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Fatsia Japonica seed, which is mainly composed of glucose, has potential as a porous

carbon matrix precursor for supercapacitors that can achieve high-value utilization.

Cost-effective hierarchical porous carbon materials (HPC) were prepared from Fatsia

Japonica by annealing at high temperature. The pore size and distribution of the HPC

can be precisely controlled and adjusted by altering the activation temperature. The

HPC obtained at 600◦C showed favorable features for electrochemical energy storage,

with a surface area of 870.3 m2/g. The HPC for supercapacitors (a three-electrode

system) exhibited good specific capacitance of 140 F/g at a current density of 1 A/g

and a long cycling life stability (87.5% remained after 10,000 cycles). In addition, the

HPC electrode showed an excellent energy density of 23 Wh/Kg. Such hierarchical

porous biomass-derived carbon would be a good candidate for application in the

electrodes of supercapacitors due to its simple preparation process and the outstanding

electrochemical performance.

Keywords: supercapacitors, hierarchical porous carbon, biomass materials, energy density, long cycle life

INTRODUCTION

With the development of modern social science and technology and the increasing energy
demand for power, a new generation of energy devices with advanced, low cost, and
sustainable sources have attracted great attention from industry, including supercapacitors
(SCs), Li-ion batteries (LIBs), and fuel cells (Shao et al., 2018; Ma et al., 2019; Lei et al.,
accepted). SCs have been considered as one of the most promising energy storage devices
in the last decade for applications in portable electronic devices, vehicles, etc. (Han et al.,
2019d; Wang et al., 2019). Due to their high energy density, long cycle life, and fast
discharge/charge characteristics, SCs bridge the gap between conventional electrolytic capacitors
and LIBs. Based on their energy storage mechanism, supercapacitors can be divided into two
categories: electric double-layer capacitors (EDLC) and pseudo-capacitors (Choi et al., 2019;
Zhao et al., 2019b). However, the key to the electrochemical performance of SCs lies in the
choice and design of electrode materials. Recently, porous carbonaceous materials have been

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.00089
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.00089&domain=pdf&date_stamp=2020-02-20
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mei@njfu.edu.cn
mailto:shaohua.jiang@njfu.edu.cn
https://doi.org/10.3389/fchem.2020.00089
https://www.frontiersin.org/articles/10.3389/fchem.2020.00089/full
http://loop.frontiersin.org/people/870147/overview


Li et al. Biomass-Derived Carbon for Supercapacitors

widely commercialized as active materials for SCs on the
basis of their controllable porosity, high specific surface area,
and electrochemical stability, but the dramatic drawback of
commercial EDLC is a relatively low energy density in the range
of 5–10 Wh/Kg (Borenstein et al., 2017; Zhao et al., 2019a; Wang
et al., 2020).

Over the years, much effort has been applied toward
improving the energy density of carbonaceous materials, such
as facilitating a controllable hierarchical porous structure and
designing the nanostructure to improve specific surface area and
ion transport (Li andWei, 2013; Benzigar et al., 2018) and doping
heteroatoms (N, S, P, etc.) to introduce active reaction sites (Chen
et al., 2019; Yan et al., 2019). The most fascinating work is the
heteroatom-doping through template method, which can form
structural defects on the surface of carbon material to increase
conductivity and improve wettability (Huijuan et al., 2017; Li
et al., 2017). Na et al. (2017) fabricated nitrogen and fluorine-
doped mesoporous carbon nanofibers (NFMCNFs) by the
hydrothermal method and a subsequent vacuum plasma process.
The NFMCNF electrode exhibited a high specific capacitance
of 252.6 F/g at a current density of 0.5 A/g. Lv et al. (2018)
prepared N and P co-doped carbon hollow spheres (NPCHSs)
through a carbonization and subsequent chemical activation
route. The NPCHSs present a high specific surface area of 1,155
m2/g due to their 3D connected porous structure and a high
specific capacitance of 232 F/g at a current density of 1 A/g. Mao
et al. (2017) reported N2-doped graphite (NG) as the negative
electrode and a kind of mesoporous NiCo2O4 nanorod/graphene
oxide (NiCo2O4/GO) composite as the positive electrode. The
symmetric supercapacitor displayed high energy density of
34.3 Wh/Kg at a power density of 800 W/Kg. Thus, the
prepared porous carbon materials with heteroatom- doping can
obviously improve electrochemical performance. However, most
active carbons (ACs) on improving electrochemical performance
introduce heteroatoms by chemical and physical routes, which
can result in high cost, environmentally destructive, and
complicated manufacturing. Biomass and its derivatives, not
only benefiting from renewable, low-cost, and environmentally
friendly properties and but also from being rich in other elements
such as nitrogen and oxygen, have been considered as prospective
carbon precursors (Abioye and Ani, 2015; Lu et al., 2018; Hou
et al., 2019). Many porous carbonaceous materials based on
natural sources have been prepared, such as willow catkins
(Wang et al., 2015), tea leaves (Song et al., 2019), corncob
(Karnan et al., 2017), peanut shell (He et al., 2013), banana peels
(Zhang et al., 2016), bamboo (Zequine et al., 2016), seaweed (Ye
et al., 2018), biomass-based composites (Sun et al., 2017; Han
et al., 2019a) etc., which show good electrochemical performance
for EDCL.

