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Abstract Adipose tissue (AT) dysfunction, characterized by loss of its homeostatic functions, is a hallmark of non-
communicable diseases. It is characterized by chronic low-grade inflammation and is observed in obesity, metabolic
disorders such as insulin resistance and diabetes. While classically it has been identified by increased cytokine or
chemokine expression, such as increased MCP-1, RANTES, IL-6, interferon (IFN) gamma or TNFa, mechanistically,
immune cell infiltration is a prominent feature of the dysfunctional AT. These immune cells include M1 and M2
macrophages, effector and memory T cells, IL-10 producing FoxP3þT regulatory cells, natural killer and NKT cells
and granulocytes. Immune composition varies, depending on the stage and the type of pathology. Infiltrating
immune cells not only produce cytokines but also metalloproteinases, reactive oxygen species, and chemokines
that participate in tissue remodelling, cell signalling, and regulation of immunity. The presence of inflammatory cells
in AT affects adjacent tissues and organs. In blood vessels, perivascular AT inflammation leads to vascular remodel-
ling, superoxide production, endothelial dysfunction with loss of nitric oxide (NO) bioavailability, contributing to
vascular disease, atherosclerosis, and plaque instability. Dysfunctional AT also releases adipokines such as leptin,
resistin, and visfatin that promote metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose
handling, and insulin sensitivity. Anti-inflammatory and protective adiponectin is reduced. AT may also serve as an
important reservoir and possible site of activation in autoimmune-mediated and inflammatory diseases. Thus, recip-
rocal regulation between immune cell infiltration and AT dysfunction is a promising future therapeutic target.
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This article is part of the Spotlight Issue on Dysfunctional Adipocyte and Cardiovascular Disease.

Introduction

Physiologically, adipose tissue (AT) stores energy to support metabolic
requirements in the times of need. From an evolutionary point of view,
this is beneficial, but with increased nutrient intake and reduced energy
expenditure in our modern world, AT function becomes altered leading
to obesity.1 Such alteration is a result of complex interactions of metabolic
and immune factors. Understanding of the importance of immunity in met-
abolic regulation, and the role of metabolism in immune regulation, under-
lies the rapidly developing biological field of immunometabolism. For
example, T cell or M1 macrophage activation is typically associated with a
switch from oxidative phosphorylation to anaerobic glycolysis.2 This has
been reviewed in depth elsewhere,3,4 and, in the present paper, we will
focus on the role of interactions of immune cells with dysfunctional AT.

AT can be typically classified as white, brown, or beige based on its
metabolic activity, number of mitochondria, and uncoupling protein
1 (UCP-1) content, all of which affect adipocyte size and function. Brown
AT plays a key role in thermogenesis, while white AT serves primarily
for lipid storage. Brown AT is sparse in adult humans, in contrast to its
periaortic location in rodents.5 In spite of this, the protective properties
of brown fat have been demonstrated in cardiovascular disease.6 White
AT is widely distributed as visceral (VAT) and subcutaneous AT (SAT).7

These compartments differ in their functional importance for metabolic
health and in their immunometabolic properties. VAT is metabolically
more active than SAT and it harbours significantly more immune cells in
both health and pathology.8 This is closely linked with increased glucose
uptake and fatty acid generation in VAT and greater adrenergic innerva-
tion, all of which are important in the regulation of insulin sensitivity.7
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SAT in turn absorbs circulating free fatty acids and triglycerides.7

Numerous studies have shown that the retroperitoneal content of
VAT is linked to cardiovascular risk.9 This is mediated by chronic
low-grade inflammation, characterized by an excessive immune cell
infiltration, overproduction of detrimental adipokines and cytokines
(TNF-a, IL-6) that can be detected systemically as biomarkers of
inflammation.10,11 Mechanistically such low-grade inflammation alters
metabolic functions of AT, leading not only to insulin resistance and
diabetes but also to cardiovascular pathology.12,13 More recently,
attention has been focused on a very specific compartment of VAT,
the perivascular AT (pVAT), due to its close proximity to blood ves-
sels and its unique embryonic origin from vascular smooth muscle
cell SM22þ precursors.8 Dynamic interplay between white and
beige/brown adipocytes within pVAT results in unique metabolic and
pro-inflammatory properties that make pVAT an important regulator
of vascular function and plaque stability.8 Human perivascular coro-
nary adipocytes exhibit reduced differentiation, more irregular shape,
and smaller size than in the SAT or typical peri-renal VAT. This trans-
lates into smaller lipid droplet accumulation and increased synthetic

capacity.14 pVAT provides a microenvironment for recruitment and
activation of immune cells which in concert with adipokines affect
vascular tone and other aspects of vascular homeostasis.15–17

In summary, all compartments of AT: SAT, VAT as well as pVAT serve
physiological functions in vascular and metabolic homeostasis. When
these protective functions are disturbed, dysfunctional AT promotes the
development of metabolic and vascular disease (Figure 1).

