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A B S T R A C T   

In this study, three fermentation treatments of spontaneous fermentation (SF), direct inoculation of CECA (YF), 
and inoculation with CECA after addition of dimethyl dicarbonate (YDF) were carried out. Multivariate statistical 
analysis approved that CECA inoculation significantly influenced the composition of 141 metabolites (15 volatile 
organic compounds (VOCs) and 126 non-VOCs), mainly consisting of 36 acids and derivatives and 25 lipids and 
lipid-like molecules. YF and YDF wines exhibited similar correlations with aroma types, while there were dif-
ferences in the kinds and number of VOCs. Moreover, CECA-inoculated fermentation was more favorable to the 
formation of aftertaste-A, umami, sourness, and richness. The KEGG metabolic pathway analysis indicated that 
the inoculation strategy significantly affected the amino acid metabolism. The antimicrobial treatment effec-
tively enhanced bitterness, astringency, umami and saltiness while reducing acidity. Further studies are needed 
to assess the effects of antimicrobial treatment on lipid metabolism.   

1. Introduction 

Wine has commercial economic, and sociocultural values, and its 
chemical composition and quality are influenced by several factors. 
Among these, the yeast plays a decisive role in manipulating the wine’s 
flavor, aroma, and style during fermentation, providing far more reli-
ability for vinification (Pinu et al., 2023; Van Wyk, Grossmann, Wend-
land, Von Wallbrunn, & Pretorius, 2019). Ningxia is a premium 
winemaking region in China. According to the statistics of People’s Daily 
(2023), as of May 2023, the wine grape planting area in Ningxia has 
reached 583,000 mu, with 228 existing wineries and an annual pro-
duction of 138 million bottles. Currently, the industrialized wine pro-
duction in Ningxia, China, mainly relies on imported active dry yeasts, 
which leads to serious homogenization of wines and is not beneficial to 
the shaping of regional wine styles. Moreover, the stability and repeat-
ability of spontaneously fermented wines were unsatisfactory (D. Liu, 
Legras, Zhang, Chen, & Howell, 2021; Mas & Portillo, 2022). Using 
indigenous Saccharomyces cerevisiae as inocula is an ideal alternative to 

traditional commercial starter and spontaneous fermentation. This 
controlled “spontaneous” fermentation ensures the quality of the wines 
and enhances the regional typicality (Topić Božič et al., 2022; Tufariello 
et al., 2023; Wang, Liang, Yang, Wu, & Qiu, 2022). Studies have been 
widely reported on applying indigenous S. cerevisiae with excellent 
fermentative and oenological properties as a starter to enhance wine 
aroma and quality. 

CECA (formerly named N11424) is an excellent indigenous 
S. cerevisiae strain isolated from the spontaneous fermentation process of 
Cabernet Sauvignon wines from Ningxia, China, and has been 
commercially used in recent years (N. Liu et al., 2016). It has been re-
ported that CECA produced wines with relatively high levels of alcohols, 
aldehydes, ketones, esters, and proanthocyanins, with honey, pepper, 
more fruit flavors, and a more stable color than other commercial 
S. cerevisiae strains (Lin et al., 2018; N. Liu, Song, Qin, Gong, & Liu, 
2015, Liu et al., 2016; Wang et al., 2022). Moreover, the excellent 
fermentation characteristics and high implantation percentages of CECA 
during Cabernet Sauvignon wine fermentations in Ningxia, and floral 
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and fruity aromas were confirmed to be the characteristics of CECA 
(Zhang, Wang, Zhang, & Sun, 2023). Whereas these studies have 
described the characteristics of metabolites, how does indigenous 
starters affect the wine flavor compounds and the interaction between 
the microorganisms need further investigation. 

The kinds and content of wine matrix compounds affect wine qual-
ities. According to the volatility of these compounds, these compounds 
are classified as volatile organic compounds (VOCs) and non-VOCs. 
Among them, VOCs contribute to the postnasal aromas of wine, while 
non-VOCs mainly contribute more to the wine’s flavor, mouthfeel, and 
color (Sáenz-Navajas, Fernández-Zurbano, & Ferreira, 2012; Villamor & 
Ross, 2013). Synergistic and masking effects between different kinds of 
VOCs and non-VOCs can alter their partition coefficients, thus affecting 
the aroma and flavor of wine (Nicolli et al., 2018; Styger, Prior, & Bauer, 
2011). Traditional flavor chemistry studies were based on targeted ap-
proaches to detect and quantify specific compounds, which can only 
detect a limited number of compounds. In comparison, flavoromics re-
lies on the non-targeted approach, which allows for the simultaneous 
detection of unspecified metabolites and establishes a link between 
metabolites and organoleptic properties of wines (Cuadros-Inostroza, 
Verdugo-Alegría, Willmitzer, Moreno-Simunovic, & Vallarino, 2020; Z. 
Wang et al., 2023). For instance, Bettenhausen et al. (2020) investigated 
the effects of barley varieties on beer flavor by integrating sensory and 
non-targeted metabolomics approaches. Moreover, non-targeted 
metabolomics could effectively characterize the metabolite profiles of 
wine flavors. Further studies on flavor (taste and aroma) and metabolite 
correlations using chemometrics techniques will provide new ideas for 
studying the metabolic pathways of flavor compounds. 

