0.016 0.078 ± 0.005 * 55.68 0.061 ± 0.004 * 65.34 0.131 ± 0.018 25.56
7 0.189 ± 0.012 0.185 ± 0.013 0 0.191 ± 0.015 0 0.186 ± 0.015 0
8 2.465 ± 0.083 0.37 ± 0.045 ** 84.98 2.153 ± 0.079 12.65 1.143 ± 0.059 53.63
9 0.304 ± 0.056 0.308 ± 0.021 0 0.309 ± 0.022 0 0.302 ± 0.024 0

10 1.722 ± 0.066 0.386 ± 0.027 ** 77.58 1.074 ± 0.055 37.63 0.174 ± 0.014 ** 89.89
11 0.269 ± 0.013 0.262 ± 0.016 0 0.265 ± 0.025 0 0.271 ± 0.02 0
12 2.334 ± 0.073 0.687 ± 0.032 ** 70.56 1.356 ± 0.058 41.90 2.328 ± 0.026 0
13 0.433 ± 0.026 0.431 ± 0.026 0 0.436 ± 0.031 0 0.43 ± 0.032 0
14 2.617 ± 0.078 0.052 ± 0.003 *** 98.01 2.614 ± 0.082 0 2.609 ± 0.079 0
16 0.286 ± 0.034 0.287 ± 0.02 0 0.281 ± 0.015 0 0.288 ± 0.019 0
17 1.249 ± 0.028 1.247 ± 0.063 0 1.241 ± 0.068 0 1.244 ± 0.064 0
18 0.298 ± 0.011 0.292 ± 0.018 0 0.294 ± 0.016 0 0.296 ± 0.023 0
19 0.676 ± 0.026 0.679 ± 0.039 0 0.671 ± 0.029 0 0.674 ± 0.038 0
20 0.894 ± 0.045 0.448 ± 0.028 49.88 0.613 ± 0.036 31.43 0.584 ± 0.034 34.67
21 0.516 ± 0.068 0.514 ± 0.04 0 0.513 ± 0.031 0 0.517 ± 0.041 0
22 0.319 ± 0.022 0.313 ± 0.024 0 0.317 ± 0.024 0 0.314 ± 0.021 0
23 1.194 ± 0.039 1.19 ± 0.052 0 1.195 ± 0.057 0 1.192 ± 0.051 0
24 0.808 ± 0.027 0.801 ± 0.048 0 0.805 ± 0.044 0 0.81 ± 0.046 0
25 2.249 ± 0.069 2.245 ± 0.069 0 1.824 ± 0.072 18.89 1.806 ± 0.058 19.69
26 3.396 ± 0.094 1.674 ± 0.049 50.70 1.785 ± 0.058 47.43 2.025 ± 0.06 40.37
27 0.568 ± 0.021 0.561 ± 0.034 0 0.567 ± 0.039 0 0.564 ± 0.039 0
28 0.535 ± 0.019 0.437 ± 0.025 18.31 0.337 ± 0.03 37 0.081 ± 0.006 * 84.85
29 0.133 ± 0.011 0.134 ± 0.019 0 0.136 ± 0.026 0 0.132 ± 0.011 0
30 2.989 ± 0.083 0.348 ± 0.023 ** 88.35 1.342 ± 0.056 55.10 1.756 ± 0.053 41.25

ATCC 25922 4.32 ± 0.098 2.796 ± 0.085 35.27 1.972 ± 0.068 54.35 2.577 ± 0.087 40.34

* Isolates changed from low-grade positive to biofilm negative after treatment with EOs. ** Isolates changed from highly positive to low-grade positive after treatment with EOs. *** Isolates
changed from highly positive to biofilm negative after treatment with EOs.
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Based on biofilm categories and under O. majorana EO, five isolates (17.24%) were changed from
highly positive to low-grade positive. Furthermore, a low-grade positive (isolate number 6) and a
highly positive (isolate number 14) strains became biofilm negative. For T. zygis, only isolates numbers
5 and 6 were changed from highly positive and low-grade positive respectively to biofilm negative
after treatment, while, R. officinalis caused modifications on three isolates. Among them, a low-grade
positive (isolate number 28) was changed to biofilm negative, and two highly positive (isolates number
5 and 10) became low-grade positive.

Person correlation (r) indicated a non-significant correlation between MIC and biofilm eradication
of EOs (p > 0.05). ANOVA test showed a non-significant effect of the specimen on biofilm eradication
(p > 0.05).

