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Abstract: Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their
structural design is crucial for improvement of energy harvesting performance and sensing. Wearable
biosensors can receive information about human health without the need for external charging,
with energy instead provided by collection and storage modules that can be integrated into the
biosensors. However, the failure to design suitable components for sensing remains a significant
challenge associated with biomedical sensors. Therefore, design of TENG structures based on the
human body is a considerable challenge, as biomedical sensors, such as implantable and wearable
self-powered sensors, have recently advanced. Following a brief introduction of the fundamentals of
triboelectric nanogenerators, we describe implantable and wearable self-powered sensors powered
by triboelectric nanogenerators. Moreover, we examine the constraints limiting the practical uses of
self-powered devices.

Keywords: triboelectric nanogenerators (TENG); self-powered sensors; biomedical sensors

1. Introduction

Triboelectric nanogenerators (TENGs) are energy-harvesting devices that use the tri-
boelectric effect to produce electrical power. TENGs are employed in various sectors,
including communications (mobile phones), medical (health field) [1–4], energy absorption
from ocean waves [5–11], and other fields, demonstrating the significant potential of this
field in the future. Energy has always been among the most important themes in human
history, as is currently the case [12–14]. In light of widespread pollution, experts have
steadily shifted their focus to clean energy [15]. Triboelectric nanogenerators (TENGs) rep-
resent the most significant human discovery in this field in the past decade. Figure 1 shows
some of the recent applications of TENGs, such as in medical sensors, motion sensors, and
energy harvesting from ocean waves. TENGs offers a wide range of applications beyond
energy generation, including in structural health monitoring systems (SHMs) [16,17].
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Figure 1. TENG-related publishing trends and applications: (a) biomedical wearable sensors based
on smart textile TENGs [18]. (b) The wide range of applications of TENGs [19]. (c) Publications on
triboelectric nanogenerator (TENGs) by country [20].

Figure 1a shows the applications of biomedical wearable sensors based on smart
textile TENGs [18–20]. Several academics shifted their focus to this topic after learning
about TENG technology in 2012, and the number of publications published in this field
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has increased dramatically since then [21,22], representing a significant turning point in
the history of mechanical energy harvesting [23]. A variety of TENG applications are
depicted in Figure 1b. Researchers have revealed a wide range of uses and potentials for
nanogenerators after more than a decade of study in this sector. Whereas TENGs are useful
in the production of hydropower and wind energy [8], they can also be used in other fields,
such as medicine, civil engineering [18,24] (such as structural health monitoring systems
(SHMs) [25] and self-powered sensors [26,27] as an energy source for structures, such as a
bridges), and other fields, in order to protect the environment and reduce the production of
fossil fuels [28]. An illustration of the distribution of triboelectric nanogenerator (TENG)
publications concerning smart textile TENGs for biomedical wearable sensors in various
nations is shown in Figure 1c. According to the Scopus database, researchers in several
nations are engaged in studying and developing triboelectric nanogenerators (TENGs).
Researchers from more than twenty nations have published at least one study on the subject
of triboelectric nanogenerators, which should be taken into consideration. According to
the statistics provided in Figure 1c, China, the United States of America, South Korea,
Singapore, and England are the countries with the most papers published in the area of
TENGs (smart textiles), in that order. As research in the field of nanogenerators continues
to advance, these publication data can be regarded as optimistic news for a future powered
only by clean energy and without pollutants [29].

For sensors to collect, analyze, and transfer data, they require an energy source.
Because such sensors may be placed in regions that are not easily accessible to people, the
battery may not be able to provide enough power to operate the sensor properly [30,31].
Therefore, researchers are working to eliminate such issues in structural health monitoring
systems (SHMs) by including TENGs as a source of energy [32–34]. Nations such as the
United States of America and China are utilizing TENGs as a source of energy. TENGs
have also been adopted as an energy source in the medical engineering field [1,35–43], with
applications in a variety of medical engineering equipment.