Therefore, the aims of this study were to investigate the effects of 
CECA on the overall metabolite profile of Cabernet Sauvignon wines, 
and to assess its contribution to the flavor quality of the wines. Cabernet 
Sauvignon wines were fermented using three different fermentation 
strategies: spontaneous fermentation without inoculation (SF), inocu-
lated fermentation with CECA yeast (YF), and inoculated fermentation 
with CECA yeast after grape must antibacterial by dimethyl dicarbonate 
(YDF). Metabolite profiles of Cabernet Sauvignon wines under the three 
fermentation strategies were analyzed by headspace solid phase 
microextraction in combination with a gas chromatography coupled to a 
mass spectrometric detection (HS-SPME-GC–MS), ultra-high perfor-
mance liquid chromatography-Q Exactive HF-X mass spectrometer 
(UHPLC-Q Exactive HF-X). Then, the correlation between the metabolic 
profiles and sensory properties were discussed. Finally, the differential 
metabolites were screened by multivariate statistical analysis and their 
metabolic pathways were analyzed. The results of this study are ex-
pected to enrich our understanding of the effects of indigenous 
S. cerevisiae strains on wine aroma and flavor composition, and on 
shaping the wines quality in Ningxia region. 

2. Materials and methods 

2.1. Materials 

Ripe and physically undamaged Cabernet Sauvignon grapes (50 kg 
per fermentation treatment, total 150 kg grape samples) were asepti-
cally collected in 2020 in Ningxia, China. Grape samples were trans-
ported to the laboratory in refrigerated condition at 4 ◦C. The 
S. cerevisiae CECA was purchased by AngelYeast Co., Ltd. 

2.2. Wine fermentation 

The wine fermentation process was consistent with the previous 
study (Zhang et al., 2023). The basic oenological parameters of the 
grapes must were as follows: pH was 3.64, total sugar was 268.82 g/L, 
and total acidity was 3.45 g/L. Briefly, Cabernet Sauvignon grapes were 
manually destemmed and crushed, followed by the addition of 60 mg/L 
potassium metabisulfite and 30 mg/L pectinase. Three different 

fermentation strategies: spontaneous fermentation (SF), direct inocula-
tion with 20 g/hL CECA (YF), and addition of 240 mg/L dimethyl 
dicarbonate followed by inoculation of 20 g/hL CECA were conducted 
(YDF). Three biological replicates were set up for each fermentation 
treatment, and the volume of the fermenter was 10 L containing 8 L of 
grape must, and the alcoholic fermentation was carried out at 24–26 ◦C, 
with punching for 15 min every 8 h. Each flask was sealed with a sterile 
rubber cork with fermentation airlocks. The density and temperature of 
the fermentation broth were monitored daily until the completion of 
alcoholic fermentation. Malolactic fermentation (MLF) was not per-
formed at the end of alcoholic fermentation during winemaking. The 
physicochemical properties of the Cabernet Sauvignon wine samples 
under the three fermentation modes were as follows: residual sugar 
content was 12.94 to 13.34 g/L, total acidity was 5.75 to 6.37 g/L, pH 
was 3.82 to 4.03, and alcohol content was 14.33 to 14.62% in the final 
wines (Zhang et al., 2023). The results showed no significant difference 
in the above-mentioned physicochemical properties in SF, YF, and YDF 
wines. 

2.3. Electronic senses analysis 

Taste properties of wine samples were collected by the Alpha 
ASTREE E-tongue (Alpha M.O.S. Toulouse, France), which consists of an 
LS48 autosampler unit, a set of crossselective chemosensors (consisting 
of 7 working electrodes and 1 reference electrode (Ag/AgCl electrode)) 
and a chemometric software package. The samples were diluted onefold 
in distilled water before E-tongue analysis to achieve optimum sensi-
tivity of the E-tongue sensor. Wines samples from all three fermentation 
strategies were taken in triplicate, and the E-tongue was repeated 6 
times from each sample, with the data from the last 3 times being 
selected as raw data for subsequent analysis (Fliszár-Nyúl, Zinia Zaukuu, 
Szente, Kovacs, & Poór, 2023). The time for each acquisition was set to 
120 s, and measurements were obtained once per second. The stirring 
rate was 60 rpm, and the cleaning time was 10 s. The average of the last 
20 s (100–120 s) measurements was used as the output value, repre-
senting the stable and optimal sensitivity of the different sensors. 

