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Abstract

Objective:  Tumor  heterogeneity  renders  identification  of  suitable  biomarkers  of  gastric  cancer  (GC)

challenging. Here, we aimed to identify prognostic genes of GC using computational analysis.

Methods: We first used microarray technology to profile gene expression of GC and paired nontumor tissues

from 198 patients. Based on these profiles and patients’ clinical information, we next identified prognostic genes

using novel computational approaches. Phosphoglucose isomerase, also known as glucose-6-phosphate isomerase

(GPI), which ranked first among 27 candidate genes, was further investigated by a new analytical tool namely

enviro-geno-pheno-state (E-GPS) analysis. Suitability of GPI as a prognostic marker, and its relationship with

physiological processes such as metabolism, epithelial-mesenchymal transition (EMT), as well as drug sensitivity

were evaluated using both our own and independent public datasets.

Results:  We found  that  higher  expression  of  GPI  in  GC correlated  with  prolonged  survival  of  patients.

Particularly, a combination of CDH2 and GPI expression effectively stratified the outcomes of patients with TNM

stage II/III. Down-regulation of GPI in tumor tissues correlated well with depressed glucose metabolism and fatty

acid synthesis, as well as enhanced fatty acid oxidation and creatine metabolism, indicating that GPI represents a

suitable marker for increased probability of EMT in GC cells.

Conclusions: Our findings strongly suggest that GPI acts as a novel biomarker candidate for GC prognosis,

allowing greatly enhanced clinical management of GC patients. The potential metabolic rewiring correlated with

GPI also provides new insights into studying the relationship between cancer metabolism and patient survival.
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Introduction

Among all cases of cancer worldwide, gastric cancer (GC)
ranks  fifth  in  incidence,  and  third  in  cancer-related
mortality  (GLOBOCAN,  2012)  (1).  Despite  recent
improvements in treatment, patients with stage III and IV
GC  exhibit  5-year  overall  survival  (OS)  rates  of
9.2%−19.8%  and  4.0%,  respectively  (National  Cancer
Institute,  2014).  With  advances  in  high  throughput
technology,  gene  expression  profiling  has  been  widely
adopted  to  identify  molecular  factors  associated  with
progression,  recurrence  and  metastasis  of  GC  (2,3).
However,  biomarkers  currently  used  in  cl inical
management of GC patients are limited in prognostics and
therapeutics,  due  to  their  insufficient  sensitivity  and
specificity. Thus, exploring novel effective biomarkers is
critical  for  improved  clinical  management  of  GC
patients (4).

Previous  studies  using gene expression microarray to
identify  GC-related  biomarkers,  mostly  focused  on
analyzing tumor tissues, rather than use large-scale data
from tumors and paired adjacent nontumor tissues (2,3).
Recent  analysis  on  pan-cancer  data  demonstrated  that
nontumor tissues are complementary for improved cancer
prognosis.  These  comparative  studies  also  showed that
cancer  microenvironments  play  pivotal  roles  in  cancer
patient survival by influencing the adjacent cell metabolism
or the in situ immunization (5). Reprogrammed metabolism
is no longer considered a mere consequence of oncogenic
transformation, but a critical hallmark of cancer (6,7). By
summarizing  the  primary  tumor-related  metabolic
processes,  several  systematic  studies  provide  proof  that
metabolic  genes  are  highly  suitable  markers  for  both
clinical prognosis and therapy (8,9).

Glucose-6-phosphate isomerase (GPI) is a housekeeping
cytosolic  enzyme  that  catalyzes  the  interconversion
between  glucose-6-phosphate  (G6P)  and  fructose-6-
phosphate  (F6P),  a  process  that  plays  a  pivotal  role  in
glycolytic  and  gluconeogenic  pathways.  In  contrast  to
normal cells which metabolize glucose mainly via oxidative
phosphorylation  (OXPHOS)  under  aerobic  conditions,
cancer  cells  favor  glycolytic  pathway (10,11).  GPI  gene
expression is induced by transcription factors c-Myc and
HIF-1 (12,13), and has been shown to be overexpressed in
many types of cancer (14). GPI has been proposed to be the
autocrine motility factor (AMF), a secretory protein, which
may  act  as  a  cytokine  (15).  Though  complete  GPI
knockdown (GPI-KO) failed to prevent tumor growth in

vivo,  as  GPI-KO cells  can still  grow by reprogramming
their bioenergetics metabolism to OXPHOS, cell growth
was shown to slow down and turn extremely sensitive to
inhibitors  of  the  respiratory  chain  complex  (16).  This
dramatic metabolic plasticity was also observed in other
cancer cell lines (14).

Here,  we performed gene expression profiling of GC
tumor and paired adjacent nontumor tissues from 198 GC
patients. A genome-scale screening of GC prognostic genes
was implemented via Fisher’s discriminant analysis (FDA)
based phenotype-targeted test (FDA-based PT-test) and
integrative hypothesis testing (IHT) analysis, resulting in
27 potential prognostic genes, which were highly correlated
with cancer metabolism. GPI, as the top ranked gene, was
specifically evaluated for its ability as a prognostic marker.
Its  relationships  with  metabolism,  EMT,  and  drug
sensitivity were revealed. Particularly, results from Enviro-
geno-pheno-state (E-GPS) analysis (17) indicated that GPI
expression effectively stratified the outcomes of  CDH2-
negative patients with tumor node metastasis (TNM) stage
II/III. Collectively, our study suggests GPI as a promising
biomarker for GC prognosis, and the analytical frameworks
used  in  this  study  can  provide  a  useful  tool  for  cancer
studies.

Materials and methods

Gene expression profile  and clinical  data from Peking
University Cancer Hospital