Fatsia Japonica, a subtropical species, is native to southern
Japan as well as southern China. The plants are commonly used
as a graceful ornamental tree and have potential medicinal value
(Luo et al., 2012; Shi et al., 2017). The seeds, appearing from
October to May of the next year, have a long maintenance period
and are plentiful in the tree, so they can be picked at any time.
Little research on the composition of Fatsia Japonica has been
reported (Ye et al., 2014). Aokia et al. (1981) have analyzed the

chemical constituents of the essential oils in the stems, leaves,
and fruits of the Fatsia Japonica. A total of 97 compounds were
identified in the essential oils extracted from the roots, leaves, and
fruits of the Fatsia Japonica, mainly including monoterpenoids
and their oxides and semiquinones and their oxides. Thus, the
seeds, with have potential as medicines, are rich in other elements
(oxygen etc.) besides carbon, which could result in a decrease
in cyclic stability due to the provision of a reacting active site.
However, biomass material with more oxygen atoms has a self-
doping effect that improves the electrochemical performance and
wettability of carbon materials. Moreover, the seeds have strong
solution absorption capacity due to their macropore structure,
which provides an excellent platform for further optimizing their
structure and properties (Kil et al., 2008). In order to realize
transformation into higher-value products, we induced the seeds
to become carbonized under low temperature in our preliminary
work.We can observe from scanning electronmicroscopy (SEM)
that the carbon materials obtained possess many macropores,
which can be easily controlled to form a hierarchical porous
structure. Herein, the aim of our research work is to exploit a
novel biomass material with a controllable pore distribution and
enrich the choice of precursors for electrode materials of EDLC.

In this work, a facile method involving pre-carbonization
at low temperature and subsequent pyrolysis and activation
with KOH at high temperatures was developed to fabricate
hierarchical porous carbon materials (HPCs) derived from
Fatsia Japonica. The HPCs obtained showed remarkable
features of good conductivity, high energy density, and
promising electrochemical properties. The relationships between
the structural characteristics, activation temperatures, and
electrochemical performance were investigated intensively.

MATERIALS

The seeds of Fatsia Japonica were obtained from the trees around
our laboratory (Nanjing China). All other chemicals were of
reagent grade without further purification. Deionized water was
used throughout the experiments.

Preparation of Hierarchical Porous Carbon
(HPC)
Prior to the synthesis of HPCs, the fresh seeds were first
pretreated by soaking in aqueous HCl solution (1M) for about
2 h, followed by washing with deionized water and oven drying at
60◦C for 12 h. Subsequently, the dried seeds were pre-carbonized
in a muffle furnace at 300◦C to remove other organic substances
thoroughly. The sample of pre-carbonized seeds obtained was
named PCS. The mixture was then transferred to a crucible,
followed by annealing and activating at the desired temperature
for 12 h under an N2 atmosphere (Zhang and Chen, 2015; Hou
et al., 2019). The temperature was raised to 300◦C at a rate of
3◦C/min, then at a rate of 5◦C/min. To prepare various HPCs,
different carbonization and activation temperatures (e.g., 500,
600, 700, and 800◦C) were investigated, and the corresponding
samples were designated as HPC-500, HPC-600, HPC-700, and
HPC-800, respectively.
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Characterization of HPC Samples
Field emission scanning electron microscopy (FESEM)
measurements were performed on a JEOL JSM-7001F
microscope at an accelerating voltage of 10 kV to observe
the morphologies and structures of the samples. The pore
structure of the obtained samples was examined through
nitrogen adsorption/desorption experiments at 77K using a
micromeritics apparatus (ASAP 2020 V3.02H). The specific
surface area wasmeasured based on the Brunauer-Emmett-Teller
(BET) method, and the BJH method was used to calculate the
pore size distribution and pore volumes. Raman spectra were
collected from a Raman spectrometer (Jobin Yvon, HR800).
X-ray photoelectron spectroscopy (XPS) was performed on a
KRATOS Axis Ultra photoelectron spectrometer using Al Kα