3. Discussion

Infection caused by MRSA is considered a major public health threat in many countries and
MRSA remains the principal cause of hospital and community-acquired infections [21]. This bacterium
is accountable for numerous infections related to remarkable morbidity and mortality [22], such as
bacteremia, pneumonia, and skin, soft tissue, surgical site, and urinary tract infections [23,24]. This study
was conducted on 30 clinical MRSA isolates and results showed variability in the prevalence of the
isolates. Indeed, most of the strains (40%) were recovered from SST followed by nasal, burn, SSI,
and blood. Akanbi et al. [25] showed that the majority of MRSA strains were isolated from blood,
wound, and urine specimens. In addition, Ghebremedhin et al. [26] demonstrated that MRSA was
most found in surgical wound infections, succeeded by eye swabs, skin and soft tissue infections.

The ability of MRSA to develop resistance to every antibiotic to which it is exposed makes it a
problem to human health [27]. Thereby the development of novel compounds is of great importance.
Medicinal plant EOs have been largely used as a natural medicine to combat bacteria, fungi, viruses,
and other pathogens [28]. Until now, about 3000 EOs are known, among them 300 are important
for industries such as pharmaceutical, food, agronomic, cosmetics, and fragrance. In this work,
we investigated the potential antibacterial activities of O. majorana, T. zygis, and R. officinalis medicinal
plant EOs against MRSA clinical isolates by disc diffusion, MIC, and MBC techniques. The highest
antibacterial activity was observed with T. zygis, followed by O. majorana, and R. officinalis EOs.
This result is in agreement with the study of Lagha et al. [13], who showed that T. zygis possessed the
strongest antimicrobial effect against uropathogenic E. coli in contrast to O. majorana, and R. officinalis
EOs. According to biochemical composition, the greater effect of T. zygis is owing to linalool (39.7%),
which has a strong effect against bacteria and fungi [29]. Regarding O. majorana EO, the antibacterial
activity can be attributed to the monoterpene alcohol, terpinen-4-ol, as a major compound (25.9%) [30],
which was found to be effective against MRSA [31]. According to Cordeiro et al. [32], terpinen-4-ol
has a powerful antibacterial effect against S. aureus. This compound functions as a bactericidal by
obstructing the synthesis of the cell wall. Moreover, other main components such as terpinen-4-ol
(11.7%), β-myrcene (8.6%) and γ-terpinene (7.6%) are present in T. zygis in addition to linalool (10.9%),
γ-terpinene (16.9%) and α-terpinene (7.7%) present in O. majorana may enhance the antibacterial
effect of these oils. Concerning R. officinalis EO, which showed the lowest activity against MRSA
isolates, its antibacterial activity may be related to α-pinene (37.7%) as a major constituent. The study
of Leite et al. [33] showed antibacterial activity of α-pinene against S. aureus and S. epidermidis.
Other reports [34,35] revealed the antibacterial activity of some EOs against Gram-negative and
Gram-positive bacteria when α-Pinene is the major constituent. However, Utegenova et al. [36]
demonstrated that α-pinene had low activity against MRSA, indicating that other components were
probably responsible. Among them, in this study, 1,8-cineole (4.7%) altered the structure of E. coli,
S. enteritidis, and S. aureus [37]. The antibacterial activity of R. officinalis could be attributed to the
synergistic effect of camphor (5.2%), verbenone (5.4%), and borneol (5.5%) in addition to α-pinene and
1,8-cineole [38]. In general, whole essential oils have an important antimicrobial effect compared to the
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major compounds individually or collectively. This suggests that minor constituents are essential and
may have a synergistic antibacterial effect [10].

MRSA were tested for their capacities to produce biofilm on polystyrene microplates and results
indicated that 40% of the strains were highly positive biofilm and 56.66% were low-grade positive.
Out of the 30 isolates, only one strain was biofilm negative, which indicates the high potentiality of the
isolates to form biofilm. Biofilm, as a virulence factor that favors the chronicity of S. aureus infections,
is accountable for more 65% of nosocomial infections and 80% of microbial infections [5]. Biofilm is
related to various staphylococcal diseases, such as skin and soft tissue infections, nasal colonization,
endocarditis and urinary tract infections [39]. Further, biofilm becomes a serious threat in the urology
field due to its responsibility for the long persistence of bacteria in the genitourinary tract [40]. The high
ability of the investigated isolates to form biofilm confirms the fact that S. aureus is the leading species
in biofilm-associated infection.

Biofilm has been associated with medical devices and its treatment is becoming increasingly
difficult due to the resistance to antibiotics and the immune system in addition to the spread of
infection [39]. Thereby, the development of new therapeutic strategies, such as EOs, to inhibit or
eradicate biofilm is great of interest. In this work, biofilm inhibitory activity of EOs showed that
O. majorana had the highest antibiofilm activity (antibiofilm effect on 89.66% of the isolates) against
MRSA isolates followed by R. officinalis and T. zygis that demonstrated activity on 79.31 and 62.06% of
the isolates, respectively. EOs also showed a strong potential to inhibit biofilm, with percentage of
inhibition ranging from 10.29 to 95.91%, from 10.20 to 95.65%, and from 11.67 to 91.48%, respectively for
O. majorana, R. officinalis, and T. zygis. Based on our results, the oil with the highest growth inhibition
activity was different from the oil with the highest biofilm inhibition effect, which indicates that the
components involved in growth inhibition were different from those associated with biofilm inhibition.
According to biochemical specificity, terpinen-4-ol present in O. majorana as major compound, has
more inhibition of the biofilm formation process by MRSA isolates compared to α-pinene and linalool
present, as the main components, in R. officinalis and T. zygis EOs, respectively.