A total of 198 patients with GC included in this study were
surgically treated at Peking University Cancer Hospital
between 2007 and 2010, and were followed up to March
2016. This investigation was performed after approval by
the  Ethics  Committee  of  Peking  University  Cancer
Hospital.  General  informed consent  was obtained from
each patient. After radical gastrectomy, resected specimens
were  processed  routinely  for  microscopic  pathological
assessment, and tissues were sampled and snap-frozen in
liquid nitrogen. Fresh human tissues were stored at −80 °C.
To  ensure  the  quality  of  tissues,  routine  histological
evaluation  was  performed  for  each  sample.  The  gene
expression profile of these tumors and paired noncancerous
tissues were performed using the Agilent human mRNA &
lncRNA Array  V4.0  platform.  All  the  198  microarrays
passed the quality control and were thus processed with
quantile  normalization  and  log−2  transformation.  We
further performed the prognostic biomarker study based on
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these normalized expression values of the 20,205 mRNAs.
GC stage  was  classified  according to  the  2010 TNM

classification  recommended  by  the  American  Joint
Committee  on  Cancer  (AJCC  7th  edition).  T  and  N
classification were assessed based on the final pathological
results  and M classification was  determined by surgical
findings. Early GC (EGC) was defined as a tumor that was
confined to the mucosa or submucosa regardless of lymph
node (LN) involvement. Advanced GC (AGC) was defined
as a tumor that invaded the muscle proper or beyond. OS
was calculated from the date of the initial surgery to the
time of decease caused by the tumor or the date of the last
follow-up. Progression-free survival (PFS) was calculated
from the  date  of  the  initial  surgery  to  the  time  of  GC
progression. None of the patients received chemotherapy
or radiation therapy prior to surgery. A summary of clinical
information is shown in Supplementary Table S1. The gene
expression data together with clinical information of the
198 GC patients constituted our own dataset, which was
named after the Peking University Health Science Center
(PUHSC).

Screening  of  prognostic  genes  from tumor  and  paired
nontumor expression profiles

Most existing methods for tumor-nontumor paired data
analysis  treat the gene expression of adjacent nontumor
tissues  as  normal  backgrounds  that  vary  between
individuals.  Thus,  traditional  analytical  frameworks  for
biomarker screening use fold-changes of the tumor over
nontumor to measure the relative expression of targeted
genes (18). Consequently, only those genes with significant
difference  in  expression  values  between  tumor  and
nontumor tissues, i.e.  differentially expressed genes, are
screened out for further prognostic analysis. This has been
limited in several respects. First, as the resection margin,
adjacent  nontumor  tissues  differ  from the  pure  normal
tissues,  hence the relative difference in gene expression
between tumor and nontumor may not truly reflect the real
“somatic” aberrations. Second, the expression pattern of
transcripts in tumor tissues is dynamic. That is to say, genes
are  selectively  expressed  in  specific  time  and  space.
Therefore,  only considering the differentially expressed
genes may have failed to capture important information
associated with carcinogens in vivo. Here, we performed
PT-test to discover genes that differentiate good or poor
survival outcomes using FDA. Furthermore, based on the
results of FDA-based PT-test for each gene, an IHT was

performed to select the prognostic biomarkers of GC.
The  preliminary  screening  of  prognostic  genes  was

implemented  based  on  tumor-nontumor  paired  GC
profiles of 198 Chinese patients. Details on patients and
samples, RNA extraction and microarray processing were
expanded in Supplementary materials.

FDA-based PT-test

For  each  gene,  the  expression  value  in  tumor  and
nontumor tissue of each patient was treated as a 2D sample.
Each  sample  point  was  labeled  as  “good”  or  “poor”
according to the outcome of patients.  Based on Fisher’s
linear discriminant, all samples were projected onto a unit-
length  normal  vector  of  the  classification  boundary,
resulting in a set of 1D values. These values were adjusted
to  FDA-scores  by  subtracting  the  average  of  the  mean
centers of two classes. Based on the FDA-score, a weighted
combination of the gene expression in tumor and paired
nontumor, we obtained the P-value of two-sample t-test,
and the predictive classification accuracy of outcomes. To
obtain stable classification results, we calculated the average
testing accuracy of FDA-based PT-test for each mRNA by
100 Monte-Carlo cross-validations, with 70% samples for
training and 30% for testing. The average testing accuracy
was  calculated by  the  mean value  of  all  the  100 testing
accuracies.  For  the  classification  accuracy,  balanced
accuracy  (definition  refers  to  the  contingency  table  in
Figure 1B)  was selected to avoid the bias  of  imbalanced
datasets.

Integrative hypothesis test

For a model-based test (e.g., Student’s t-test), the P-value
measures the difference between the models (e.g., means)
of two populations, while the classification rate or accuracy
measures how well the discriminant boundary separates the
two  populations.  Since  these  two  measures  are
complementary to each other, it is important to coordinate
them with an integrated approach. Moreover, though it is
known that the 5-year OS is a gold standard as an endpoint
in clinical trials (19), 3-year PFS, as a potential surrogate of
5-year OS, has also received much attention recently (20).
Hence we adopted the IHT (21) that incorporates both 5-
year OS and 3-year PFS to evaluate each gene based on
both  P-value  and  classification  accuracy.  We  used  the
FDA-based  PT-test  to  select  candidate  mRNAs  into  a
twin-set  with  one  comprising  of  top-50  mRNAs  with
smallest Student’s P-values and the other comprising of
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top-50 mRNAs with highest classification accuracies. We
obtained one such twin-set of mRNAs for 3-year PFS and
another one for 5-year OS. Finally, the consensus of the
four  subsets,  which  was  obtained  by  Venn  Diagram as
illustrated in Figure 1D, produced a hierarchy of candidate
genes as biomarkers. Genes on the higher level received
bigger consensus than those within lower levels and thus
were more robust.

E-GPS approach

We used  a  recently  proposed  E-GPS approach  (17)  to
identify the role of a biomarker in a certain condition or
environment. The E-GPS method is performed in the joint
domain Degφ of enviro-measure e (e.g., clinicopathological
features such as TNM staging and Lauren classification, or

well-known  biomarkers  proposed  by  previous  studies),
geno-measure g (e.g., gene features such as mutation and
expression of targeted biomarkers), and pheno-measure φ
(e.g., occurrence of disease-related events such as metastasis
and death of patients). In such a joint domain, each sample
is  represented by a triple-measured element (e,  g,  φ).  A
collection of adjacent samples may share a common system
status namely “state” s. In prognostic studies, three types of
states are defined and can be learned from given sample
sets: 1) g-state, short for “good” state, wherein an element
has a high enough probability of good outcome; 2) p-state,
short  for  “poor”  state,  wherein  an  element  has  a  high
enough probability of poor outcome; and 3) c-state, short
for “confusing” state, wherein patients with good outcomes
are considerably mixed with those with poor outcomes.