2.4. Volatile metabolites determination 

HS-SPME was used to extract VOCs from wine samples. 2 mL of wine 
sample and 1 μL of 50 μg/mL N-pentacosane-d32 (internal standard, 
CAS# 36340–20-2) were added to the headspace vial for quantifying 
VOCs, and the detection was carried out twice as a technical repetition. 
The vials were equilibrated for 10 min in a heating box at 60 ◦C, injected 
SPME fiber (with DVB/CAR/PDMS 50/30 μm) into the headspace, and 
extracted under the same conditions for 28 min. Subsequently, using VF- 
WAXms capillary column (25 m × 0.25 mm × 0.2 μm, Agilent CP9204) 
separated VOCs and absorbed by GC–MS (PAL RTC 120–8890-5977B, 
Agilent Technologies, USA) for their identification and quantification. 
Helium (1.5 mL/min) was used as the carrier gas, and the temperature of 
the column chamber at 40 ◦C for 2 min, then increased to 100 ◦C (5 ◦C/ 
min), then to 230 ◦C (15 ◦C/min) and maintained for 5 min. The MS 
temperatures of the quadrupole and ion source were 150 ◦C and 230 ◦C, 
respectively. The ionization mode was electron impact mode (70 eV), 
and the mass scan range of 50–500 m/z (3.2 scans/s). Identification was 
performed using the public databases NIST (2017), Fiehn (2013), and 
MS-DIAL (2021) to screen for metabolites with ≥80% match, and VOCs 
were annotated in combination with commercially available standard 
data reported in the relevant literature. The relative content of each 
volatile compound was determined using the internal standard method, 
and the concentration of VOCs was calculated semiquantitative based on 
N-pentacosane-d32 (IS): the relative content of VOCs was the ratio of the 
VOC to the peak area of the IS, multiplied by the IS concentration. 
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2.5. Non-volatile metabolites determination 

A centrifuge tube was filled with 300 μL of wine sample and 600 μL of 
methanol-acetonitrile (v/v = 1/1, IS: 0.02 mg/mL 2-Chloro-L-phenyl-
alanine) and sonicated for 30 min (5 ◦C, 40 kHz). The samples were 
placed in a refrigerator at − 20 ◦C for 30 min to precipitate proteins and 
then centrifuged for 15 min (4 ◦C, 13000 g). The collected supernatant 
was blown dry under nitrogen, 100 μL of acetonitrile-water (v/v = 1/1) 
was added, sonicated for 5 min (5 ◦C, 40 kHz), and then centrifuged for 
10 min (4 ◦C, 13000 g), collected the supernatant for subsequent LC-MS/ 
MS analysis, and the detection was carried out twice as a technical 
replicate. Chromatographic conditions: the injection volume was 3 μL, 
and the column was ACQUITY UPLC HSS T3 column (100 × 2.1 mm, 1.8 
μm; Waters Corporation, Milford, MA, USA) at 40 ◦C; the mobile phase A 
was acetonitrile-water (v/v = 19/1), and B was acetonitrile- 
isopropanol-water (v/v/v = 47.5/47/5), both containing 0.1% formic 
acid, and the mobile phase elution gradient is shown in Table S1. 

The samples were subjected to electrospray ionization, followed by 
applying ESI+ and ESI-scanning modes to acquire the mass spectral 
signals; detailed parameter information is shown in Table S2. Metab-
olomics processing software Progenesis QI (Waters Corporation, Mil-
ford, USA) was used to identify metabolites. The databases were KEGG 
and HMDB, and the qualitative comparisons and annotations were 
performed on the I-Sanger Cloud platform (Majorbio, Shanghai, China). 

2.6. Statistical evaluations 

Metabolome data were analyzed by orthogonal normal partial least 
squares-discriminant (OPLS-DA) model analysis and calculation of var-
iable importance in the projection (VIP) by SIMCA Software package 
(version 13, Umetrics AB; Umeå, Sweden), combined with IBM SPSS 
Statistics 27.0 software for one-way analysis of variance (ANOVA) with 
Duncan’s multiple comparisons test to calculate P-value for further 
screening of differential metabolites. Different criteria were selected to 
screen for differential metabolites based on the test results (significantly 
different VOCs: VIP > 1 and P < 0.01; significantly different non-VOCs: 
VIP > 1.5 and P < 0.01). Principal component analysis (PCA) and vol-
cano plots used R package ropls (version 1.6.2), with downscaling to 
look at within-group reproducibility and between-group variability be-
tween wine samples. Heatmaps were plotted using TBtools (Toolbox for 
Biologists; version 1.120, China) to demonstrate differences in the 
expression of differential metabolites in wines from the three fermen-
tation strategies. Rose diagram, PCA biplot, and correlation plots of 
differential VOCs with aroma properties (Correlation Plot APP, version 
1.31) were generated using Origin Pro 2021 (OriginLab Corporation, 
Northampton, MA, USA). PLSR models were constructed with The Un-
scrambler® X version 10.4 (64-bit) (Camo Software AS, Oslo, Norway) 
to analyse the relationship between predictors (independent variables: 
VOCs/differential non-VOCs) and responses (dependent variables: 
aroma properties/taste properties). The “pheatmap” package in the R 
software package (version 3.5.3) to calculated Spearman correlation 
coefficients (r), where |r| > 0.8 and P < 0.05 were considered significant 
correlations (Huang et al., 2019), and the correlation network was 
visualized by Cytoscape 3.7.2 (The Cytoscape Consortium, San Diego, 
CA, USA). Finally, differential metabolites were analyzed for metabolic 
pathway enrichment using MBRole 2.0 (MBRole 2.0 - Home (csic.es)), P 
< 0.05 was selected to construct the metabolic network, and metabolites 
in wine were mapped to metabolic pathways using the KEGG database 
(C.-F. Li et al., 2018). 

