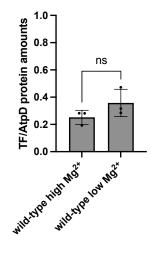
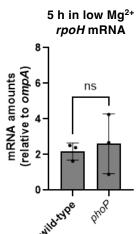
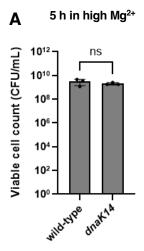
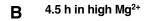
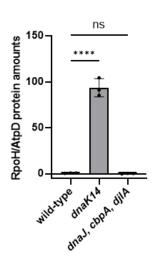

Supplemental Material for

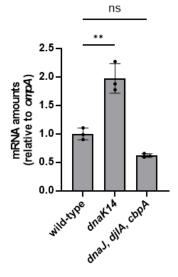

Infection-relevant conditions dictate differential versus coordinate expression of *Salmonella* chaperones and cochaperones

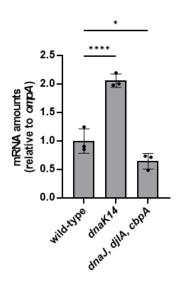












C 5 h in low Mg²⁺ creA mRNA

D 4.5 h in high Mg²⁺ creA mRNA

Supporting Figure Legends

Supporting Figure S1: The mRNA abundance of J-protein cochaperone-encoding genes does not increase when S. Typhimurium experiences cytoplasmic Mg^{2+} starvation.

- (A) mRNA abundance of the *cbpA* gene relative to the constitutive *ompA* control in wild-type (14028s) *S*. Typhimurium following 4.5 h of growth in high (10 mM) Mg²⁺ or 5 h of growth in low (10 μ M) Mg²⁺.
- **(B)** mRNA abundance of the *cbpA* gene relative to the constitutive *ompA* control in wild-type (14028s) and *phoP* (MS7953s) *S*. Typhimurium following 5 h of growth in low (10 μ M) Mg²⁺.
- **(C)** mRNA abundance of the *djlA* gene relative to the constitutive *ompA* control in wild-type (14028s) *S*. Typhimurium following 4.5 h of growth in high (10 mM) Mg²⁺ or 5 h of growth in low (10 μ M) Mg²⁺.
- **(D)** mRNA abundance of the *djlA* gene relative to the constitutive *ompA* control in wild-type (14028s) and *phoP* (MS7953s) *S*. Typhimurium following 5 h of growth in low (10 μ M) Mg²⁺.

Data in (A-D) represent mean \pm SD of three independent biological replicates. Statistical analysis was performed using two-tailed Student's *t*-test comparing the bracketed sample groups (*p<0.05, **p<0.01, ns = not significant).

Supporting Figure S2: Trigger Factor protein amounts are similar during growth in high Mg^{2+} and low Mg^{2+} .

Protein amounts of TF relative to the AtpD loading control determined by Western blot in wild-type (14028s) *S.* Typhimurium following 4.5 h of growth in high (10 mM) Mg^{2+} or 5 h of growth in low (10 μ M) Mg^{2+} .

Data represent mean \pm SD of three independent biological replicates. Statistical analysis was performed using two-tailed Student's t-test comparing the bracketed sample groups (ns = not significant).

Supporting Figure S3: Inactivation of the *phoP* gene does not alter *rpoH* mRNA amounts.

mRNA abundance of the *rpoH* gene relative to the constitutive *ompA* control in wild-type (14028s) and *phoP* (MS7953s) *S*. Typhimurium following 5 h of growth in low (10 μ M) Mg²⁺.

Data represent mean \pm SD of three independent biological replicates. Statistical analysis was performed using two-tailed Student's *t*-test comparing the bracketed sample groups (ns = not significant).

Supporting Figure 4: C-terminal domain of DnaK is required to decrease RpoH amounts and activity during growth in high Mg²⁺.

- (A) Survival of wild-type (14028s) and *dnaK14* (CC186) *S.* Typhimurium following 5 h of growth in low (10 μ M) Mg²⁺.
- **(B)** Protein amounts of RpoH relative to the AtpD loading control determined by Western blot in wild-type (14028s), *dnaK14* (CC186), and *dnaJ cbpA djlA* (CC656) *S*. Typhimurium following 4.5 h of growth in high (10 mM) Mg²⁺.