 

Figure 1 A flowchart of prognostic markers screening. (A) Introduction of the dataset based on tumor and paired adjacent nontumor tissues
from 198 patients; (B) Preliminary screening by Fisher’s discriminant analysis (FDA) based phenotype-targeted test (FDA-based PT-test)
for each transcript on the discovery dataset. The scatter plot (left panel) represents the expression of gene X in tumor tissues (X-axis) and
paired nontumor tissues (Y-axis). The FDA-scores in the histogram (right panel) are generated by projecting 2D expression into 1D value
via FDA; (C) Validation of the genes from preliminary screening; (D) A subset of 828 validated genes is further analyzed by FDA-based PT-
test and integrative hypothesis testing (IHT). Top-82 markers were located in different levels of Venn diagram, in which six genes were in
the first level (white), seven in the second level (green) and fourteen in the third level (blue). The table on the right shows the corresponding
numbers of mRNAs in each level of the hierarchy. OS, overall survival; PFS, progression-free survival.
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In  the  current  study,  in  order  to  investigate  the
prognostic  feature  of  GPI,  we  incorporated  this  newly
discovered  biomarker  with  previously  well-studied
biomarker,  CDH2,  and  assigned  the  former  as  geno-
measure and the latter as enviro-measure. Therefore, the
E-GPS  analysis  was  performed  based  on  the  joint
expression of GPI and CDH2. Without loss of generality,
we considered the support vector machine (SVM)-based
model to classify patients into different states, as illustrated
in Supplementary materials.

Results

Identification of candidate prognostic biomarkers of GC

In order to identify prognostic genes of GC, we performed
FDA-based PT-test and IHT. As shown in Figure 1,2, we
discovered 27 genes with top performance in either P-value
or classification accuracy for both 5-year OS and 3-year
PFS. We classified these genes as robust prognostic genes
(Supplementary Table S2). As shown in Figure 2B, the FDA-
based PT-test efficiently distinguished outcomes by using
information  from  both  tumor  and  nontumor.  Our
screening results  showed that  mRNA expressions of  six
genes including GPI, PLA2G2A, COASY, FXN, EIF3B and
IGFBP2  were located at the highest level, and their four
indices all ranked as top-50 on a whole-genome scale. The
Kaplan-Meier  (KM)  plots  (Figure  2C  &  Supplementary
Figure S1) showed that the outcome of patients could be
well distinguished by these six genes.

We found these candidate genes have close relationships
with metabolism. For example, GPI is a glucose metabolic
gene involved in an early step of glycolysis. PLA2G2A and
IGFBP2  are involved in lipid metabolism and have been
already reported as prognostic markers for GC (22-24). In
order to obtain an overview of the biological features of the
27 prognostic markers, we performed enrichment analysis
using  the  gene  set  enrichment  analysis  (GSEA),  Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment. As shown in Supplementary
Table S3, all 27 genes were closely linked to processes such
as cell cycle, AMPK, p53 signaling pathway, or metabolism.
GO enrichments  based on tumor and nontumor tissues
showed that 18 of the 27 genes obtained more enrichments
with metabolic gene sets in nontumor tissues compared to
tumor tissues, which was consistent with results obtained
previously (5).

Considering that these genes are related to metabolic

processes,  we next  analyzed the enrichment patterns  of
different metabolic pathways. Based on the GSEA toward
metabolic gene signatures collected by a previous study (9),
we  found  that  our  targeted  genes  were  significantly
enriched  in  processes  related  to  OXPHOS,  fatty  acid
oxidation (FAO), creatine metabolism (CM) and so on, in
both tumor and nontumor tissues (Figure 2D).

Stratifying role of GPI for prognosis of CDH2-negative
patients

In order to investigate the prognostic features of GPI, we
next  performed  E-GPS  analysis  to  observe  how  the
prognostic classification of patients can be improved by
using GPI and the well-known GC biomarker, CDH2, an
important  signature of  the occurrence of  EMT process
(25).

As shown in Figure 3A, patients with higher expression of
CDH2  had  poorer  survival  compared  with  that  of  the
CDH2-low patients. The separation by the 90th percentile
of CDH2  expression yielded a prognostic differentiation
between the two subgroups of patients (Figure 3B, log-rank
P=7.4e−02). However, the outcome of patients with low
CDH2  expression  was  still  confused  and  thus  needed  a
better  subdividing  (Figure  3A).  To  this  end,  we  next
performed SVM-based E-GPS analysis based on mRNA
expression levels of both GPI and CDH2. As a result, the
patients  were  classified  into  three  states  (Figure  3C),
allowing us to stratify the outcome of patients significantly
(Figure 3D,E). Moreover, outcomes of patients with high-
CDH2 or low-CDH2 expression were further stratified into
different  levels  by  E-GPS analysis,  as  shown in  Figure
3F,G.

We  further  found  that  TNM  stages  provided
complementary information to differentiate the prognosis
of  patients  more  precisely  to  certain  E-GPS state.  For
example, TNM stages differentiated the mixed outcomes
within S3, generating more differentiable subgroups (Figure
3H), allowing us to construct a molecular-diagnostic hybrid
classification tree for GC prognosis (Figure 3I).

As a counterpart of the stratification of S1, S2, and S3 by
TNM  stage  (Supplementary  Figure  S2A−C),  we  also
investigated how well the E-GPS marker differentiated the
outcome of patients with each TNM stage (Supplementary
Figure S2D−G). Comparing TNM I and IV, the prognosis
prediction of TNM II and III were significantly improved.