radiation at a power of 225 W.

Electrochemical Measurement
The electrochemical performance of the prepared HPCs was
measured by using a three-electrode system in 6M KOH
aqueous electrolyte at room temperature. An Hg/HgO electrode
(saturated in 1M KOH solution) and platinum sheets were
used as reference electrode and counter electrodes, respectively.
The working electrode was prepared by pressing a slurry
mixture of the obtained HPC (80 wt%), acetylene black (10
wt%), and polyvinylidene fluoride (PVDF, 10 wt%) onto a
piece of Nickel foam and then dried at 60◦C for 12 h. The
surface area of the working electrode is about 1 cm2, and
the mass loading of the active materials is about 2 mg/cm2.
Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD),
and electrochemical impedance spectroscopy (EIS) tests were
carried out on a CHI 600 electrochemical workstation (Shanghai
Chenhua, China). The working voltages window was commonly
between−1 and 0.1 V.

The specific capacitance in the three-electrode system was
calculated from the GCD curves according to the following
Equation (1). The energy density and power density were
calculated using Equation (2) and Equation (3), respectively.

C =

I∗1t

m∗1V
(1)

E =

1

2
C∗

1V2 (2)

P =

E

1
t (3)

whereC is the specific capacitance (F/g), I is the discharge current
(A), 1t is the discharge time (s), m represents the mass of active
material in the electrode (g), 1V is the potential change in
discharge (V), E is the energy density (Wh/Kg), and P is the
power density (W/Kg).

The symmetric supercapacitors using two equal-power
electrodes were assembled into a button battery system, and 6M
KOH was used as the electrolyte. The specific capacitance of
symmetric supercapacitors was calculated by Equation (4).

C =

4I1t

m1V
(4)

wherem (g) is the total mass of the active material.

RESULTS AND DISCUSSION

The formation process of HPCs from the seeds of Fatsia Japonica
is simply illustrated in Scheme 1. Briefly, the fresh seeds were
pre-treated with hydrochloric acid (HCl) to remove the inorganic
substances preliminarily and then pre-carbonized at a low
temperature (300◦C) to remove other organic substances. To
further optimize the pore structure, pre-carbonized seeds were
mixed with KOH and then carbonized at 500, 600, 700, and
800◦C, respectively.

The morphologies of HPCs fabricated at different activation
temperatures and the PCS without activation are shown in
Figure 1. Compared to the PCS sample (Figure 1F), the samples
prepared by the activation process present a sheet-like structure
rather than a bulk structure, which shows that the activation
process contributes to the fabrication of a porous structure
through the activation agent (KOH) etching the wall of the
PCS sample with a macropore structure. Based on Figure 1, the
activation temperature has a major effect on the morphologies
and structures of the resultant samples. The samples with
different activation temperatures present different degrees of
etching by KOH activation. The sample activated at 500◦C
(Figure 1A) exhibits a continuous sheet-like structure. As the
temperature rises, the flaky morphology of the samples varies
from thinner to fragmented. Especially, the sample HPC-800
(Figure 1F) presents a fragmented structure, which is attributed
to the strong etching of KOH in the walls of themacropores or the
inside of the sample and causes the pores to be larger, breaking
up the sheet structure (Figure 1E). However, HPC-600 presents
a complete layered lamellar structure (Figures 1B,C). Compared
to HPC-500 and HPC-700, the sample of HPC-600 exhibits a
uniform 3D network structure, which is promising for electrolyte
ion diffusion (Benzigar et al., 2018). Thus, the sample pyrolyzed
at 600◦C shows a uniformly connected lamellar structure, which
can provide fast channels for ion diffusion during the charge and
discharge process.