Physiological roles of immune cells
in AT

In health, AT contains numerous cell types, including not only adipocytes
but also endothelial cells, fibroblasts, pre-adipocytes, stem cells, and reg-
ulatory/naive immune cells.18 Immune cells including M2 macrophages
and T regulatory cells (Treg) release anti-inflammatory cytokines such
as interleukin (IL)-10 and transforming growth factor beta (TGF-b),
which increase insulin sensitivity and inhibit AT inflammation and

Figure 1 Triple functions of adipose tissue (VAT/pVAT) in health, obesity and in cardiovascular (CV) disease without obesity. AT compartments differ in
characteristics of infiltrating immune cells, characteristics of adipocytes and adipokine profile. In health, protective adipokines and cytokines are important in
maintaining vascular homeostasis. In obesity, enlarged adipocytes produce leptin and do not release adiponectin and enhance M1 macrophage accumulation
in crown-like structures as well as T effector cells. In CVD without obesity macrophages are atypical, adipocytes are synthetic and create microenvironment
for development of TLOs and immune cell activation.
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dysfunction (Figure 1).19 In lean conditions, M2 cells are characterized
by a lack of CD11c and the presence of CD206 and arginase 1.20 M2
and Treg polarization are reciprocally enhanced in physiological condi-
tions by adiponectin released from IAT.21 IL-10 modulates insulin signal-
ling through insulin receptor/IRS1-IRS2/PI3-kinase/Akt/FOXO1, in the
context of hepatic gluconeogenesis and lipid synthesis. These actions
are partially direct and in part indirect, through modulation of TNF, IL-
6, IL-1b, and M1 macrophage polarization.22 M2 macrophages control
adipocyte lipolysis.23 Upon cold exposure, M2 macrophages secrete
catecholamines, to stimulate adipocyte lipolysis. This is important
because, in concert with eosinophils, M2 macrophages can orchestrate
generation of beige AT.24 As discussed above, in lean, insulin-sensitive
AT T cells present are primarily T regulatory cells that secrete IL-10
and transforming growth factor-b (TGFb) and Th2 cells producing anti-
inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-10. These play an
important role in homeostasis of AT.25 Tregs in normal AT have a
unique mRNA expression profile, characterizing their regulatory func-
tion, such as CD25, glucocorticoid-induced tumor necrosis factor
receptor (GITR), cytotoxic T lymphocyte antigen-4 (CTLA-4), killer
cell lectin-like receptor G1 and OX40 in addition to classical FoxP3.25 T
regs also exhibit chemokine sensitivity as evidenced by high CC chemo-
kine receptor expression.25 Other immune cells in lean AT include
potentially protective eosinophils and to a lesser extent neutrophils. To
date, the role of these cells has been less well defined. Likewise, the role
of immune cells present in healthy pVAT in the regulation of vascular
function has not yet been clearly defined, apart from potential effects
on the release of protective adipokines from adipocytes. Immune cell
content in lean subcutaneous AT has also been described but is very
low. Dynamic changes of immune cells in the AT underpin their involve-
ment in pathologies associated with AT dysfunction.

Defining dysfunctional AT

Functional changes within the AT associated with altered paracrine and
endocrine properties contribute to the development of cardiovascular
disease and cancer.26,27 AT dysfunction is thus characterized by decreased
release of homeostatic protective factors such as adiponectin, nitric
oxide, or protective prostaglandins and increased activation of stress-
related pathways leading to pathological adipokine release (resistin, visfa-
tin, leptin) and development of low-grade inflammation (Figure 1),28

which is not only a feature of dysfunctional AT but also promotes meta-
bolic and vascular dysfunction. While this phenomenon is particularly
evident in pVAT, it has also been well defined in other VAT depots26,29

in obesity.8 Adipocyte–immune cell interactions are therefore bi-
directional and depend on nutritional mechanisms, neuro-hormonal
pathways, and locally secreted humoural factors.8,26,29 In pathological
conditions, adipocytes produce inflammatory cytokines and extracellular
matrix proteins, supporting infiltration and activation of immune cells,
therefore, creating an optimal microenvironment for inflammation.5 At
the same time, activated immune cells secrete cytokines that influence
adipocyte function, and differentiation and adipokine secretion. Links
between adipokines and immune cell infiltration in the AT have been dis-
cussed elsewhere and are summarized in Table 1. The characteristics of
AT inflammatory responses differ between classical inflammatory dis-
ease such as Crohn’s disease and cancer or cardiovascular disease.
Common feature is, however, that dysfunctional, inflamed AT provides a
microenvironment permissive for the development of pathology. These
effects can be localized, for example linking pVAT to adjacent vessel

dysfunction in hypertension or atherosclerosis38,39 or systemic, such as
the effects of VAT dysfunction on the development of diabetes, cancer,
autoimmune diseases, or signalling within the CNS.

Immune cells in AT dysfunction

Immune cells that infiltrate dysfunctional AT are the key drivers of AT
inflammation (Figure 2 and Table 2). The cellular players of such
responses differ depending on the anatomical location as well as on the
type and the stage of pathology.77,78

Macrophages were the first immune cells identified in AT.79 They are
also the most abundant cell type in typical visceral and subcutaneous AT,
representing more than 50% of all leukocytes. Their content in SAT is sev-
eral folds lower than in typical VAT in both health and disease, suggesting
their metabolic role. Resident AT macrophages (ATMs) play immune and
scavenger functions. They present antigens to lymphocytes, phagocytose
foreign organisms, release antimicrobial peptides, and attract other
immune cells to areas of inflammation.10,80 In lean animals and humans,
ATMs characterized by the surface markers F4/80 or CD68 constitute
less than 5% of all AT cells. A dramatic increase (up to 40% of all AT cells)
is observed in metabolic stress.10,81 Such an increase is also associated
with qualitative changes of ATMs. In lean AT, M2-like producing IL-10
macrophages are dispersed, while in dysfunctional AT, M1 macrophages
predominate and form crown-like aggregates, surrounding necrotic adipo-
cytes/lipid droplets.13,20,82 In pathological conditions, these classically acti-
vated, M1 polarized, CD11cþmacrophages increases,83 produce pro-
inflammatory TNF-a and IL-6 and IL1b.13,84 Such simple dichotomous divi-
sion of ATMs into protective M2 and damaging M1 cells appears to be an
oversimplification, especially when it concerns human pathology. Several
studies point to the role of M2 cells in dysfunctional AT and insulin resist-
ance82 or vascular remodelling and fibrosis45 indicating the need for further
phenotypic characterization of ATM that may include Ly6C, CD34, CCR2,
and CX3CR1.85 Macrophages also promote further propagation of AT
inflammation through numerous humoural and cellular mechanisms includ-
ing release of metalloproteinases such as ADAMTS13 and others.77,86–89