Next, we performed analyses focusing on the CDH2-low
patients with stage II/III, due to two main reasons: first, the
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Figure 2 Prognostic features and metabolic enrichment analyses of 27 gene markers. (A) Heat map of Fisher’s discriminant analysis (FDA)
scores of 27 genes; (B) Histograms of different 1D-representation of glucose-6-phosphate isomerase (GPI), including expression in tumor
(top left), nontumor (top right), relative expression of tumor vs. nontumor (bottom left), and FDA-score (bottom right) of GPI expression in
tumor and paired nontumor. P-values are generated by t-test between good- [overall survival (OS) ≥5 years.] and poor-surivival (OS <5
years.) groups (P); (C) Kaplan-Meier (KM) plots based on FDA-score of GPI (P=6.17e−06) and PLA2G2A (P=9.25e−06); (D) Summarizing
of gene set enrichment analysis (GSEA) of 27 genes focusing on metabolism pathways in tumor (lower part) and nontumor (upper part); (E)
2D scatter plot of the expression composed by GPI & oxidative phosphorylation (OXPHOS) (top left) (r=0.277, P=1.3e−04), GPI & creatine
metabolism (CM) (bottom left) (r=−0.332, P=3.4e−06), OXPHOS & “EMT-down genes” (top right) (r=0.483, P=2.6e−12), and CM &
“EMT-down genes” (bottom right) (r=−0.166, P=2.0e−02). EMT-down genes, genes down-regulated in EMT process.
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Figure 3 Enviro-geno-pheno-state (E-GPS) analysis of GPI, CDH2. (A) Histogram of CDH2 expression in tumor tissues; (B) Kaplan-Meier
(KM) plots of CDH2-high (≥9.18) and CDH2-low (<9.18) group, showing that the expression of CDH2 alone could not distinguish the
prognosis of patients (P=7.4e−02); (C) E-GPS states defined by GPI, CDH2. Patients are stratified into three groups according to the joint
expression of the two genes. Each group corresponds to one of the E-GPS states S1, S2, and S3. Patients of CDH2-high group are separated
into S11, S21, and S31 by GPI expression level. Similarly, patients of CDH2-low group are separated into S12, S22 and S32; (D) Histogram of
SVM-scores and the corresponding states S1, S2 and S3, generated by E-GPS analysis of GPI, CDH2; (E) KM plot of patients grouped by S1,
S2 and S3 states (P=1.4e−7); (F) KM plot of CDH2-high patients grouped by S11, S21 and S31 substates (P=3.2e−01); (G) KM plot of CDH2-
low patients grouped by S12, S22 and S32 substates (P=1.3e−06); (H) KM plot of patients grouped by S1, S2 and S3 states with the help of
TNM staging (P=5.7e−11); (I) Molecular-diagnostic hybrid tree obtained by E-GPS analysis. Patients in the red boxes have relatively poor
survival; patients in the blue boxes have good survival; patients in the gray blocks have confused survival. GPI, glucose-6-phosphate
isomerase; OS, overall survival; SVM, support vector machine; PUHSC, Peking University Health Science Center.
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sample size of this part of patients (144 of 198) is larger,
ensuring a higher reliability of E-GPS analysis; second, the
outcomes of them were more confused comparing with the
rest of the patients. Using univariate E-GPS analysis based
on GPI  expression,  CDH2-low patients  with stage II/III
were classified into three groups with significantly different
levels of outcome (Figure 4A,B), leading to a reconstruction
of molecular-diagnostic hybrid classification tree (Figure
4C).  To  validate  this  prognostic  classification,  we
performed a  combined analysis  using independent  data
from public source (2, 26, 27). We extracted CDH2-lower
patients  with  TNM  II  and  III  stages,  and  performed
univariate E-GPS analyses using GPI based on Singaporean
dataset (Figure 4D), Korean dataset (Figure 4E) and The
Cancer Genome Atlas (TCGA) mRNA-sequencing data of
GC (Figure 4F), respectively. The results from all the three
validation datasets were consistent with that of our own
dataset.

In addition, an immunohistochemistry (IHC) experiment
for GPI was performed on 50 paired GC patients, which
were randomly selected from the 198 patients. Among the
50 patients,  32 were CDH2-lower and with TNM II/III
stages.  The  prognostic  effectiveness  of  GPI  was  also
observed  in  protein  level  (Supplementary  Figure  S3),
however, further research based on larger sample size is
required. Moreover, we checked GC cell line data (n=37)
f rom  Cancer  Cel l  Line  Encyc lopedia  (CCLE,
https://portals.broadinstitute.org/ccle),  and  found
marginally significant differential expression of GPI in the
mRNA level (P=0.06) between the group of CDH2-high
(mRNA expression of CDH2>0) and CDH2-low (mRNA
expression of CDH2<0) cell lines, which is consistent with
the result shown by the scatter plot of Figure 3C.

Decreased GPI expression in GC tissues is an indicator of
rewiring of metabolism associated with poor outcome of
patients

In  order  to  investigate  the  features  of  the  mRNA
expression of GPI as a metabolic indicator, we examined the
relationship of GPI  and several  pathways of metabolism
processes. GC patients exhibiting higher expression levels
of  OXPHOS in  tumor  tissues  also  displayed  increased
expression levels of glycolysis and GPI, which coordinated
with  the  enhanced  biosynthesis  of  glycogen  (r=0.35,
P=5.7e−06),  fatty  acid  (r=0.32,  P=6.2e−06)  and  DNA
(r=0.48, P=4.4e−12). In addition, our results also showed
that  the  mRNA expression  level  of  GPI  was  negatively

correlated  with  several  catabolic  pathways,  such  as
mitochondrial FAO (r=−0.11, P=1.2e−01) and peroxisomal
FAO (r=−0.19, P =1.1e−02).

Furthermore, we focused on the relationship between
GPI, its related metabolic pathways, and EMT process. We
selected a group of genes that are down-regulated in EMT
(shortly DR in EMT) as epithelial markers, similar to those
in a previous study (3). As shown in Figure 2E, OXPHOS
were positively correlated with GPI as well as the epithelial
markers. Similar correlation was also found between fatty
acid synthesis (FAS) and GPI (r=0.32, P=6.2e−06) in tumor
tissues. On the other hand, the positive correlation between
glycogen degradation and the up-regulated genes in EMT
(shortly UR in EMT) was detected (r=0.65, P=1.7e−23).
These  results  suggested  that  tumors  exhibiting  up-
regulated glycogen degradation as well as down-regulated
glucose metabolism and lower FAS levels are compromised
in cell growth; however, such tumor cells are potentially
undergoing metastasis in a EMT-like manner. In addition,
we  found  that  the  activation  of  CM  was  negatively
correlated with the expression levels of DR genes (Figure
2E).

Furthermore, we found that mRNA expression levels of
OXPHOS and FAS in tumor tissues were correlated with
prolonged survival, whereas FAO and CM were associated
with poor prognosis of GC patients. However, we further
observed that the prognostic feature of the single pathways
was heterogenic in different datasets, suggesting that we
need an integrated signal to combine these pathways for
prognosis.  Hence, we first screened out the GPI-related
metabolic pathways that were more stable for prognosis,
and then combined these pathways to obtain an integrated
signal.  As a result,  we chose OXPHOS, FAO, FAS, and
CM according to their causal effects on prognosis. In most
cases (≥75%), each of the four pathways maintained similar
prognostic  property  across  four  different  datasets
(Singaporean, Korean, TCGA, and our dataset).

Next,  we assigned OXPHOS and FAS as the positive
signals  for  patients’  survival,  while  FAO  and  CM  as
negative signals, based on their metabolic and prognostic
features. The relative difference between the positive and
negative signals (OXPHOS+FAS−FAO−CM) was used as
an  integrated  signal,  the  expression  of  which  was  also
positively correlated with GPI expression.