Raman spectra of the samples are shown in Figure 2. Two
obvious peaks located at 1,350 and 1,590 cm−1 for all the
samples correspond to the D and G band, respectively. The
G band is related to the degree of graphitization, while the D
band is associated with local defects and disordered properties
of HPCs (Zheng et al., 2017; He et al., 2019). The intensity
ratio ID/IG represents the degree of structural graphitization. A
higher value means a lower degree of graphitization. The ID/IG
values of the samples were 0.930, 0.903, 0.933, 0.964, and 0.980,
corresponding to HPC-500, HPC-600, HPC-700, HPC-800, and
PCS, respectively. As the activation temperature increases from
500 to 600◦C, the ID/IG value increases, and it tends to decrease
from 600 to 800◦C. It is observed that the defect degree of
the obtained HPC decreases and the degree of graphitization
increases at 600◦C. Thus, HPC-600 displays a higher degree
of graphitization and lower defect degree, so it may possess
good conductivity.

Heteroatom doping is one of the common strategies for

preparing high-performance supercapacitor carbon materials

(Hou et al., 2018; Lee et al., 2018; Kim et al., 2019;Wu et al., 2019).

Seeds are rich in a variety of active ingredients, so it is inferred
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SCHEME 1 | Schematic illustration of the fabrication process of HPCs.

FIGURE 1 | FESEM images of the HPCs prepared at different activation temperatures (A–E) and the PCS (F).

that the biomass-derived carbon materials should have self-
doped heteroatoms present within them. Thus, XPS (Figure 3)
was carried out to study the surface chemical composition of

the resulting sample. The full XPS spectra of HPC-600 derived
from the seeds is shown in Figure 3A, from which C 1s, N
1s, and O 1s can be observed. The atomic percentages of C,
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N, and O were 82.4, 1.01, and 12.59%, respectively. The high-
resolution spectrum of C 1s could be divided into four regions,
which is credited to C-N (284.5 eV), C-C/C=C (284.9 eV), C-
O (285.8 eV), and C=O (287.5 eV), respectively (Figure 3B).
The N 1s (Figure 3C) spectrum reveals the presence of four
nitrogen-based components, including pyridine nitrogen-oxide
(N-X, 401.5 eV), graphitic nitrogen (N-Q, 400.8 eV), pyrrolic

FIGURE 2 | Raman spectra of the HPCs prepared at different temperatures.

N (N-5, 399.8 eV), and pyridinic N (N-6, 398.7 eV). The O 1s
spectrum was fitted to two individual peaks located at 531.7
and 533.2 eV, corresponding to C = O and C-O, respectively
(Figure 3D). It can be speculated that the wettability of the
prepared HPC could be improved due to heteroatoms (N, O) and
high O atomic content (12.59%), which could contribute to the
electrochemical performance of electrode materials.

To further determine the relationship between morphology

and porous structure and examine the formation of hierarchical

pores, measurements by BET N2 adsorption/desorption

technology were carried out; the results are depicted in Figure 4.

According to the nitrogen adsorption and desorption isotherms

(Figure 4A), the major sorption for the sample of HPC-
600 occurs at a low relative pressure from 0.05 to 0.3 and

exhibits hysteresis between adsorption and desorption, which is

attributed to an obvious capillary phenomenon with the increase

in relative pressure. Thus, the sample of HPC-600 shows the

IV type nitrogen sorption isotherm, suggesting the existence
of mesopores and macropores (Qu et al., 2015). However, the
sample of PCS exhibits the II type nitrogen sorption isotherm
and hysteresis at relative pressures from 0.01 to 0.8, which only

demonstrate the emergence of weak gas-solid interaction. These

findings are further supported by the pore size distribution

(Figures 4C,D). The main pore widths for the sample of

HPC-600 are about 2.2 nm and between 60 and 120 nm, which

demonstrate the existence of smaller mesopores and macropores,
respectively. For the sample of PCS, the pore size is distributed
over macropore widths (> 50 nm), which is consistent with

FIGURE 3 | XPS spectra of HPC-600: (A) full energy spectrum, (B) C 1s, (C) O 1s, and (D) N 1 s.
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FIGURE 4 | (A,B) Pore size distribution curves of HPC-600 and PCS, and (C,D) nitrogen adsorption/desorption isotherms of HPC-600 and PCS.