Discussion continues what proportion of these cells is chemotactically
recruited and what proportion is proliferating from resident ATMs.90,91

Other types of innate immune cells in VAT and pVAT include neutro-
phils, representing about 2% of visceral stromal, non-adipocyte, cell frac-
tion. In contrast to resident macrophages and dendritic cells (DCs), their
presence may be transient,75 but they may still contribute to insulin
resistance76 (Table 2). Especially, in lean conditions, AT harbours eosino-
phils and mast cells, cells that are typically involved in allergic reactions.
Eosinophils secrete IL-4 and IL-13 and contribute to the anti-
inflammatory, insulin-sensitive AT phenotype that supports the expan-
sion of M2 ATMs.73 Their content in pathology is decreased. Mast cells in
turn increase in dysfunctional AT and have been linked to atherosclerosis
and metabolic dysfunction92 by promoting monocyte recruitment.93–95

While the role of macrophages in AT dysfunction is predominantly
linked to their innate functions, these cells also serve as antigen-present-
ing cells leading to the activation of the adaptive immune system in AT.
This is particularly evident in pVAT, where tertiary lymphoid structures
have been identified.96,97 Dendritic cells, which are the most efficient
antigen presenting cells, have also been identified both in typical VAT98

and in pVAT.8,38,39 Thus, dysfunctional AT, creates a microenvironment
permissive for T and B lymphocyte activation,98 and lymphocytes consti-
tute the second most abundant immune cell population in VAT.99 In
some diseases, their content in the AT exceeds the number of

Immune cells and dysfunctional adipose tissue 1011
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macrophages38,39 allowing for the propagation of inflammation.100,101 T
cells that expand in pathology and promote development of insulin
resistance, atherosclerosis, and hypertension include predominantly
IFN-c-producing Th1 (CD4þ) and Tc1 (CD8þ) cells, producing IFNc
and TNF, and IL-17 producing Th17 cells (Figures 1 and 3). These cells ini-
tiate an inflammatory cascade that may precede ATM infiltration.46

Another subset of T cells, key to AT dysfunction, include invariant natu-
ral killer T (iNKT) cells (Table 2). These lymphocytes express a semi-
invariant TCR and proteins typical of NK cells but recognize lipid and gly-
colipids presented in the context of CD1d MHC-like molecule.102 They
can produce both Th2- and Th1-type cytokines.103 In healthy human
omentum, up to 10% of T cells are iNKT cells and their number is
reduced in patients with obesity and cancer.104 Their exact role is not
fully recognized but link to immune activation by lipids makes them a
critical candidates for important immuno-metabolic cells.105 Recently,
gamma-delta (c/d TcR) T cells have been demonstrated to represent
substantial proportion of T cells in the AT and their number increases in
metabolic and vascular pathologies.61–63, 106 Importantly, these cells are
an important source of strongly pro-inflammatory Il-17 and may further

regulate immune responses. T cell presence and activation in dysfunc-
tional AT is also closely linked to inflammasome activation.107 Nlrp3 in
regulates IL-18 and IFN-c in the AT and promotes effector T cell accu-
mulation in AT.107 Finally, there is a small number of B cells in the VAT of
lean animals, where they provide immunity against infections, including
bacteria from peritoneal space.108 B-cell content increases in dysfunc-
tional AT, where they promote activation of other immune cells and
may affect metabolic status (Table 2).

The mechanisms of immune cell recruitment and the metabolic and
functional consequences of their presence in AT vary in different patho-
logical conditions which are briefly summarized below.

Immune cells in the ATand
metabolic diseases

Obesity

Increased adipocyte size triggers a stress response and release of che-
moattractant proteins, such as MCP-1, M-CSF-1, or RANTES,109 leading

..............................................................................................................................................................................................................................

Table 1 Summary of the effects of adipokines on immune responses. Expertly reviewed and discussed elsewhere.30,31–37

Adipokine Immune cell recruitment Immune cell activation Summary

Leptin " CCL3, CCL4 and CCL5 from Mf

Directly stimulates Mo/Mf chemotaxis through

canonical pathways

Similar to IL-2

" IL-6/TNF in Mo/Mf

" T cell activation (CD69þ/CD25þ) and

proliferation

" Th1 (IL-2/IFNg)

" Th17 and #Treg

# Th2 (IL-4)

# NK cell cytotoxicity

Pro-inflammatory

Adiponectin # Eo chemotaxis

# ICAM-1 in EC

# CXC chemokine ligands (e.g. IP-10) and T cell

recruitment

# IL-17 production from c/d T cells

" IL-8 in synovial fibroblasts

# Antitumour DC immunity

Mf activation resembling M1 (but with M2 elements;

"mannose receptor)

" CD4 T cell activation

Anti – inflammatory

via AdipoR1 receptor;

In some conditions

pro-inflammatory34

Resistin "MIP-1b, GRO-a and CCL1 in Mf

"CX3CL1 and CX3CR1

direct chemotaxis of human CD4þ

Expressed in Mf and T cells

Induced by IL-1/IL-6/TNF

" IL-6, IL-27, IL-23 and IL-5 in Mf

(") Th17 and Th1

Pro-inflammatory

Visfatin

(PBEF-1)

"ICAM-1; VCAM-1 on EC and VSMC " B-cell maturation

" Leukocyte activation

" TNF/IL-6/IL-1b

" NFkB

Pro-inflammatory

Chemerin

(RARRES2 or TIG2)

Direct chemotaxis through CMKLR1; chemR23

especially on DCs; NK; Mf

#TNF/IL-6/

" NFkB

" Adiponectin

" TGFb

Pro-inflammatory and

anti-inflammatory

RBP4 ? Activates APCs in AT inflammation and T cell

activation

Inhibited by TNF

Pro-inflammatory?