As shown in Figure 5A,B, we found that expression levels
of the integrated signal correlated well with prognosis of
GC  patients.  This  result  was  further  validated  by  the
combined analysis  on three independent public datasets
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Figure 4 Enviro-geno-pheno-state (E-GPS) analysis of CDH2-negative patients with TNM II/III stages based on GPI. (A) GPI-CDH2
expression plot of CDH2-negative patients with TNM II/III stages. The two parallel lines in the scatter plots classify the GPI expression in
tumor tissues into three levels, which are obtained from a univariate E-GPS analysis (Supplementary materials); (B) Kaplan-Meier (KM) plot
of patients with each E-GPS state (P=7.0e−07); (C) An adjusted molecular-diagnostic hybrid classification tree. Patients in the red boxes
have relatively poor survival; patients in the blue boxes have good survival; patients in the gray blocks have confused survival; (D−F) GPI-
CDH2 expression plot (upper) and KM plot (lower) of CDH2-negative patients with TNM II/III stages from the Singaporean dataset
(P=2.0e−02), Korean dataset (P=7.9e−03) and TCGA dataset (P=4.1e−02), respectively. GPI, glucose-6-phosphate isomerase; PUHSC,
Peking University Health Science Center.
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Figure 5 Enviro-geno-pheno-state (E-GPS) analysis of CDH2-negative patients with TNM II/III based on integrated metabolic signals. (A)
Joint expression plot (left) of the integrated signal and CDH2, and Kaplan-Meier (KM) plot (right) (P=4.0e−03) of CDH2-negative patients
with TNM II/III stages. E-GPS states are defined by the integrated metabolic signal, which is represented by (OXPHOS+FAS−FAO−CM),
based on the gene expression in tumor tissues from our own dataset; (B) Joint expression plot of GPI and the integrated signal (r=0.485,
P=5.0e−10); (C) KM plot of CDH2-negative patients with TNM II/III stages, based on the combination of samples from three independent
datasets (Korean, Singaporean and TCGA) (P=4.5e−03); (D) Joint expression plot (left) of the integrated signal (based on tumor and paired
nontumor tissues) and CDH2 (based on tumor tissues only), and KM plot (right) of CDH2-negative patients with TNM II/III stages
(P=7.0e−05).  E-GPS  states  are  defined  by  the  integrated  metabolic  signal,  which  is  represented  by  [(OXPHOS tumor+
OXPHOSnontumor)/2+(FAStumor−FAOtumor+FASnontumor−FAOnontumor)/2−(CMtumor−CMnontumor)], based on the gene expression in tumor and
paired nontumor tissues from our own dataset; (E) Joint expression plot (left) and KM plot (right) based on the dataset GSE29272
(P=2.1e−03). GPI, glucose-6-phosphate isomerase; PUHSC, Peking University Health Science Center.
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with E-GPS method (Figure 5C).
The  relationship  between  metabolic  pathways  and

prognosis  was  also  analyzed  in  nontumor  tissues.  The
higher level of OXPHOS, as well as the relative difference
between FAS and FAO in nontumor tissue were related to
prolonged survival. Higher levels of CM in nontumor also
exhibited positive correlation with good survival outcomes,
which  is  opposite  to  the  case  of  CM  in  tumor  tissues.
Hence,  we  further  integrated  these  pathways  using  the
formula  of  (OXPHOS tumor+OXPHOSnontumor)/2  +
(FAS tumor−FAO tumor+FASnontumor−FAOnontumor)/2  −
(CMtumor−CMnontumor), in which the molecular information
generated by corresponding nontumor tissue was included.
The integrated signal was analyzed by E-GPS analysis in
both our own dataset  and GSE29272 (28).  As shown in
Figure  5D,E,  the  integrated  signal  still  could  separate
outcome of patient with GC effectively.

Pharmacogenomic analyses showed GPI indicating drug
sensitivity

We performed pharmacogenomic analysis  based on the
public data obtained from a recent large-scale study (29),
which claimed that all 27 GC cell lines as drug-resistant
against more than 900 drugs tested. Here, we compared the
drug sensitivity of different cell lines using the half maximal
inhibitory concentration (IC50) (drug concentration that
reduces viability by 50%) value. We examined 217 drugs
that were previously tested on more than 70% of the cell
lines,  and found that  the IC50  values of  150 drugs were
negatively correlated with mRNA expression levels of GPI
in  cell  lines,  suggesting  that  GC  cells  with  higher
expression of GPI might be more sensitive to certain drugs

used during chemotherapy.
For example,  5-fluorouracil  (5-FU),  recommended as

one  of  the  first-line  agents  for  the  treatment  toward
advanced  GC (30),  was  tested  on  22  GC cell  lines.  As
shown in Figure 6A, the linear regression revealed that GPI
expression and IC50  of 5-FU were negatively correlated.
Moreover,  we  found  that  GPI  mRNA  expression
significantly differed between IC50-high (≥4) group and
IC50-low (<4) group, suggesting that cell lines with lower
GPI expression exhibit higher drug resistance (Figure 6B).
In addition, we checked the two first-line drugs commonly
used for GC patients, Cisplatin and Docetaxel, and found
little  correlation  between  GPI  and  IC50  of  those  drugs
(r=0.08, P=7.1e−02 for Cisplatin and r=−0.11, P=6.1e−02
for Docetaxel).

Discussion

In this study, we identified the mRNA expression of GPI as
a  promising  indicator  for  GC  prognosis.  The  close
relationships between GPI and EMT as well as metabolic
processes were revealed by computational analysis. We also
proposed an integrative  signal  to  combine the levels  of
activeness of four metabolic pathways including OXPHOS,
FAS, FAO and CM, which were significantly correlated
with GPI.

We found that lower level of OXPHOS in tumor tissues
is positively correlated with poorer survival outcome, which
is not only consistent with the previous study (13), but also
validated by independent cohorts from public database. It is
now widely accepted that the downregulation of OXPHOS
in  cancer  cells  can  be  explained  by  the  hypothesis  of
mitochondrial  dysfunction  under  metabolic  stress,

 

Figure 6 Correlation analysis of GPI expression and 5-fluorouracil (5-FU) drug sensitivity. (A) Scatter plot shows the negative relationship
between half maximal inhibitory concentration (IC50) and GPI expression of 22 GC cell lines. The β-value represents the coefficient of
linear regression; (B) Box-plot of GPI expression of gastric cancer (GC) cell lines grouped by higher sensitivity (IC50 <4, n=13) and lower
sensitivity (IC50 ≥4, n=9) (P=9.2e−03). The P-value is generated by Student’s t-test. GPI, glucose-6-phosphate isomerase.
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corresponding to the significantly enhanced glycolysis even
under  aerobic  condition  in  cancer  cells,  also  known as
Warburg effect (31): the growth of tumor is initiated by
irreversible  damage  to  respiration  and  persists  due  to
increased anaerobic metabolism. However, we found that
the  prognostic  effect  of  glycolytic  signal  in  GC  is
contradictory.