FIGURE 5 | (A) CV curves of the samples HPC-500, HPC-600, HPC-700, HPC-800, and PCS at a scan rate of 10 mV/s; (B) GCD curves of HPCs at a current

density of 1 A/g; (C) CV curves of HPC-600 at different scan rates; (D) GCD curves of the sample of HPC-600 at different current densities.
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the observed nitrogen sorption isotherms. The specific surface
area of HPC-600 (870.3m2/g) was significantly higher than
that of the PCS (510.6 m2/g), as were the pore volumes, which
offers more contact area for electrolyte penetration. Ordering
hierarchical pores can not only provide excellent accessibility to
active sites and enhanced mass transport and diffusion during
charge and discharge but also improve the specific surface area
and electronic and ionic conductivity (Benzigar et al., 2018;
Han et al., 2019c). Therefore, combined with the results of
FESEM (Figure 1B), it can be concluded that HPC-600, with a
3D lamella-like structure, successfully possesses a hierarchical
porous structure, which could accelerate the transport of
electrons and diffusion of ions in electrolyte, improving the
electrochemical performance.

The relationship between a hierarchical porous structure and
electrochemical performance can be explained by the activation
reaction. At high temperature, the KOH primarily penetrates
inside the pore wall of the pre-carbide sample and reacts on the
surface of carbon materials to form nanopores or mesopores.
Products such as K2CO3 are then obtained and continually
corrode inside the pre-carbide sample to form amore porous and
three-dimensional connected porous structure (Lu et al., 2010;
Zhang and Chen, 2015; Eftekhari, 2018). Herein, as the activation
temperature raised, the more violent the reaction between KOH
and carbon, and the larger the pore volume formed.

To evaluate the electrochemical performance of the
hierarchical porous carbon, cyclic voltammetry (CV) and
galvanostatic charge/discharge tests were carried out with a
three-electrode configuration in an aqueous solution of 6M
KOH; the results are depicted in Figure 5. The CV curves of
all samples are displayed from Figure 5A. One can see that
all samples displayed a nearly rectangular shape at 10 mV/s,
indicating the formation of an electric double layer and ideal
capacitive behaviors. The results can be demonstrated from
the GCD curves of all samples at the same current density
(Figure 5B). Figure 5B shows that all samples present an
equicrural quasi-triangle shape. However, based on the specific
capacitance calculation in equation (3), the discharge time
of sample HPC-600 was longer than those of the others, and
the specific capacitance was about 140 F/g. This value of
specific capacitance is larger than or at a similar level to other
carbon materials, as summarized in Table 1. It is demonstrated
that the sample of HPC-600 possesses better electrochemical

performance, due to the evenly distributed mesopore structure
and complete 3D lamella-like structure, which provide fast
channels for easy ion diffusion in electrolyte.

The capacitive performance of the hierarchical porous
materials of HPC-600 was further measured with CV
measurement at the same voltage window and GCD
measurement at different current densities. Figure 5C depicts
the CV curves of HPC-600. The HPC does not have faradic
current effects during charge and discharge, and the sample
presented a quasi-rectangular shape at different scan rates. In
addition, as the scan rate increased, HPC-600 was still closer to
a rectangular shape. It can be demonstrated that the HPC-600
exhibits excellent rate capability and good electrochemical
behavior. This is further shown by the GCDmeasurement results
in Figure 5D. The GCD curves are almost linearly symmetrical
and display a slight IR drop, even at a high current density of
10 A/g, which implies good reversibility and conductivity. The
specific capacitance of the HPC calculated by equation (3) was
about 140 F/g at a current density of 1A/g. This is attributable to
the smaller mesopores and connected flaky structure.