Eo, eosinophil; Mf, macrophage, Mo, monocyte, NK, natural killler cells; EC, endothelial cells; Th, T helper; CD, cluster of differentiation; IL, interleukin; TNF, tumour necrosis factor
alpha; CCL, CC chemokine ligand; CXCL1, fraktalkine; PBEF-1, pre-B-cell colony-enhancing factor – visfatin; TIG2, tazarotene-induced gene 2; RARRES2, retinoic acid receptor res-
ponder protein 2; CMKLR1, chemokine like receptor 1.
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..to monocyte recruitment and macrophage accumulation.10,11,110 As dis-
cussed above, Adipokines also induce chemokine expression and have
key chemotactic properties themselves (Table 1).109 There is a correla-
tion between the accumulation of AT macrophages and adipocyte size.10

Local lipid fluxes are also regulators of ATM recruitment.111 High levels
of free fatty acids (FFA) elevate chemokine secretion from adipocytes
inducing macrophage chemotaxis to VAT. FFAs activate TLR4 signalling
in adipose cells. In TLR4 knockout mice, AT inflammation is prevented,
and these animals are protected against obesity-induced insulin
resistance.112 Finally, hypoxia and oxidative stress in the VAT is charac-
teristic for obesity and can promote chronic inflammation through meta-
bolic and classical chemokine-dependent mechanisms.113,114 Apart from
chemotaxis, increased macrophage proliferation115,116 and differentia-
tion from preadipocytes can enhance the content of macrophages.117

Obesity and insulin resistance are characterized by the predominance of
M1 macrophages in the VAT.13,84 Mechanisms of M1 macrophage polar-
ization in obesity are not entirely clear. Non-esterified fatty acids
(NEFA) are produced in AT and increased systemically in obese subjects.
NEFA induce the expression of IL-6, while reducing IL-10 (Figure 2).118 In
contrast, PPARc skews macrophages toward an alternative M2 pheno-
type by regulating fatty acid storage and, in doing so, reduces obesity and
improves insulin resistance (Figure 2).119

While the metabolic state plays a role in macrophage recruitment and
polarization, ATMs in turn have important effects on AT metabolism
(Figure 2).3 Depletion of macrophages in AT increases the expression of
adipose triglyceride lipase (ATGL) and genes regulated by FFAs.
Blockade of monocyte recruitment to VAT genetically or pharmacologi-
cally, through CCR2 antagonism protects from diet-induced obesity,
improves insulin sensitivity, and lowers AT genes expression related to
inflammation and AT dysfunction.81,84,120 Similarly, selective depletion of
M1 macrophages decreases pro-inflammatory genes expression and
reduction in crown-like structures in obese AT, and consequently
improves insulin sensitivity.121 Weight loss decreases macrophage con-
tent leading to improved insulin sensitivity.111 Both fasting and bariatric
surgery111,122 decrease MCP-1, CSF-3, and genes related to hypoxia
(HIF1-a) in AT and consequently reduce the number of ATM cells.122

While macrophages are quantitatively the most abundant immune
cells in obesity, T cells also play a critical regulatory role.99 They increase
significantly in the AT in obesity and tend to localize around enlarged
adipocytes.123 T cells can interact with ATMs regulating inflammatory
responses and metabolic dysfunction.124 Of importance are the cyto-
toxic CD8þT cells that secrete TNF-a, IL-2, IFN-c, and chemokine
RANTES and CD4þTh1 cells that secrete TNF-a, IL-12, and INF-c.
These cytokines directly affect adipocyte function and promote M1

Figure 2 Interactions between adipocytes and immune cells at different stages of metabolic and cardiovascular disease. Interactions involve important
immunometabolic regulation.
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macrophage polarization.125 T cell recruitment in obesity is partially
mediated by the RANTES–CCR5 axis.99,123 T cell infiltration of AT may
precede macrophage-dependent inflammation as it is present after 4–
5 weeks of high-fat feeding while macrophage influx was observed after
10 weeks.126 AT T cells infiltration is strongly associated with early
reduction of insulin sensitivity and impaired glucose tolerance.126 In line
with this, CD8-/- mice are protected from M1 macrophage AT infiltration

and subsequent AT dysfunction in obesity.46 Indeed, T cell cytokines are
essential for macrophage polarization in the setting of classical inflamma-
tion.127 A specific subset of pro-inflammatory T cells (CD153þ PD-
1þCD44hiCD4þ) are remarkably increased in the VAT of HFD-fed
mice. These osteopontin-producing CD4þT cells show functional and
genetic features of senescent T cells.128,129 T cells in obese AT are regu-
lated by NLRP3 inflammasome, which senses obesity-associated danger

..............................................................................................................................................................................................................................

Table 2 Key cell types infiltrating adipose tissue in health and disease – selected metabolic and cardiovascular (CV) effects.
See Table 1 legend for abbreviations

Cell type Preferential localisation Metabolic effects Role in CV pathology

• Macrophages
• Antigen

Presenting

Cells (DCs)