Notably, our study revealed that the expression of GPI is
positively correlated not only with glycolysis, but also with
OXPHOS  expression,  indicating  that  the  competition
between OXPHOS and glycolysis is not a contradictory
phenomenon in cancer cells, but an adaptation to provide
sufficient ATP for tumor cell survival (10). Furthermore,
we  found  that  the  expression  of  both  OXPHOS  and
glycolysis  in  tumor  tissues  are  negatively  correlated  to
EMT. A plausible explanation for our finding is provided
by a previous study, where the loss of glucose uptake was
observed in mammary epithelial cells that were detached
from extracellular matrix (32).

We  also  found  that  in  addition  to  glucose-related
pathways, various types of metabolic pathways were also
correlated  to  EMT.  For  instance,  CM  is  positively
correlated with EMT process. While we found a negative
correlation  with  CM  and  GPI  expression,  implying  a
possible metabolic rewiring.

Recently, a study on extracellular metabolic energetic of
colon cancer found that upregulation of CKB, a key factor
involved in CM progression, facilitates energy storage in
colon cancer cells, while also promotes their survival during
intrahepatic hypoxia after liver metastasis (33), resulting in
poor prognosis for colon cancer patients.

Fatty  acid  metabolism  plays  significant  roles  in
proliferation and survival of cancer cells (34). The de novo
FAS contributes to membrane synthesis for cell growth and
proliferation. In contrast, FAO (also known as β-oxidation)
provides  extra  ATPs  for  cancer  cells,  subsequently
promotes cell survival on loss of attachment (LOA), thus
acting as ATP rescuer when glucose uptake and catabolism
are inhibited by LOA (35). Our study showed that patients
with  higher  relative  activation  of  FAS  to  FAO  have
prolonged survival.  This  phenomenon coincided with a
previous  study reporting that  consumption of  NADPH
decreased together with the downregulation of FAS under
the stress of energy (36). In contrast, the upregulation of
FAO  facilitated  the  generation  of  NADPH.  As  a
consequence, cell death is inhibited, suggesting the switch
from  FAS  to  FAO  in  tumor  tissues  may  promote  the
survival of cancer cell (36).

Conclusions

Using new computational approaches, our study identified
GPI as a promising biomarker for reliable prognosis of GC.
We  also  anticipate  that  IHT,  E-GPS  analysis,  and
prognostic  analysis  by  causal  inference  will  serve  as
promising tools to discover suitable biomarkers.
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Figure S1  Kaplan-Meier (KM) plots  of  six  mRNAs in the first  level.  KM plots  for  overall  survival  of  patients  divided by Fisher’s
discriminant analysis (FDA) scores of mNRAs in the first level (see Figure 1 in the main text). Blue curves represent the low-risk group with
FDA scores higher than the median value; red curves represent the high-risk group with FDA scores lower than the median value. (A) GPI
(P=6.17e−06); (B) PLA2G2A (P=9.25e−06); (C) IGFBP2 (P=4.41e−05); (D) EIF3B (P=1.66e−06); (E) COASY (P=6.76e−05); (F) FXN
(P=2.15e−05).
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Figure S2 Prognostic stratification coupling (GPI, CDH2) and TNM stage. (A−C) TNM stratifies patients dividing by GPI, CDH2 into S1

(A), S2 (B) and S3 (C), respectively; (D−G) S1−S3 stratify patients with TNM stage I (D), II (E), III (F) and IV (G), respectively. GPI,
glucose-6-phosphate isomerase.
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Figure S3 Survival analysis of CDH2-lower patients with stage II/III based on immunohistochemistry (IHC) of phosphoglucose isomerase
(GPI).  Kaplan-Meier (KM) plots of CDH2-lower patients in TNM II (P=4.8e−01) (A),  TNM III (P=2.2e−01) (B),  and TNM II/III
(P=4.0e−01) (C), separated by GPI expression in protein level.
 

Figure S4 Average causal effect (ACE) adjustment. (A) Contingency tables for TNM II and III; (B) Causal graph; (C) Computation of
ACEs.
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Table S1 General information of patients

Clinical items n/n

Gender

　Female/Male 52/146

Age (year)

　≤60/>60 80/118

Tumor location

　Cardia/Noncardia 46/152

Lauren Classification

　Intestinal/Diffuse/Mix/unknown 86/26/74/12

TNM stage

　I/II/III/IV 21/75/95/7

Vessel carcinoma embolus

　Found/Not found/Unknown 114/82/2

Lymph node metastasis

　Metastasis/No metastasis/Unknown 143/54/1

3-year PFS

　Good/Poor/Unknown* 109/78/11

5-year OS

　Good/Poor/Unknown** 103/84/11

PFS, progression-free survival; OS, overall survival; *, good:
PFS ≥3 years,  poor:  PFS <3 years;  **,  good: OS ≥5 years,
poor: OS <5 years.
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Table S2 List of top-27 gene markers