3. Results and discussion 

3.1. Impacts of CECA inoculation on VOCs 

3.1.1. Differential VOCs screening 
The tested compounds were screened in public databases for matches 

≥80% metabolites, and 32 VOCs were obtained by combining the 
relevant literature and databases. As shown in Table S3, 32 VOCs, 
including 13 acids, 9 alcohols, 5 esters, and 5 other compounds were 
obtained in this study. The PCA and OPLS-DA models were used to 
compare the similarities and differences of VOCs among SF, YF, and 
YDF. PCA is an unsupervised method commonly used in metabolomics 
studies to demonstrate inter-group variability and intra-group repro-
ducibility. In this study, the PCA score plots showed significant sepa-
ration between the inoculated fermentation (YF and YDF) and SF 
(Fig. S1A). Table 1 shows that the R2X was 0.842 (close to 1), indicating 
high retention in the X-axis direction; The Q2 of PCA model was 0.669 
(>0.5), indicating the model’s good predictive ability according to 
previous study (Lever, Krzywinski, & Altman, 2017). In addition, OPLS- 
DA was also used to explore the differences in the metabolites of the SF, 
YF and YDF wines (Fig. S1B). OPLS-DA is a supervised discriminant 
analysis statistical method that emulates the relationship between 
metabolite expression and sample category. The parameters R2Y and Q2 

contribute to judging the accuracy and reliability of the OPLS-DA model. 
The model parameters R2Y (0.986) and Q2 (0.966) were both >0.90 
(Table 1), indicating that these samples had good discriminatory and 
predictable properties according to previous studies (Da Silva et al., 
2017; Yang, Dai, Ayed, & Liu, 2019). The OPLS-DA score plot showed 
inter-group differences and intra-group consistency, which identified 15 
VOCs with significant differences (VIP > 1, P < 0.001; Table S3). The 
permutation test (N = 200) results indicated that the OPLS-DA model 
was well predictable and reproducible without excessive randomness or 
over-fitting, and could be used to screen for differential metabolites as 
reported by Li et al. (2021). 

To visualize the differences in VOC abundance among the three 
different fermentation treatments, the 15 significantly different VOCs 
screened in Table S3 were subjected to HCA according to their abun-
dance (Fig. 1). The results showed that different VOCs were clustered 
into 5 classes, namely I to V. The SF samples were distinguishable from 
the inoculated fermentation, with YF and YDF having greater chemical 
similarity. 

Higher alcohols are secondary products of the alcoholic fermentation 
of yeasts, and their varying concentrations can positively or negatively 
affect the aroma of wine (Swiegers & Pretorius, 2005). The content of 
pentan-1-ol (fruity, balsamic), 1-octanol (intense citrus, rose), and 
benzyl alcohol (almond) in YDF was significantly higher than that in SF 
(Fig. 1). Notably, 1-octanol was only present in YDF, suggesting that 
YDF increased the concentration and variety of higher alcohols, thus 
contributing to the desired complexity of the wine’s aroma. Red fruit 
aromas in red wine are often associated with acetate esters, which are 
considered as pleasant aroma descriptors (Welke, Nicolli, Hernandes, 
Biasoto, & Zini, 2022). Studies have shown that ethyl decanoate has low 
threshold, larger proportion, and high concentration, significantly 
impacting the overall aroma of wine (Hu, Jin, Mei, Li, & Tao, 2018). In 
this study, ethyl decanoate has significantly higher relative content in YF 
than that in YDF and SF, providing YF wines with a more pronounced 
fruit aroma profile (Fig. 1). Volatile organic acids are produced during 
fatty acid metabolism in yeast and bacteria, and a certain amount of 

Table 1 
Detailed parameters of the PCA and OPLS-DA models.  

Model 
classes 

Metabolites Mode R2X 
(cum) 
(%) 

R2Y 
(cum) 
(%) 

Q2 

(cum) 
(%) 

Differential 
metabolites 

PCA 
VOCs – 0.842 – 0.669 – 

non-VOCs 
ESI+ 0.761 – 0.478 – 
ESI- 0.805 – 0.620 –  

OPLS- 
DA 

VOCs – 0.876 0.986 0.966 15 

non-VOCs 
ESI- 0.749 0.984 0.955 55 
ESI+ 0.757 0.994 0.953 71  
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volatile organic acids, increase the complexity of wine aroma and taste. 
In this study, 5 volatile organic acids (oxaloic acid, (z)-2-methylbut-2- 
enoic acid, nonanoic acid, octadecanoic acid, and hexanedioic acid) 
showed significant differences among treatments, suggesting that the 
inoculated fermentation and the inoculation method influenced their 
accumulation in wines, which could lead to the differences in the aroma 
and taste. 2,4-ditert-butylphenol and 2,6-di-tert-butyl-4-methylphenol 
also showed significant differences among SF, YF, and YDF. They 
showed the lowest expression in YF, suggesting that direct inoculation 
with CECA decreased the content of volatile phenolics, and the antimi-
crobial treatment increased the content of these compounds. In sum-
mary, inoculation with CECA altered the kind and content of VOCs and 
favored the formation of complex aroma properties in Cabernet Sau-
vignon wines. 