• VAT>pVAT38

• VAT>SAT40

• Insulin resistance (M1)
• Higher AT ROS production41

• Increased lactate production41

• Regulate differentiation of adipo-

cytes via GM-CSF signalling42

• ATMs can inhibit adipogenesis43

• Polarising M1 phenotype in atherosclero-

sis and hypertension
• Role in hypoxia
• Promote vascular Th17 response44

• M2 Mf in vascular fibrosis45

T cells CD8þ VAT>SAT40 • Insulin resistance46

• Cause steatohepatitis47

• Regulate glucose tolerance via

perforin48

• initiate inflammatory cascades46

• role in macrophages differentiation, acti-

vation and migration46

• impair vascular function39

Th1 VAT>SAT49,50 � Promote insulin resistance48 � impair vascular function39Promote

atherosclerosis51,52

Th17 • Epi.AT>Ing.AT53

• VAT>SAT

• Associated with cholesterol

level54

• Promote insulin resistance53

• Promote diabetes and autoim-

mune responses
• enhance obesity55;
• Suppress adipocyte

differentiation53

• Hypoxia54

• Increased inflammation54

• IL17 increases ICAM154

• Contributes in foam cells formation54

• Increased atherosclerosis56,57

Th2 VAT>SAT49,50 • Improve glucose tolerance via IL-

13/STAT3 and M2 induction
• Enhance beiging24

� Improve vascular function; Increase or

decrease atherosclerosis58–60

c/d T cells VAT>SAT53 Promote insulin resistance61 � Induce vascular dysfunction and hyperten-

sion62role in atherosclerosis unclear63

Tregs VAT>SAT40,64 • Insulin sensitivity65

• Improve glucose tolerance65

• Decrease vascular inflammation65

• Prevent atherosclerosis52,66,67

B cells pVAT>VAT7VAT>SAT40 • Glucose intolerance mediated by

IgG68

• Higher fasting insulin level68

• Higher production of IgG68

• Activate vascular CD8þ and Th1 cells68

• promote atherosclerosis52

NK cells VAT>SAT69Epi.AT>Ing.AT70 � Insulin resistance69 • Differentiation to M1 macrophages69

• INF-c production69

• Impair vascular function71

NKT cells Epi.AT>Ing.AT70 • Insulin resistance72

• Hepatic steatosis47,72

� Contribute to vascular production of IFN-

c, IL-4, and TNF-a72

Eosinophils VAT>SAT73 • Insulin sensitivity73

• Reduce body weight24

• Increase beiging24

• IL-4 and IL-13 release perivascularly (Th2)
• Polarization of M2 macrophages73—pos-

sibly profibrotic
• In pVAT—anti contractile; improve vas-

cular function74

Neutrophils VAT>SAT75 • Insulin resistance76

• Decreased adiposity76

• Increase of vascular M1 macrophages76

• Decrease of vascular M2 macrophages76
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signals and contributes to obesity-induced inflammation and insulin
resistance.107,130 These mechanisms also link macrophage activation to
T cell role in obesity.

Other immune cells are also increased in AT in obesity. B cell AT infil-
tration is associated with increased IgG production in the AT.
Concentrations of pro-inflammatory IgG2c in serum and VAT are ele-
vated in obese mice. Most importantly, B cells from obese mice trans-
ferred into B cell-deficient lean mice induce insulin resistance.68 Apart
from antibody-mediated mechanisms, B cells from obese mice secrete
pro-inflammatory cytokines (IL-6 and INF-c) and can directly regulate
T cells and macrophages.131

Eosinophils also play an important role in the immune regulation of
obesity. Mice lacking eosinophils exhibit weight gain, insulin resistance, and
increased proinflammatory M1 macrophages in the AT.73 At the same
time, mice with eosinophilia (overexpressing IL-5) demonstrate decreased
adiposity and improved insulin sensitivity when fed a high-fat diet.73 IL-5
can be produced by AT itself but importantly by innate lymphoid type 2
cells (ILC2s). Deletion of ILC2s causes significant reductions in VAT eosi-
nophils and alternatively activated macrophages M2. Interleukin 33, which
promotes activation and recruitment of the ILC2s, leads to ILC2-
dependent increases in VAT eosinophils and M2 macrophages.132 Finally,

the role of iNKT cells in obesity is not clear. While they are activated by
lipid, iNKT cell number is decreased in obesity104 and their depletion
increases fat deposition, enhances the presence of M1 macrophages in
VAT, and increases insulin resistance and glucose intolerance. Adoptive
transfer of iNKT cells into obese mice causes weight loss, improvement of
glucose tolerance, and insulin sensitivity.133

A link between vascular oxidative stress and obesity in the context of
insulin resistance was recently reported in mice with vascular smooth
muscle-targeted deletion of p22phox subunit of NADPH oxidase.134

High-fat feeding did not induce weight gain or leptin resistance in these
mice which was associated with strongly reduced T-cell infiltration of
pVAT. This is important as indicates causal immunometabolic linking vas-
cular dysfunction to obesity suggesting that vascular inflammation may
be primary in the development of obesity and insulin resistance.134,135

Such wide-spread participation of various immune cells in metabolic reg-
ulation demonstrates the complexity of the immune system and AT
inflammation in obesity.

Diabetes and insulin resistance

Immune cell infiltration into AT provides an important link among
obesity, insulin resistance, and diabetes. The number of macrophages

Figure 3 Perivascular AT inflammation as a mechanism of endothelial dysfunction.
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infiltrating AT in obese patients with insulin resistance is higher than in
patients with insulin-sensitive obesity, independent of the fat mass.11

Insulin levels affect AT inflammation during high-fat diet.11 Progressive
macrophage infiltration in VAT preceded increase of insulin in serum,
suggesting that AT inflammation is a cause rather than the consequence
of insulin resistance.11 Increasing evidence supports the role of adaptive
immunity in insulin resistance and diabetes, through inducing pro-
inflammatory cytokines in metabolic organs, such as the AT, liver,
muscle, and pancreas.136 CCR5 knockout mice are protected from insu-
lin resistance induced by high-fat diet and this effect is mediated by
reduced effector T cell accumulation with subsequent reduction of
ATMs and M2 polarization of persisting macrophages.137 Clinical studies
confirmed that Th1 cells are up-regulated in the AT and peripheral blood
from patients with prediabetes or T2DM.138 Moreover, high fat diet and
insulin resistance are associated with accumulation of Th1, Th17, and
effector CD8þ lymphocytes in the AT, while anti-inflammatory Th2 and
Treg cells are decreased.125 Combined anti-CD3 and glucosylceramide
treatment induces IL-10 and TGF-b, reducing VAT inflammation in
obese mice, and improving fasting glucose levels.101