This finding corroborates the recent data of Cordeiro et al. [32] showing that the strongest
antibiofilm activity of terpinen-4-ol was against S. aureus. Other studies have also demonstrated that
this compound possesses an excellent potential against biofilm formed by some pathogenic bacteria like
Pseudomonas aeruginosa [41], Streptococcus mutans, Lactobacillus acidophilus [42], Porphyromonas gingivalis,
and Fusobacterium nucleatum [43]. Biofilm inhibition properties of O. majorana, R. officinalis, and T. zygis
EOs against MRSA suggest that the addition of these oils before biofilm formation eliminates planktonic
cells and may reduce the polystyrene surface adherence, which becomes less susceptible to cell adhesion.
Additionally, the modification of MRSA surface proteins caused by their interactions with oils inhibits
the adhesion of this bacterium to the polystyrene surface, which is the initial attachment phase [44].

Preformed biofilms are difficult to eradicate by conventional antibiotic therapy. However, in the
present study, O. majorana, T. zygis, and R. officinalis EOs showed high biofilm eradication activities
on 41.37% of the MRSA isolates. O. majorana EO had the strongest effect, with the percentage of
eradication going up to 98.01%, and seven isolates were changed their biofilm phenotype. It seems that
the monoterpenoid terpinen-4-ol has an excellent potential to eradicate mature biofilm than α-pinene
and linalool. The activity of these oils on mature biofilms was lower than their capacity to inhibit the
formation of biofilms. This can be explained by the fact that the major constituents in these oils have
an effect on the biofilm formation process more than on mature biofilm. This is in agreement with the
report of Cordeiro et al. [32], showing that terpinen-4-ol is more efficient in inhibiting the formation of
S. aureus biofilms than in breaking or eliminating mature biofilms. Many EOs, such as tea tree [45],
eucalyptus [46], and cinnamon oil [47] have shown their effective ability to remove biofilm. Moreover,
R. officinalis EO has reduced the quantity of S. aureus biofilm to 60.76% [48]. In general, EOs diffuse
through polysaccharide matrix of the preformed biofilm and destabilize it because of higher intrinsic
antimicrobial activities [44].
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4. Materials and Methods

4.1. Bacterial Strains

Thirty clinical MRSA isolates were collected from King Abdulaziz Specialist Hospital, Taif, Saudi
Arabia. The isolates were identified as S. aureus, as described previously [49]. The methicillin resistance
phenotype was performed by the Vitek 2 system (bioMérieux, Durham, North CA, USA) in accordance
with the British Society for Antimicrobial Chemotherapy (BSAC). Each isolate was considered as
methicillin-resistant when the minimum inhibitory concentration (MIC) breakpoint of oxacillin was
>2 mg/L and cefoxitin >4 mg/L. [50]. S. aureus ATCC 25922 was used as control.

4.2. Medicinal Plants Essential Oils

Three commercial EOs extracted from medicinal plants were investigated. These EOs were bought
from Laboratoires OMEGA Pharma (Groupe Perrigo)—Phytosun Arôms (Châtillon, France) and kept
at 4 ◦C in dark glass bottles till used. These oils were extracted from twigs of R. officinalis L. (M14302),
and from the aerial parts of flowering stage of T. zygis L. subsp. zygis (M13184) and O. majorana L.
(74K100C6). These EOs were carefully chosen for their antibacterial and/or antibiofilm actions, as
stated previously [11–13] and their usage in traditional medicine.

4.3. Gas Chromatography—Mass Spectrometry Analysis

The GC-MS analysis was performed as described previously [51].

4.4. Antibacterial Activity of Essential Oils

4.4.1. Disc Diffusion

The agar disc diffusion method was used to evaluate the antibacterial activities of the EOs [52].
Briefly, an overnight cultures of MRSA cells grown at 37 ◦C were diluted to a density of 0.5 McFarland
standards turbidity (DENSIMAT, Bio-merieux, Marcy l’Etoile, France) and were streaked onto
Mueller–Hinton agar (MHA) plates using a sterile swab. A sterile filter disc (diameter 6 mm) was
placed and then was impregnated by R. officinalis, T. zygis, and O. majorana EOs (10 µL /disc). The plates
were maintained at 4 ◦C for 2 h and then incubated at 37 ◦C for 24 h. After incubation, the antibacterial
activity was evaluated by determining the zone of growth inhibition throughout the discs.