3.1.2. Correlation analysis between VOCs and aroma profiles 
The data on sensory analyse were derived from the results of the 

previous study (Zhang et al., 2023). Fig. S2 analyzed significant differ-
ences for 10 aroma profiles (citrus, berry, tropical fruit, temperate fruit, 
dried fruit, floral, herbal, spice, toasted, and undesirable flavors). The 
results showed that significant differences existed for all 9 aroma pro-
files except dried fruit, with berry aroma being the most prominent in 
terms of sensory intensity. 

PLSR modeling was constructed to investigate the relationship be-
tween 32 VOCs and 10 aroma profiles (Fig. 2A). The PLSR model’s 
principal components were VOCs and aroma profiles, with a 62% (40% 

+ 22%) and 26% (18% + 8%) explanation, respectively. Among them, 
herbal, undesirable flavors, and 20 VOCs were located between the two 
ovals, indicating that they are strongly correlated in the model. In 
Fig. 2A, the herbal and undesirable flavors as well as (z)-2-methylbut-2- 
enoic acid and hexanedioic acid were close to each other and located in 
the same quadrant, indicating a positive correlation between them. 
According to our knowledge, no studies have yet showed the correlation 
of these two compounds with aroma, which needs further investigation. 
However, six kinds of VOCs (hexadecanoic acid, valeric acid, decanoic 
acid, hexanoic acid, ethyl isobutyrate, and ethyl decanoate) were in 
diagonal quadrant showing a negative correlation with herbal and un-
desirable flavors. Based on the loading weights and the regression co-
efficients, 3-methylbutan-1-ol (exhibiting ripe fruit aromas in red wines) 
could be considered the best predictor of wine aroma profiles in this 
study (Petretto et al., 2021). 

Subsequently, heatmaps analyzed the differences in the correlation 
between the 32 VOCs and 10 aroma profiles in the SF, YF and YDF wines 
(Fig. 2B). A total of 4, 7, and 28 VOCs were detected in SF, YF, and YDF, 
respectively, that positively or negatively correlated with aroma pro-
files. As for aroma types, YF and YDF exhibited the similar correlations 
with them, while there were differences in the kinds and number of 
VOCs affecting them. In addition, the antimicrobial treatments affected 
the microbial composition and metabolic activities, thus presenting 
different correlation profiles. Specifically, undesirable flavors were 
negatively correlated with 4 VOCs of octanoic acid, hexadecenoic acid, 
hexanedioic acid and phenethyl acetate in YF, while 11 VOCs including 

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅴ

Fig. 1. Hierarchical cluster analysis (HCA) heatmap with 15 significantly different VOCs (VIP > 1, P < 0.01). SF: Spontaneous fermentation without inoculation; YF: 
Inoculated fermentation with CECA yeast; YDF: Inoculated fermentation with CECA yeast after addition of dimethyl dicarbonate. SF_1 and SF_2 are two technical 
replicates in the first biological replicate of SF sample, SF_3 and SF_4 are two technical replicates in the second biological replicate of SF sample, and so on. 
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Fig. 2. (A) PLSR analysis and (B) Correlation analysis between the aroma profiles and the VOCs of three fermentation strategies wines. X. 32 VOCs; Y. 10 aroma 
profiles; Significant mark: “*” P-value <0.05. SF: Spontaneous fermentation without inoculation; YF: Inoculated fermentation with CECA yeast; YDF: Inoculated 
fermentation with CECA yeast after addition of dimethyl dicarbonate. 
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octanoic acid and hexanedioic acid in YDF showed negatively correlated 
with them. There were 16 VOCs had negative correlation with tropical 
fruit aroma in YDF, while tropical fruit was negatively correlated with 1 
VOC (ethyl decanoate) in SF and 2 VOCs (octanoic acid and hexanedioic 
acid) in YF, respectively. It is worth noting that herbal aroma was 
positively correlated with 3-methylpentan-1-ol, hexanol and nonanoic 
acid in YDF. In contrast, it exhibited a negative correlation with 1-dec-
anol in YF. These findings are consistent with the previous conclusion 
that VOCs and aroma profiles have varying degrees of positive and 
negative correlations (C. Liu et al., 2022), suggesting that aroma 
perception in wine was generated by the interaction of various aromatic 
compounds (Tchabo et al., 2017). 