Immune cell activation, involving the co-stimulatory molecule CD40
and its ligand CD40L, is particularly important in linking AT inflammation
to diabetes.139 CD40–CD40L interactions promote pancreatic, AT, and
vascular inflammation (Figure 3),140,141 increasing the expression of pro-
inflammatory cytokines and chemokines (e.g. TNF-a, IL-6, MCP-1), leu-
kotriene B4 at the same time enhancing lipid droplet accumulation and
adipogenesis.142–144 These effects are mediated by reduced expression
of insulin receptor substrate (IRS-1) and glucose transporter type-4
(GLUT-4).140,143 CD40L expressed on T cells may induce AT inflamma-
tion and impair insulin sensitivity (Figure 2).140

AT immune cells in vascular
disease—hypertension and
atherosclerosis

Hypertension

Hypertension represents an important example of immuno-metabolic
vascular disease.145–147 It is associated with obesity and BMI is one of the
strongest predictors of increased blood pressure. Many hypertensive
subjects are not obese, but present features of metabolic dysregulation.
In hypertension with or without obesity, pVAT inflammation is a promi-
nent feature, and is involved in the pathogenesis of vascular dys-
function.39 This leads to the loss of protective properties of pVAT and
promotes loss of endothelium-dependent vasodilatation and enhanced
vasoconstriction.8 These functional changes are linked with morphologi-
cal alterations, as pVAT becomes synthetic, pro-inflammatory, often de-
differentiated, and highly metabolically active (Figure 3). This profile is
characterized by changes in adipokines (increased resistin and visfatin
and decreased adiponectin and leptin) and increased production of che-
mokines such as RANTES or IP-10 (CXCL10) that are key for recruit-
ment of activated monocytes/macrophages and CD8þT cells. Apart
from AT-specific factors activating immune system in the pVAT, central
nervous system is also involved,148 which is important in the context of
high perivascular sympathetic innervation and its role in hypertension.149

In health, the immune cell infiltrate in the pVAT constitutes only about
2% of the stromal vascular fraction (SVF) cells.38,39 In vascular patholo-
gies, such as Ang II-induced hypertension, leukocytes in pVAT increase
to 7–10% of SVF cells, and, in atherosclerosis, their content reaches up

to 10–20%. Hypertension is linked with a significant increase of T cell
and antigen presenting cell pVAT infiltration, which mediates endothelial
dysfunction150 and provides a link between hypertension and subse-
quent atherosclerosis. Dysfunctional endothelium promotes inflamma-
tion through a number of NFkB dependent, Notch/Jagged1-regulated
integrin, and adhesion molecule expression.151,152 Both CD4þ and
CD8þT cell subpopulations are increased in the pVAT in hypertension
and express higher levels of proinflammatory cytokines (TNF-a, INF-c)
and CCR5.39,153,154 T cell activation and vascular and renal recruitment
is essential for the development of AngII-induced hypertension.153 This
is partially mediated by RANTES, similar to obesity and insulin resistance,
through which Th1, Tc1, and gamma-delta (c/d) T cells, lymphocytes are
recruited to the vascular wall.39 Th17 cells, essential for blood pressure
increase, are in turn recruited in a RANTES-independent CCR6,
-dependent manner.62 Th17 cells not only participate in blood pressure
increase155 but also contribute to vascular stiffening observed in hyper-
tension.156 In contrast, adoptive transfer of suppressive, Tregs prevent
AngII-induced hypertension and vascular inflammation and improves vas-
cular function.157,158 B cells in pVAT are almost equal in percentage of
SVF cells to T cells and their number is increased during hypertension.39

They may act as antigen-presenting cells, modulating T cell responses,
and produce IgG2b and IgG3. Depletion of B cells protects from hyper-
tension.159 Finally, macrophage infiltration is also significantly increased in
hypertensive pVAT.39 Elevated blood pressure is correlated with pVAT
expression of macrophage chemokine receptors CCR2 and its ligands
CCL2, CCL7, CCL8, and CCL12. Moreover, the CCR2 antagonist
INCB3344,7–9 reduces CCR2 expression and reverses macrophage
accumulation in pVAT of mice with hypertension.160 Macrophages in
pVAT in healthy conditions appear to be predominantly unpolarised or
skewed towards M2.38,39 However, when blood pressure is elevated,
the level of both M1 and M2 subpopulations is increased.39 Macrophage
infiltration to the pVAT during hypertension is regulated by T cell-
dependent mechanisms39 as lymphocyte adaptor protein (LNK) defi-
ciency, leading to hyperactivated T cells increased number of macro-
phages in the aorta and pVAT.161

Classical antigen-presenting cells such as DCs are regulators of adap-
tive immune response may play an important role in initiation of inflam-
mation by interactions with T cells. They occur in small numbers in
pVAT in the healthy state and their number increases during hyper-
tension.39 Elevated oxidative stress leads to endogenous peptide modifi-
cation by isoketal (isolevuglandin) adduct formation. This occurs in AT,
vessels, and kidneys and promotes antigen presentation by dendritic cells
precipitating the role of the T cells in hypertension and further develop-
ment of pVAT inflammation.162 Blocking the co-stimulation molecules
between T cells and dendritic cells prevents pVAT inflammation and
decreases blood pressure.163 Moreover, DCs secrete cytokines such as
IL-1b, IL-6, IL-23 which promote polarization of T lymphocytes to Th17
cells, which plays particular role in hypertension development.155 Thus,
hypertension and associated vascular dysfunction result from complex
interactions between several cell types involved in inflammatory
responses in hypertension. All types of cells discussed above coexist
together in pVAT and they can interact with each other initiating inflam-
mation and causing development of vascular dysfunction and disease.8