Inhibitory action was categorized according to the zone of inhibition (ZI) as described
previously [13–53]. The experiment was performed in triplicate, and the mean diameter of the
inhibition zone was documented.

4.4.2. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

The minimal inhibition concentration (MIC) and the minimal bactericidal concentration (MBC)
were assessed in triplicates on 96-well microtiter plates (Nunc, Roskilde, Denmark) as described
previously [54]. A bacterial suspension at a density of 0.5 McFarland standards turbidity was prepared
from an overnight culture. Then, a serial two-fold dilution for each EOs (50 mg/mL stock solution) was
made in 5 mL of nutrient broth with concentration ranged from 0.012–50 mg/mL.

Each well of the 96-well plates contains 95 µL of nutrient broth and 5 µL of the bacterial inoculum.
A 100 µL aliquot from the stock solutions of each EO was added into the first well. Then, 100 µL from
the serial dilutions were transferred into the consecutive well. The negative control well contains
195 µL of nutrient broth without EO and 5 µL of the bacterial inoculum. The final volume in each well
was 200 µL, and the plates were incubated at 37 ◦C for 18–24 h.

The MIC was defined as the lowest concentration of the EO at which the MRSA cells growth is
inhibited. The MBC was determined by subculturing 20 µL from clear wells of the MIC test on MHA.
MBC was defined as the lowest concentration of EOs, required to kill ≥99.9% of the initial bacterial
inoculum [55].
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4.5. Biofilm Formation

Biofilm formation by MRSA isolates was determined using crystal violet assay on U-bottomed
96-well microtiter plates, as detailed previously [56]. Each MRSA strain was tested three times.
Wells with sterile TSB only were worked as controls. The optical density of each well was measured
at 570 nm (OD570) using an automated Multiskan reader (GIO. DE VITA E C, Rome, Italy).
Biofilm formation was interpreted as highly positive (OD570 ≥ 1), low-grade positive (0.1 ≤OD570 < 1),
or negative (OD570 < 0.1).

4.6. Biofilm Inhibition

EOs were tested for their potential to prevent biofilm formation by MRSA isolates. For the
experiment, 100 µL of the EOs emulsified in TSB supplement with 2% glucose were put in the
U-bottomed 96-well microtiter plate, including 100 µL of bacterial suspensions (108 CFU/mL) in each
well. The final concentrations of the EOs were equal to MIC, and the final volume was 200 µL per
well. The analyzes were performed three times. After incubation of microplates at 37 ◦C for 24 h,
the formed biofilm was measured by crystal violet as described previously [56]. For the Controls wells,
the inoculums volume and EOs were replaced by TSB and sterile water, respectively. Inhibition of
biofilm was determined from the formula described by Jadhav et al. [57].

% Inhibition = 100−
(

OD570 sample
OD570 control

× 100
)

4.7. Biofilm Eradication

In order to eradicate the preformed biofilm at the maturation stage (48 h biofilms), the plates were
incubated for 48 h, the medium was changed after 24 h, and EOs were added at the same concentrations
and at the last 24 h. Biofilms formed by bacteria that did not undergo any treatment were used as
controls. Experimentally, the plates were incubated for 24 h at 37 ◦C to allow for biofilm attachment
and growth. The following day, the non-adhered cells were removed from each well, and the adhered
biofilm was rinsed two times with PBS. Then, 200 µL of TSB (2% glucose) with final concentrations
of the EOs equivalent to MIC was added, and the plates were incubated for 24 h [44]. The biofilm
was assessed by crystal violet, and eradication of biofilm was calculated as described in Section 4.6.
The experiment was carried out in triplicate.

4.8. Statistical Analysis

Statistical analysis was performed using analysis of variance (ANOVA). Pearson’s simple linear
correlation coefficient (r) and their significance (p) were assessed using IBM SPSS (v20).

5. Conclusions

The outcomes of this study support the medical application of O. majorana, T. zygis, and R. officinalis
EOs for the prevention and/or treatment of MRSA infections and diseases as an alternative to or
combined with antibiotics. These EOs, provided from Laboratoires OMEGA Pharma–Phytosun
Arôms (Châtillon, France), are used orally and in high concentrations (doses), corroborating
their non-toxic effect. Generally, the therapeutic application of EOs is limited by their solubility,
skin-sensitization synonymous allergic contact dermatitis, and their physicochemical stability due to
the volatile components and the conversion of components by cyclization, isomerization, oxidation,
or dehydrogenation reactions. Further adequate in vitro testing or in vivo preclinical experiments are
warranted to establish safety, efficacy, potential adverse effects, and interaction with other drugs of
O. majorana, T. zygis, and R. officinalis EOs before including them in clinical practice.
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