3.2. Impacts of CECA inoculation on non-VOCs 

3.2.1. Differential non-VOCs screening 
The composition of non-VOCs was characterized by UHPLC-Q 

Exactive HF-X. 1152 and 952 non-VOCs were identified in ESI+ and 
ESI- modes, respectively. The PCA and OPLS-DA models were used to 
compare the similarities and differences of non-VOCs among SF, YF, and 
YDF. The PCA score plots showed significant separation between the 
inoculated fermentation (YF and YDF) and SF (Fig. S3A–B). There was a 
partial overlap between the confidence intervals of the YF and YDF 
samples. Table 1 shows that the R2X of PCA in ESI- and ESI+ models 
were 0.805 and 0.761, and Q2 were 0.620 and 0.478, respectively. These 
results implied that inoculation of CECA significantly altered the 
metabolic profiles of non-VOCs in SF, while antimicrobial treatment had 
some effects but to a limited extent. 

Moreover, the OPLS-DA models (ESI+ and ESI–) showed significant 
separation between samples with different fermentation treatments 
(Fig. S3C-D). The model parameters R2Y and Q2 were both >0.90 
(Table 1). To verify that the OPLS-DA models were not overly random or 
over-fitted, we performed a random permutation test with 200 itera-
tions. The R2 and Q2 parameters of the experimental data were higher 
than the data generated by the 200 permutation test, indicating that the 
OPLS-DA model was stable and reproducible without over-fitting. 
Therefore, multivariate statistical analyses of PCA and OPLS-DA 
confirmed statistically significant differences in non-VOCs among SF, 
YF, and YDF samples. 

OPLS-DA analysis was used to explore the effect of inoculated 
fermentation (YF and YDF) on wine flavor. Table S4 shows the 126 
significantly differential non-VOCs (VIP > 1.5, P < 0.01) with 71 in ESI 
+ mode and 55 in ESI - mode. These 126 differential non-VOCs con-
tained 31 organic acids and derivatives, 25 lipids and lipid-like mole-
cules, 20 organic oxygen compounds, 18 organoheterocyclic 
compounds, 13 benzenoids, 9 phenylpropanoids and polyketides, 4 
nucleosides, nucleotides, and analogues, and 6 others. The composition 
and content of differential non-VOCs in wines from the three fermen-
tation strategies are shown in Fig. 3. Organic acids and derivatives were 
the most abundant differential non-VOCs (e.g., malic acid and argininic 
acid, etc.), which could play an essential role in the overall sensory 
quality of the wines. Malic acid and arginine, as precursors and me-
tabolites of MLF, significantly impacted the quality of the wine (Mira De 
Orduña, Patchett, Liu, & Pilone, 2001; Styger et al., 2011). Malic acid in 
SF is higher than the inoculated fermentation, probably because more 
malic acid was converted to lactic acid through MLF, making the wine 
softer and palatable. MLF is usually carried out by lactic acid bacteria 
(LAB), and we detected the presence of LAB by high-throughput 
sequencing in the same batch of wine fermentation (unpublished 
data). The content of argininic acid in YDF was significantly lower than 
that in SF and YF, suggesting that adding dimethyl dicarbonate was a 
key factor influencing the difference in argininic acid. Argininic acid, as 
a primary amino acid in both must and wine, significantly impacts wine 
quality (Tonon & Lonvaud-Funel, 2002). 

3.2.2. Correlation analysis between taste properties and differential non- 
VOCs 

Electronic sensors in the E-tongue mimic human taste by plotting a 
rose diagram with the mean response values of 8 taste properties 
(sourness, bitterness, astringency, aftertaste-B, aftertaste-A, umami, 
richness, and saltiness (Fig. 4A). It can be observed that the taste of 
Cabernet Sauvignon wines fermented by SF, YF and YDF is notably 
distinguishable, because most of taste indexes are not overlapping each 
other. For SF wine, the intensity of bitterness, astringency, aftertaste-B, 
aftertaste-A, umami and saltiness was higher than the other, while the 
intensity of sourness and richness taste was lower. The inoculation of 
CECA decreased the taste of bitterness, astringency, aftertaste-B, umami 
and saltiness, while increased the taste of sourness. Moreover, the results 
of one-way ANOVA showed significant differences in bitterness, 
astringency, aftertaste-B, and saltiness taste properties (Table S5). Their 
response values were ranked in order of magnitude as SF > YDF > YF. 
However, the richness of SF, YF and YDF wines showed no significant 
differences. It is worth noting that the E-tongue data combined with the 
sensory analysis showed the higher acidity and lower umami of YDF 
wine. 

To gain an intuitive and comprehensive understanding of the 
changes in wine taste, we performed PCA biplot analyses of wine sam-
ples under different treatments. The PCA scores and loading biplot 
showed the contribution of taste properties to wine differences, with 
PC1 and PC2 providing 55.0% and 28.3% of the explanation, respec-
tively (Fig. 4B). The results showed that none of the three wine samples 
of the fermentation treatments overlapped, demonstrating significant 
differences in taste quality. CECA inoculation and antimicrobial treat-
ments significantly altered the taste of Cabernet Sauvignon wines. 
Specifically, the SF wine was more strongly associated with bitterness, 
astringency, aftertaste-B, aftertaste-A, umami, and saltiness. In contrast, 
the YDF wine clustered in the upper left was characterized mainly by 
sourness and richness. It is worth noting that YF wine was weakly 
correlated with all 8 taste properties. The result may be due to YF 
treatment resulting in the most harmonious and balanced wine in case of 
taste quality in this study, which is consistent with wine-tasting results. 
The harmony and balance of the wines favored the perception of wine 
complexity (Schlich, Medel Maraboli, Urbano, & Parr, 2015). 