The effector mechanisms linking infiltrating immune cells to AT dys-
function in hypertension are related to the release of effector cytokines
such as IL-17A, IFNc, TNF-a, and IL-6.20,164 These cytokines also impair
endothelium-dependent relaxation as demonstrated in ex vivo studies,39

as well as in vivo using INF-c knockout mice.71,165 IL-6 is also necessary
for Th17 cell differentiation.166 IL-17, a key pro-hypertensive cytokine, is
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a potent activator of the endothelial cells promoting the expression of
adhesion molecules.167 IL-17A activates RhoA/Rho-kinase and increases
inhibitory eNOS Thr495 phosphorylation in endothelial cells leading to
decreased NO production.168 Inflammatory cytokines modulate smooth
muscle cell constriction, proliferation, and migration.169 They also affect
adipokines release from AT. For example, TNFa, IL-6, and IL-17A can all
inhibit expression and release of adiponectin.170–172 One of the key adi-
pokines, leptin, has a structure similar to IL-6, IL-12, IL-15 and can affect
leukocyte activation and chemotaxis, release of oxygen radicals, VSMC
proliferation, and expression of adhesion molecules on endothelial and
vascular smooth muscle cells.173 IL-17A and TNF increase leptin and
resistin production in AT which upregulate the expression of VCAM1
and ICAM and/or induction of CCL2 as well as endothelin-1 from endo-
thelial cells174 and can induce vascular dysfunction and oxidative
stress.8,135 All these mechanisms, besides promoting pVAT dysfunction,
provide a link between hypertension and atherosclerosis, in part inde-
pendently of blood pressure.

Atherosclerosis

PVAT is dysfunctional at all stages of atherogenesis. Increased levels of
chemerin, visfatin, leptin, and vaspin are correlated with atherosclerosis
development.175 At early stages of atherosclerosis macrophages, T cells
and dendritic cells are recruited into perivascular adventita and AT
surrounding vasculature.38 This precedes development of endothelial
dysfunction176 and oxidative stress110,177 and can be modified by inter-
ventions targeting numerous metabolic functions such as Ang(1-7).38,178

Such perivascular inflammation of AT continues to be observed at later
stages of the disease, with further increase of macrophage and B cell con-
tent.179,180 In a pivotal early study, Galkina et al. observed high leukocytes
number in aorta with pVAT in old ApoE-/- mice in advanced athe-
rosclerosis.179,180 Perivascular inflammation, in particular T cell depend-
ent, correlates with lesion size and is clearly age dependent,180,181 and T
cell depletion prevents atherosclerosis.182 Leukocyte infiltration to pVAT
in atherosclerosis is mediated by similar mechanisms to those observed
in hypertension. IL-8, RANTES, and MCP-1 are all increased in the pVAT
from arteries with atherosclerotic plaques.183 We have recently
described a key role of increase in M1 macrophage polarization in early
atherosclerosis in the pVAT and measures to reduce pVAT M1 macro-
phage differentiation prevent plaque formation.38 Pro-inflammatory IL-
17A-producing T cells are present in the adventitia and blockade of IL-
17A leads to reduction of macrophage accumulation and athe-
rosclerosis.184 At early stages, leukocytes are scattered throughout the
PVAT,179,180 however, with age they seem to organize to form perivascu-
lar arterial tertiary lymphoid organs (ATLO),96,97 which can serve also
suppressive functions or become dysfunctional. Molecular mechanisms of
pVAT inflammation in atherosclerosis indicate several key targets linking
immune responses to metabolic dysfunction. Signal transducer and activa-
tor transcription 4 (STAT4) is expressed in adipocytes and immune cells
and can participate in PVAT inflammation. STAT4 deficiency reduces
development of atherosclerosis and PVAT inflammation in ApoE-/- mouse
and in insulin resistant obese Zucker rats.185 Interestingly, the number of
CD8þT cells is increased in pVAT of Apoe-/-mice indicating that in met-
abolic disease, hypertension, and atherosclerosis CD8 cells play a particu-
larly important regulatory role. Recently, an important regulatory
function has been attributed to myeloid-derived suppressor cells that can
affect AT inflammation.186 Finally, the role of B cells has recently been
clarified in atherosclerosis. B cells may serve as an important source of
antibodies which promote plaque inflammation and development but can
also contribute to antigen presentation and are important source of

humoural factors such as TNF.187 The complexity of immunity of athero-
sclerosis is reviewed elshewhere.182,188

AT immune cells in immune and
inflammatory disorders

Autoimmune and inflammatory diseases are typically associated with
metabolic dysregulation.189 This is particularly evident in psoriasis, anky-
losing spondylitis and rheumatoid arthritis and is linked with develop-
ment of metabolic syndrome. Psoriasis is associated with significant
perivascular, global arterial, and SAT inflammation.190 Similarly, AT in
rheumatoid arthritis is highly infiltrated with macrophages which form
crown-like structures. These macrophages are activated and express
mixed characteristics with high levels of TNF, IL-1beta, but also IL-10.191

These macrophages secrete chemokines (CCL2 and RANTES) as well
as IL-6, IL-8, MMP-3.191 These factors further promote macrophage infil-
tration and can mediate T cell recruitment and activation. T regulatory
cells resident in AT may serve an important role in maintaining self-
tolerance, and their impairment may promote development of auto-
immunity.192 This mechanism may link epidemiological suggestions of
links between obesity and autoimmune diseases.192 A key unanswered
question is whether adipose tissue in autoimmune disease can create a
microenviroment for T cell activation and participate in the pathogenesis
of autoimmune disease, or if it is a mere manifestation of systemic
inflammation.