The Nyquist plots of HPCs and PCS in a frequency range
from 100 kHz to 10mHz at an open circuit potential in 6M
KOH electrolyte are shown in Figures 6A,B. All samples display
a semicircuit-like shape at the high-frequency region, which
is ascribed to interface resistance of electrodes and contact
resistance between electrodes and collectors. Although the
resistance value of HPC-500 was measured to be about 1.5�,
the inherent impendence of HPC-600, HPC-700, HPC-800, and
PCS was close to 0.21�, 0.22, 0.08, and 0.06�, respectively,
which reveals good electronic transport over the regime and good
conductivity of prepared samples. At low frequency, other sample
curves are nearly vertically linear (∼90◦), apart from the HPC-
800 electrode (∼45◦), due to over-activation at high temperatures
to form destroyed. The slope at low frequency region signifies the
degree of ionic penetration from the electrolyte to the surface of
the electrode. The larger the slope of the curve, the easier it is
for ionic diffusion to occur during the charge/discharge process.
The HPC-600 electrode presents the lowest impedance due to
having developed a hierarchical pore structure, which implies
that HPC-600 could possess better conductivity and excellent
ionic diffusion capability (Ding et al., 2018; Han et al., 2019b).

The specific capacitances of HPC-600 at different current
densities are shown in Figure 7A. The specific capacitance at

TABLE 1 | Comparison of electrochemical performance of carbon-based supercapacitors.

Carbon type Activating agent Electrolyte type Current density Specific capacitance References

Banana fiber-derived carbon ZnCl2 1M Na2SO4 0.5 A/g 74 F/g Sun and Sun, 2002

Oil palm kernel shell-based carbon Steam activation 1M KOH 0.5 A/g 123 F/g Misnon et al., 2015

Corn stalk core KOH 3M KOH 1 A/g 140 F/g Yu et al., 2018

Rice husk-derived carbon H3PO4 1M Na2SO4 1 A/g 112 F/g Ganesan et al., 2014

MWCN/activated CNFs NH3 steam 6M KOH 0.5 A/g 160 F/g Deng et al., 2013

PAN- and PVP-based CNF None 0.5 H2SO4 0.2 A/g 104.5 F/g Liu et al., 2015

PAN/PMMA-CFs None 6M KOH 1 A/g 140 F/g Zhou et al., 2019

HPC KOH 6M KOH 1 A/g 140 F/g This work
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FIGURE 6 | (A) Nyquist plots of HPCs and PCS electrodes, and (B) enlarged plots of the high frequency region.

FIGURE 7 | (A) The specific capacitance values of an HPC-600 electrode at different scan rates; (B) Ragone plot of an HPC-600 electrode; (C) cycling performance

of an HPC-600 electrode in a symmetric supercapacitor at a current density of 0.5 A/g.

different current densities increased with increasing activation
time. While the current density was 10A/g, the specific
capacitance could still retain 86 F/g. Energy density and power
density are two practical parameters for evaluating the overall
energy and power properties of SCs. As shown in Figure 7B, in an
aqueous electrolyte system, the HPC-600-based supercapacitor
displays a high energy density of 23Wh/Kg at a power density
of 550W/Kg and remained at 15Wh/Kg at 5,500W/Kg. The
results can be attributed to the excellent rate capability of

HPC-600 and certify that the power density could vary in a
wide range without obviously compromising the energy density.
Furthermore, cycle stability is an important factor determining
whether the material can be used in practical applications. As
shown in Figure 7C, HPC-600 as the electrode materials was
assembled into a symmetric supercapacitor. The cycle stability
of HPC-600 was examined by continuous cycling at 0.5 A/g
over 10,000 cycles, and the capacitance retention was 87.5% at
0.5 A/g, demonstrating excellent electrochemical cycling stability
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for the HPC-600 electrode. In addition, the coulombic efficiency
remained 99.9% after 10,000 cycles.

CONCLUSIONS

In summary, a high-performance hierarchical porous carbon
for use as supercapacitor electrode materials was successfully

achieved by a simple pyrolysis and KOH-activation process.

The prepared HPCs derived from Fatsia Japonica show an
unusual interconnected hierarchical porous structure composed
of meso- and micro- pores despite having a specific surface
area of 870.3m2/g. Under optimized conditions, the HPC-600
obtained exhibits a high specific capacitance (140 F/g at a current
density of 1A/g) and also shows excellent cycling stability (87.5%
retention after 10,000 cycles). Moreover, the HPC-600-based
supercapacitor possesses a power density of about 550W/Kg
and a high energy density of about 23Wh/Kg, which is about
20% higher than commercial activated carbons. Therefore, it is
greatly promising that the sustainable and environmental HPC
at activation temperature of 600◦C can be used as commercial
supercapacitors electrode materials employing Fatsia Japonica,
considering the simple large-scale production method and high
electrochemical performance.
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