- (C) mRNA abundance of the *creA* gene relative to that of the constitutive *ompA* control in wild-type (14028s), *dnaK14* (CC186), and *dnaJ cbpA djlA* (CC656) *S*. Typhimurium following 5 h of growth in low (10 μ M) Mg²⁺.
- (**D**) mRNA abundance of the *creA* gene relative to that of the constitutive *ompA* control in wild-type (14028s), *dnaK14* (CC186), and *dnaJ cbpA djlA* (CC656) *S*. Typhimurium following 4.5 h of growth in high (10 mM) Mg²⁺.

Data in **(A-C)** represent mean \pm SD of three independent biological replicates. Statistical analysis was performed using two-tailed Student's *t*-test comparing the bracketed sample groups (*p<0.05, **p<0.01, ****p<0.0001, ns = not significant).

Table S1. Strains and plasmids used in this study

Strains	Relevant characteristics	Source	
Salmonella enterica			
serovar Typhimurium			
14028s	wild-type	(Fields et al., 1986)	
MS7953s	phoP::Tn10	(Fields et al., 1986)	
EL1	mgtC::kan	(Lee et al., 2013)	
CC186	dnaK14::Tn10dCm (insertion at	(Chan and Groisman,	
	nucleotide position 1691)	2024)	
CC656	dnaJ, cbpA, djlA::kan	(Chan and Groisman,	
	umij, copii, ujiiium	2024)	
Escherichia coli			
	Host strain used for generation		
DH5 α	and propagation of plasmid	(Hanahan, 1985)	
	constructs		
Plasmids			
pUHE-21-2-lacIq	rep _{pMB1} lacI ^q Amp ^R vector	(Soncini et al., 1995)	
r	control	(5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
pAtpAGD	pUHE-21-2-lacIq-AtpAGD	(Pontes et al., 2016)	

Table S2. Oligonucleotides used in this study

Oligo name	Sequence (5' to 3')	Purpose	Source
17717	TTA TTG GTA TCG ACC TGG GTA CTA C	dnaK mRNA qRT-PCR quantification	This work
17718	CAG AGT TTC ACC ATC CTG GGT ATA A	dnaK mRNA qRT-PCR quantification	This work
16274	AAGCCTACGAAGTGCT GACC	dnaJ mRNA qRT-PCR quantification	This work
16275	ATTAAAGCCGCCGCCA AATC	dnaJ mRNA qRT-PCR quantification	This work
18914	CGCCATTATGGGCGTG AAACC	cbpA mRNA qRT-PCR quantification	This work
18915	CGGGTTCTTTGCTGACA TCTGG	cbpA mRNA qRT-PCR quantification	This work
18916	gataattggcgtcgccgtagc	<i>djlA</i> mRNA qRT-PCR quantification	This work
18917	ccatttttcggctgcgggc	<i>djlA</i> mRNA qRT-PCR quantification	This work
15054	gggctggtctcagtaccatga	ompA mRNA qRT-PCR quantification	(Yeom et al., 2017)
15055	tcatgagtcgggccatca	ompA mRNA qRT-PCR quantification	(Yeom et al., 2017)
19251	gacgacgttgtcgacgctg	dnaKJ intergenic region qRT-PCR quantification	This work
19252	ccgctgttttggaaacgcc	dnaKJ intergenic region qRT-PCR quantification	This work
19253	ggaaatcgctcagcagcaac	dnaK 3' end qRT-PCR quantification	This work
19254	cttcttcaaactcagcgtcgac	dnaK 3' end qRT-PCR quantification	This work
19255	ggcgaaaagagattactacgagattt tag	dnaJ 5' end qRT-PCR quantification	This work

19256	cggatgatatttcatggccagg	dnaJ 5' end qRT-PCR quantification	This work
17697	TAA AAT TCG GTA ACG ACG CTC GTG T	groEL mRNA qRT-PCR quantification	This work
17698	ATA GTC GGC GCA CCG AAA GAT TTA T	groEL mRNA qRT-PCR quantification	This work
18739	GTA CTT TTC TCA ATT TTG TTG CTG CTG	creA mRNA qRT-PCR quantification	This work
18740	CAC CAC GAT TTT ATG GTC AGG ACC	creA mRNA qRT-PCR quantification	This work