To investigate the relationships between differential non-VOCs and 
taste properties, 126 differential non-VOCs (X variables) and 8 taste 
properties (Y variables) were used to generate the PLSR model (Fig. 4C). 
Consistent with the results of the one-way ANOVA, 7 taste properties 
except richness were significantly different. These 7 taste properties 
were located between the two circumferences of the correlation circle 
plot, showing significant correlations with different non-VOCs. The 
variance explained 86% (63% + 23%) and 78% (32% + 46%) for the X 
and Y variables, respectively, which was between 50% and 100%, 
having good explanatory power according to Yin et al. (2020). To 
further investigate the correlation differences between differential non- 
VOCs and taste properties in the SF, YF and YDF wines, this study 
constructed a correlation network based on Spearman’s correlation (|r| 
> 0.8, P < 0.05) analysis (Fig. S4). The network parameters showed 61 
(SF), 60 (YF), and 53 (YDF) pairs of significant and robust relationships 
(edges), with 38, 17 and 21 pairs showing positive correlation, and 23, 
43 and 32 pairs having negative associations (Table 2). In addition, we 
found that the network complexity (showing as average degree) of the 
inoculated fermentation was higher than that of SF. Notably, the value 
of average spearman’s correlation coefficients for bitterness, saltiness, 
astringency and aftertaste-B in SF wine was higher than in YF and YDF 
wines. On the contrary, the correlation coefficients of SF for aftertaste-A, 
umami, sourness, and richness were lower, in agreement with the PCA 
biplot results of Fig. 4B, which indicated that inoculated fermentation 
was more favorable for the formation of these four taste properties in 
Cabernet Sauvignon wine. 
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Fig. 3. Heatmap analysis and VIP scores with 126 significant differences non-VOCs (VIP > 1.5, P < 0.01) from the three fermentation strategies wines. SF: 
Spontaneous fermentation without inoculation; YF: Inoculated fermentation with CECA yeast; YDF: Inoculated fermentation with CECA yeast after addition of 
dimethyl dicarbonate. SF_1 and SF_2 are two technical replicates in the first biological replicate of SF sample, SF_3 and SF_4 are two technical replicates in the second 
biological replicate of SF sample, and so on. 
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3.3. Metabolic pathway analysis 

Metabolic pathways could show metabolic differences in wines with 
different fermentation strategies and the preferential energy 

consumption of microorganisms during wine fermentation. This study 
aimed to investigate the effects of CECA inoculation on Cabernet Sau-
vignon wine aromas and flavors as well as the involved metabolic 
pathways. We analyzed the possible metabolic pathways of 141 differ-
ential metabolites (15 VOCs and 126 non-VOCs) by KEGG enrichment. 
As shown in Fig. 5A, the enrichment analysis by MBRole 2.0 showed that 
141 differential metabolites were significantly correlated (P < 0.05) 
with 9 pathways (red circles): lysine degradation, linoleic acid meta-
bolism, phosphotransferase system (PTS), caprolactam degradation, 
tropane, piperidine and pyridine alkaloid biosynthesis, arginine and 
proline metabolism, alpha-linolenic acid metabolism, nicotinate and 
nicotinamide metabolism, histidine metabolism. 

Metabolic networks were constructed to visualize the 9 significant 
metabolic pathways (P < 0.05) mapped by differential metabolites, 
where red and black metabolites represent differential metabolites and 
intermediates (Fig. 5B). Three pathways (lysine degradation, arginine 
and proline metabolism, and histidine metabolism), accounting for one- 
third of the total number of significantly different metabolic pathways, 
were associated with amino acids, suggesting that inoculation strategy 
significantly affects amino acid metabolism. There were nine significant 
differences non-VOCs among these three metabolic pathways, among 
which the relative content of six non-VOCs (hydantoin-5-propionic acid, 

Fig. 4. Sensory analysis. (A) Rose diagram and (B) PCA biplot for E-tongue data of taste quality among the three fermentation strategies wines; (C) Correlation 
loadings plot of the PLSR model between 126 significant differences non-VOCs and 8 taste profiles. Orange triangles represent the 126 significant differences non- 
VOCs in Table S4. SF: Spontaneous fermentation without inoculation; YF: Inoculated fermentation with CECA yeast; YDF: Inoculated fermentation with CECA yeast 
after addition of dimethyl dicarbonate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
The correlation network parameters between taste profiles and differential non- 
VOCs of three fermentation strategies wines.  