Rank

Probe
ID

Gene
symbol P_paired* Fold-

change**

3-year PFS*** 5-year OS***
P Accuracy rate

P Accuracy
rate P Accuracy

rate
3-year
PFS

5-year
OS

3-year
PFS

5-year
OS

143 GPI 2.11e−10 1.34e+00 8.27e−08 6.74e−01 1.37e−08 6.75e−01 1 1 1 1

247 PLA2G2A 8.65e−15 8.75e+00 4.97e−06 6.36e−01 3.05e−06 6.55e−01 12 6 35 11

489 IGFBP2 1.78e−17 3.51e-01 7.81e−06 6.40e−01 1.03e−05 6.51e−01 15 39 26 17

2266 EIF3B 2.57e−19 1.56e+00 3.77e−06 6.61e−01 6.05e−06 6.54e−01 10 25 3 13

14925 COASY 3.74e−01 1.03e+00 4.55e−07 6.47e−01 1.69e−06 6.41e−01 2 4 10 40

19021 FXN 5.78e−01 1.01e+00 1.13e−06 6.48e−01 2.87e−07 6.47e−01 4 2 8 24

2516 SLC2A4 1.23e−18 3.90e−01 1.97e−05 6.52e−01 6.13e−05 6.56e−01 29 130 6 10

6546 UNG 4.40e−01 1.04e+00 3.48e−05 6.23e−01 1.57e−05 6.51e−01 43 49 99 18

8952 UNC13B 2.31e−04 8.43e−01 1.61e−05 6.40e−01 9.38e−06 6.36e−01 23 32 25 59

16146 FBXO9 4.81e−15 7.35e−01 2.59e−05 6.23e−01 5.39e−06 6.40e−01 33 23 104 45

16998 DNER 4.75e−19 1.92e−01 3.82e−05 6.60e−01 1.81e−05 6.63e−01 47 62 5 5

18841 SLC35B2 1.62e−07 1.20e+00 1.72e−05 6.04e−01 6.35e−06 6.39e−01 24 26 428 49

19837 LUC7L 1.72e−10 8.44e−01 9.30e−06 6.61e−01 9.72e−05 6.66e−01 17 180 4 2

3836 TIMM8A 1.52e−10 1.31e+00 1.83e−04 6.45e−01 5.50e−05 6.65e−01 152 116 14 3

5211 BSG 1.51e−02 9.00e−01 1.04e−05 6.07e−01 4.42e−06 6.09e−01 20 17 365 473

6133 PTPRM 1.97e−06 7.46e−01 4.04e−05 6.14e−01 7.75e−06 6.32e−01 49 30 223 87

6515 TUFM 1.59e−04 1.15e+00 2.53e−05 6.22e−01 5.57e−06 6.37e−01 32 24 114 55

7402 FARSA 1.65e−16 1.42e+00 3.64e−06 6.07e−01 1.36e−05 6.25e−01 9 46 370 164

11851 MTFP1 5.38e−01 9.78e−01 8.92e−05 6.39e−01 1.11e−04 6.39e−01 86 196 29 47

12660 RSAD1 5.20e−07 8.29e−01 6.63e−04 6.35e−01 1.86e−04 6.43e−01 430 274 40 34

13918 GBGT1 9.42e−22 3.87e−01 4.74e−04 6.46e−01 2.16e−04 6.41e−01 334 300 13 44

14162 IPPK 4.51e−18 1.24e+00 4.83e−04 6.67e−01 3.54e−03 6.50e−01 343 1,711 2 22

16406 FAM165B 8.37e−20 3.76e−01 1.16e−04 6.47e−01 2.12e−05 6.60e−01 103 67 12 7

17780 LINGO2 3.05e−19 3.51e−01 3.09e−04 6.34e−01 4.48e−05 6.51e−01 251 103 42 19

18194 MINK1 9.33e−05 1.13e+00 2.67e−05 6.05e−01 1.51e−05 6.25e−01 34 48 410 166

19676 PTGER3 2.25e−19 2.45e−01 6.31e−04 6.40e−01 2.93e−04 6.47e−01 415 365 27 25

19747 ADSSL1 5.30e−07 7.46e−01 4.00e−05 5.84e−01 1.23e−05 6.01e−01 48 42 1,310 740

The color of each cell in the second column represents the level of the corresponding gene locating in Figure 1D. *, the paired t-test
P value in NT-test; **, the corresponding fold-change; ***, P value and accuracy rate using Fisher’s discriminant analysis (FDA),
respectively; PFS, progression-free survival; OS, overall survival.
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 Supplementary materials

Extended information for prognostic marker selection

Venn diagram consensus (VDC)

As briefly introduced in Figure 1, a Venn diagram was generated based on the overlap of the four subsets of mRNAs, which
contained top-ranked ones measured by P value and testing accuracy of both 3-year progression-free survival (PFS) and 5-
year overall survival (OS). As shown in the Venn diagram (Figure 1D), 82 mRNAs were involved in the four circles. The 27
mRNAs lying in the white, green and blue regions performed well in 3-year PFS and 5-year OS consistently. Considering
the markers showing prognostic value in both PFS and OS are more likely to be practical in clinical use, we assigned the
scheme of hierarchy for candidate mRNAs selection as shown in Figure 1D.

Enrichment and correlation analyses of candidate genes, metabolic pathways and epithelial-mesenchymal transition (EMT)

Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

In total, 60 key KEGG pathways that play vital roles in tumor formation and evasion were selected from KEGG database and
GSEA ‘c2’ gene sets ( http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C2). Using Fisher’s exact test, we
generated P values for each pathway to evaluate its enrichment effect with the highly correlated genes of each candidate gene.

Gene set enrichment analysis (GSEA) enrichment

For each candidate gene marker, we performed GSEA for ‘c2’ gene sets, based on the gene expression in both tumor and
nontumor tissues. In metabolic analysis, we simply adopted the metabolic gene sets collected by Gaude et al (1).

Gene Ontology (GO) enrichment

We performed GO enrichment analysis for 16 gene sets in GO enrichment system associated to cancer development and
metastasis such as cell cycle, apoptosis, microtubule-based movement, cell adhesion, and so on. Based on the P values and
enrichment scores calculated online by DAVID (https://david.ncifcrf.gov/), the significance of GO enrichment is evaluated.

Correlation analysis for metabolism pathways and EMT

In correlation analysis, the mean value of expressions of genes in the same metabolic pathway is generated to represent the
expression level of the pathway. The EMT-signal is generated by the average expression of genes that up-/down-regulated in
EMT process as collected by the previous study from Asian Cancer Research Group (2).

Extended information for Enviro-geno-pheno-state (E-GPS) analysis

Implementations of E-GPS analysis

In the current E-GPS analysis, we aimed to find the optimal separating boundary to classify samples by their survival
outcomes. We combined the tumor expression values of two different genes as 2D samples. We first applied support vector
machine (SVM) (3) to project the 2D data into 1D values (namely SVM-scores). Next, we applied univariate E-GPS analysis
based on the SVM-scores as follow procedures.

(1) All SVM-scores were sorted by increasing order;

(2) Every possibility of the two boundaries to separate these 1D data is enumerated, resulting in three groups of samples,
corresponding to three E-GPS states. For each state s, a dedication degree (D-degree), rs is calculated by Eq. (2) in Ref. (4);

J=
X

s2Swithns¸m andrs>m in(rs)
log (1¡ rs)(3) The cost function J is generated by combining the D-degree of three states, i.e. ,

where ns is the total number of samples in state s from S (the complete set of the three states), and m is a threshold of
minimum sample size for each state that is defined as 20% of the all samples, i.e., m = 37 in our study;
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(4) The best boundaries were selected when J reached the minimum. To enhance the robustness of the boundaries, we
extended the line-form boundary to produce a band-form boundary. All points located within the band area (the region of
line boundary ± 0.1 standard deviation of SVM-scores) were excluded from further calculation and optimization of the cost
function (4). These samples were also excluded in the stratification for survival outcomes. As a result, the total number of
samples in the three states is smaller than the total number of the whole sample set.