Ectopic fat depots and chronic
inflammation

Ectopic AT is the visceral fat surrounding intraabdominal organs and
located in the liver, heart, pancreas, and muscles. Its presence is linked to
low-grade inflammation and cardio-metabolic complications commonly
experienced in type 2 diabetes.9 In particular, non-alcoholic fatty liver
disease constitutes an important risk determinant for cardiometabolic
risk. Myocardial triglyceride, epicardial, and pericardial fat depots accu-
mulate with increasing amount of liver fat and VAT.193 Thus, the associa-
tion of LV diastolic function with hepatic ectopic fat may be an indicator
of systemic inflammation. Ectopic fat accumulation in the liver is linked to
the infiltration of the c/dþT cells, granulocytes, and CD11bþ cells in
mice. It appears that IL-6 regulates recruitment of these cells and IL-17
production in the liver that promotes ectopic fat.194 This is in part regu-
lated by decreased microRNAs (miR) such as miR26a, providing a link to
cardiac injury.195 Similar regulatory properties have been attributed to
other miRs expressed in the AT and cardiovascular system.49, 196–199

The inflammatory nature of epicardial AT has been known for years,200

and is supported by numerous molecular mechanisms.196 Only recently,
however, have we started appreciating the heterogeneity of epicardial
AT which is particularly linked to its pro-inflammatory properties.30,201 It
may also underlie a link between subclinical atherosclerosis and epicar-
dial fat thickness and hepatic steatosis.202 Thus, ectopic fat accumulation
in and around the heart, kidneys, muscles, and liver is a marker of
increased cardiovascular risk likely linked to chronic inflammation. At the
same time, through the release of adipokines and chemokines, it attracts
pro-inflammatory cells like IL-17 producing c/dþ T cells, which contrib-
ute to the pathology.

Immune cells and dysfunctional adipose tissue 1017
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Translational evidence

While most of data regarding immune cell infiltration of AT originate
from animal models, the role of immune cells has been clearly dem-
onstrated in humans. Similar to animal models, macrophages consti-
tute about 4% of the total AT stromal visceral fraction and it
increases up to 15% in obesity.203 There are, however, some key dif-
ferences in the characteristics of immune cells infiltrating human AT.
In contrast to animal studies, an ‘M2-type’ macrophage with remodel-
ling capacity (e.g. through TGF-b and IL-10 release), but also able to
secrete proinflammatory cytokines, has been identified in obese AT in
humans.204 These mixed-type macrophages have CD11cþCD206þ

characteristics but are pro-inflammatory and linked with insulin resist-
ance in human obesity.82 T cell infiltration in human AT is much less
characterized.99 AT T cells correlate with BMI, their recruitment is
dependent on RANTES chemokine and functionally affects adipocyte
and pre-adipocyte differentiation and function.99 Detailed characteris-
tics, activation mechanisms, and effector functions of effector T cells
present in human AT are still poorly defined. Adipokines have been
shown to regulate human immune cell activation, for example inhibit
IL-17 production from T cells and CD8þ effector cell accumulation
(summarized in Table 2).

Interestingly, several studies have recently shown that vascular dys-
function, may regulate AT dysfunction, with immune cell infiltration as a
key intermediate step. For example, p22phox overexpression in VSMCs
leads to increased diet induced obesity that is mediated by AT T cell
infiltration.134 The same has been shown in humans where oxidative
stress derivated such as 5-HNE regulate adiponectin release from
AT.50,205,206 Significant weight loss, in obese individuals, demonstrates
clear links to reduced immune cell infiltration in the AT with concomi-
tant improvement of insulin sensitivity and vascular function.122 Several
clinical studies using immune targeted therapies in patients with type 2
diabetes confirmed experimental suggestions of the causal role of inflam-
mation in insulin resistance and hyperglycaemia. Indeed, in patients
with type 2 diabetes treated with IL-1 receptor blocker (Anakinra),207

IL-1b antagonist (gevokizumab,208 canakinumab,209 LY2189102210), TNF
antagonist (CDP571,211 Ro 45-2081,212 etanercept213) or IKKb-NF-jB
inhibitor214 all have been shown to improve metabolic profile providing
an important translational evidence.

Conclusions

Over the years, it has become apparent that vascular and metabolic dys-
function occur in a wide range of vascular pathologies and are closely
regulated by coincident immune dysregulation. Immune cells infiltrating
AT both sense and can induce metabolic disturbances, contributing to a
vicious circle of AT dysfunction. Immune infiltration of AT is critical in
T2D, obesity or insulin resistance it is also a primary feature of hyperten-
sion or atherosclerosis, making immuno-metabolic interventions a valua-
ble therapeutic approach in a wide range of cardiovascular pathologies.
While in animal models of metabolic disease, we have now identified the
key immune cell subpopulations and their immunometabolic profiles,
relatively little is known about human AT infiltration. One challenge is to
identify specific immune cell populations within human AT that could be
targeted and differences in their characteristics depending on anatomical
location. Finally, we need to understand dynamic changes of the role of
immune cells at different time points of metabolic and vascular
pathology.

While specific therapeutic interventions limiting AT inflammation may
be designed based on this,215,216 we already know that commonly used
agents, including methotrexate, anti-TNF therapies and leflunomide limit
macrophage infiltration in AT.217 Similarly, several vasoactive therapies
such as ACE-inhibitors or angiotensin II receptor blockers have potential
to limit inflammation in pVAT. While these approaches lead to systemic
immunosuppression, more specific small molecule immune targeted
therapies might prove helpful to improve the metabolic profile of AT
and prevent AT dysfunction.
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