Network parameters SF YF YDF 

Nodes 61 54 47 
links 61 60 53 
Positive links 38 17 21 
Negative links 23 43 32 
Average degree 2.000 2.222 2.255 

Average Spearman’s correlation 
coefficient 

Sourness 0.857 0.905 0.886 
Bitterness 0.910 0.883 0.897 
Astringency 0.888 0.860 0.829 
Aftertaste-B 0.914 0.886 0.812 
Aftertaste- 
A 

0.866 0.880 0.820 

Umami 0.872 0.857 0.892 
Richness 0.853 0.886 0.886 
Saltiness 0.922 0.860 0.900  
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5-phosphonooxy-L-lysine, (S)-5-amino-3-oxohexanoate, 1-pyrroline-5- 
carboxylic acid, 2,3,4,5-tetrahydro-2-pyridinecarboxylic acid, and N- 
acetyl-L-glutamate 5-semialdehyde) in YDF was significantly higher 
than that in SF and YF. In addition, PLSR analysis showed that the first 
four non-VOCs were positively correlated with bitterness, astringency, 
umami and saltiness, while showed negative correlation with sourness 
taste profiles. However, the last two non-VOCs exhibited a positive 
correlation with aftertaste-B and aftertaste-A (Fig. 4C). It indicates that 
antimicrobial treatment increased bitter (bitterness and aftertaste-B), 
astringent (astringency and aftertaste-A), umami and saltiness tastes 
while reducing the wine acidity through amino acid-related metabolic 
pathways. It is worth noting that the significant correlations identified 
through the metabolic pathway analysis were “statistical” and not due to 
the high intensity of the sensory descriptors (Tempère et al., 2018). For 
the aforementioned reasons, it is necessary to carry out further sensory 
analysis to fully understand the actual impact of metabolite changes on 
sensory differences. 

Especially, the lysine degradation was most affected by the fermen-
tation strategies (P = 0.015), supported by the significant differences in 
the abundance of 4 compounds (5-hydroxylysine, 5-phosphonooxy-L- 
lysine, 2,3,4,5-tetrahydro-2-pyridinecarboxylic acid, and (S)-5-amino-3- 
oxohexanoate) among different fermentation strategies. 5-phospho-
nooxy-L-lysine and (S)-5-amino-3-oxohexanoate in YDF wine was higher 
than in SF and YF wines, which could contribute to the accumulation of 
acetyl-CoA. Study has shown that an increased supply of acetyl-CoA 
from amino acid metabolism can further increase lipid biosynthesis 
flux in oleaginous yeast and fungi (Vorapreeda, Thammarongtham, 
Cheevadhanarak, & Laoteng, 2012). Therefore, we hypothesized that 
YDF had a robust lipid metabolism. However, the content of five com-
pounds associated with lipid metabolic pathways (alpha-linolenic acid 
metabolism and linoleic acid metabolism) was lower in YDF wine than 
in SF and YF wines (Fig. 5B). Future work is needed to understand how 
the antimicrobial treatment affects the metabolism of lipids. 

4. Conclusions 

CECA, a young indigenous commercial yeast, was characterized by 
floral and fruity aromas. To our knowledge, very few studies have 
published on CECA and mostly written in Chinese; more research is 
needed to introduce CECA to international researchers and winemakers. 
This study used flavoromics to establish a link between wine composi-
tion and sensory properties, which can help comprehensively under-
stand the role of indigenous S. cerevisiae CECA on the aroma and flavor 
of Cabernet Sauvignon wines, three different fermentation treatments 

(SF, YF and YDF) were carried out. 
Our results demonstrate that inoculation with CECA altered the kinds 

and content of VOCs and non-VOCs, enhanced the citrus, temperate 
fruit, floral and berry aroma properties, and improved the undesirable 
flavors of the wine. Meanwhile, CECA inoculation was more favorable 
for the formation of aftertaste-A, umami, sourness and richness taste 
properties, and YF treatment resulted in the most balanced wine in case 
of taste quality. The metabolite enrichment analysis showed that 141 
differential metabolites were significantly correlated (P < 0.05) with 9 
pathways, with the amino acid metabolism pathway (one-third) being 
most affected by the fermentation strategy. In the three pathways, the 
antimicrobial treatment increased bitter (bitterness and aftertaste-B), 
astringent (astringency and aftertaste-A), umami and saltiness tastes 
while reducing the wine acidity. These differential metabolite analyses 
provided an outline for the interpretation of the CECA contribution to 
the aroma and flavor of Cabernet Sauvignon wines. In addition, wine 
fermentation is a complex biochemical process, and microbial in-
teractions directly or indirectly affect wine perception. Therefore, the 
relationship between metabolites and microorganisms and their effects 
on wine style and quality needs further investigation. 

In summary, CECA provide a theoretical basis for the industrial 
production of regional wines by enhancing the “terroir” of local wines. 
These results suggest that inoculated fermentation has an essential 
impact on the microbial community, central metabolic pathways and 
metabolite content. Future studies will identify critical enzymes and 
functional microorganisms during wine fermentation and refine the 
microbial impact on wine aroma and flavor. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.fochx.2024.101525. 
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