Univariate E-GPS analysis on CDH2-negative patients in advanced stages by GPI and integrated metabolic signal

In some cases, we also performed univariate E-GPS analysis for single genes or pathways based on their expression values or
integrated signals. In such analyses, independent datasets for validation were involved. However, these datasets usually
contain few samples, if we still adopt band-form boundaries, the further loss of samples may lead to unreliable results. Hence,
we used line-form boundaries for validation sets. Due to the same reason, the three E-GPS states were degenerated as two E-
GPS states by merging two adjacent states that were with more similar outcomes.

Causal inference for prognosis with TNM staging and metabolic pathways

We observed that 53%−60% of the metabolic signals indicated the prognosis in the same direction for patients with TNM II
& III.  However, the remaining metabolic pathways display different properties between the two stages.  For example,
glycogen degeneration acted as an indicator for good outcome in TNM II (ACEII >0), meanwhile it was a risk factor for
survival in TNM III (ACEIII <0). After merging patients of TNM II & III together, its divergent effects between TNM II &
III counteracted, but still resulted in a total tendency of indicating slightly better survival (unadjusted ACEII+III >0). Even
more, we found for some metabolic signals, it could perform as a factor of poor outcome in TNM II & III, respectively, but
the total effect of which unexpectedly turned to be positively correlated with good prognosis, which reminded us of the well-
known Yule-Simpson’s paradox. Such divergent even paradoxical phenomena uncovered that, in survival analysis, the Yule-
Simpson’s paradox also existed and might has been neglected for a long time. It means that, besides the traditional separate
analyses for patients in different stages, the total effect of the gene expression marker should also be re-evaluated by solving
the Yule-Simpson’s paradox.

According to Pearl’s and Rubin’s causal theory (5-7), the ACE of the biomarker’s expression toward the outcome could be
adjusted by taking the TNM as a causal factor into consideration. We first built a causal graph model of the stage (TNM II
or III), status of expression (high or low), and survival outcome (good or poor) as shown in Supplementary Figure S4. The
ACE value of each metabolism pathway was calculated, based on which we evaluated the consistence of the indicating
direction of metabolic signals for prognosis among patients with TNM II, III, and all patients of both stages. We further
evaluate the consistence of the metabolic signals for prognosis in independent datasets including Singaporean, Korean, and
TCGA data. Among the results of the 96 metabolism pathways, twenty-five of which (26%) were all consistent with the ones
in our dataset.

Information of data sources and molecular experiments

Gene expression profile data sources

(1) Data from Peking University Cancer Hospital

A total  of  198 patients with GC included in this  study received their diagnosis  and were surgically treated at  Peking
University Cancer Hospital between 2007 and 2010, and were followed up to March 2016. This investigation was performed
after approval by the Ethics Committee of Peking University Cancer Hospital. General informed consent was obtained from
each patient.

After radical gastrectomy, resected specimens were processed routinely for macroscopic pathological assessment, and
tissues were sampled and snap-frozen in liquid nitrogen. Fresh human tissues were stored at −80 °C and fixed with 10%
formalin in phosphate-buffered saline. To ensure the quality of the tissues, routine histological evaluation was performed for
each sample.
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GC stage was classified according to the 2010 tumor-node metastasis (TNM) classification recommended by the American
Joint Committee on Cancer (AJCC 7th edition). T and N classification were assessed based on the final pathological result
and M classification was determined by surgical findings. Early GC (EGC) was defined as a tumor that was confined to the
mucosa or submucosa regardless of lymph node (LN) involvement. Advanced GC (AGC) was defined as a tumor that invaded
the muscle proper or beyond. OS was calculated from the date of the initial surgery to the time of death caused by the tumor
or the date of the last follow-up. PFS was calculated from the date of the initial surgery to the time of GC progression. None
of the patients received chemotherapy or radiation therapy prior to surgery. A summary of clinical information is shown in
Supplementary Table S1.

The mRNA expression profile of these tumors and paired noncancerous tissues were performed using the Agilent human
mRNA & lncRNA Array V4.0 platform. All the 198 microarrays passed the quality control and were thus processed with
quantile normalization and log-2 transformation. We further performed the prognostic biomarker study based on these
normalized expression values of the 20,205 mRNAs.

(2) Independent validation datasets

For the Singaporean dataset, we combined the raw data of GSE34942 and GSE15459 together, using RMA algorithm from
“Affy” package in R language to generate the normalized data. For the Korean dataset (GSE26253) and GSE29272 dataset
from China, we adopted the same normalizing method with RMA separately. For TCGA, we downloaded the pre-processed
data from UCSC cancer genome browser. We found that there are no enough patients with OS>5 years in TCGA, hence we
grouped the ‘good’ and ‘poor’ survival into different strategies as we utilized for our own dataset and the other validated
datasets. For TCGA, we followed the outcome classification defined by Gaude et al (2).

(3) Pharmacogenomic data

We downloaded the raw data of gene expression profiles of 965 cell lines from EBI database (Dataset ID: E-MTAB-3610).
RMA normalization was performed. The drug sensitivity information valued by half maximal inhibitory concentration (IC50)
was directly adopted from the supplementary data of its originated study.

Molecular experiments

RNA extraction. Total RNA was extracted using the Trizol reagent (Invitrogen) according to the manufacturer’s protocol.
The purity and concentration of RNA were determined by OD260/280 using spectrophotometer (NanoDrop 34 ND-1000).
RNA integrity was determined by 1% formaldehyde denaturing gel electrophoresis.

Immunohistochemistry experiments of formalin-fixed paraffin-embedded (FFPE) sample. Four-micrometer sections from
FFPE tissues were deparaffinized in xylene and rehydrated through graded alcohol. Antigen retrieval was performed by
autoclaving in 0.01 mol/L citrate buffer (pH 6.0) for 3 min, followed by immersion in 3% hydrogen peroxide methanol for
10 min to  block  endogenous  peroxidase  activity.  The section were  then blocked with  normal  sheep serum (DAKO,
Hamburg, Germany) for 90 min at room temperature and then incubated with glucose-6-phosphate isomerase (GPI)
polyclonal antibody (Bethyl Laboratories, Inc., USA) diluted at 1:6,000 overnight at 4 °C. Diaminobenzidine was used as a
chromogen, followed by counterstaining with hematoxylin. We regarded as GPI expression-positive when 10% or more
cancer cells  exhibited GPI in the cytoplasm. The expression of  GPI was assessed independently  by two experienced
pathologists who were blinded to the patients’ clinical outcomes. There was a high level of consistency among the two
pathologists, and in the few discrepant cases (<5%) a consensus was reached after joint review.
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