As shown in Figure 2a, TENGs function in four modes: freestanding triboelectric
layer mode, single-electrode mode, lateral sliding mode, and contact separation mode.
Each mode has unique properties and advantages. TENG function is based on the transfer
of electrostatic charges to the electrodes in each of its modes. All TENG modes use two
electrodes, with the exception of the single-electrode mode. When one of the TENG layers
is displaced, the electrostatic state is dislodged. This potential difference causes an external
charge current. Inverting TENG layers reverses the electrode potential difference. TENG
can produce AC using a reciprocating motion. Two electrodes are used in contact separation
mode, which is hidden behind the TENG layers. A possible distinction develops during
the contact and separation procedures in such a situation [44]. A voltmeter can be used to
measure the output voltage by connecting one end to one electrode and the other end to the
other electrode. Then, contact and detachment operations can be monitored periodically.
Lateral sliding mode comprises two electrodes, which, as in contact separation mode
and freestanding triboelectric layer mode, are positioned behind the TENG layers and
are referred to as the lateral sliding electrodes. Lateral sliding mode is formed by the
relative slide between the TENG layers. The output voltage can be tested using a voltmeter
by attaching one end of the voltmeter to one electrode and the other end to the other
electrode. The potential voltage difference can be determined by utilizing the TENG layer’s
reciprocating slip. Both lateral sliding and contact separation require an electrode output
wire, limiting their use. Figure 2b shows charge transfer through an external circuit for
triboelectric nanogenerators.
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Figure 2. (a) The four primary modes of operation for triboelectric nanogenerators include contact sep-
aration mode, lateral sliding mode, single-electrode mode, and freestanding triboelectric layer mode.
(b) Illustration of charge transfer through an external circuit for triboelectric nanogenerators [44–47].

As shown in Figure 3a TENG models have been proposed. The first category, which
includes the formal physical model [48,49], is executed according to classical electromag-
netic theory. 3D mathematical models and the distance-dependent electric field model
were developed based on the quasi-electrostatic model [48,50–52]. The second category
comprises analogous electrical circuit models, including the CA model [53–56] and the
Norton comparable circuit model. The figure shows a transport equation that describes the
formal physical model and an analogous electrical circuit model. The two models are linked
together. ϕAB represents a potential decrease in the TENG system, as expressed on the left
side of the equation. Moreover, V = ∂Q/∂t × Z represents the voltage across the external
load. According to Kirchhoff’s voltage law, the potential difference between two TENG
electrodes is equal to the load resistance voltage. The final product is the transportation
equation. The physics of TENGs is determination by the variation of potential (ϕ), electric
field (E), polarization of the dielectric material (P), and the Maxwell’s displacement current
(ID). The circuit models determine the outputs from the external circuit, e.g., variation of
voltage (V), current (I), power (P), and extracted electrical energy (E) [50,51]. According
to Figure 3a, Maxwell’s equations, known as Wang’s term, are added by the term Ps [45].
Wang’s term is not the result of moderate polarization due to the P electric field but is
derived from the existence of electrostatic surface charges:

D = ε0E + P + PS (1)
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The corresponding displacement current density (JD) is expressed as:

JD =
∂D
∂t

= ε0
∂E
∂t

+
∂P
∂t

+
∂PS

∂t
= ε

∂E
∂t

+
∂PS

∂t
(2)

where ε0 and ε are the permittivity of free space (vacuum) and the permittivity of the
material (or medium), respectively. These two terms are connected as ε≡ ε0 (1 + γe),
where γe represents the electric susceptibility of the medium. Given that P = (ε − ε0) E, the
volume charge density (Equation (3)) and the density of current density (Equation (4)) are
defined by:

ρ′′ = ρ−∇.PS (3)

J′′ = J +
∂PS

∂t
(4)

Satisfying the charge conversion and continuation equation [45]:

∇.J′′ +
∂ρ′′

∂t
= 0 (5)

As a result, Maxwell’s equations are rewritten as [45]:

∇.D′′ = ρ′′

∇.B = 0

∇× E = −∂B
∂t

∇×H = J′′ +
∂D′′

∂t
(6)

The self-consistent equations mentioned above describe the relationships between
electromagnetic fields and charges, as well as the current distribution in TENGs [45], where:

(ε∂E/∂t): Well-known contribution to Maxwell’s displacement current; and
(ε∂Ps/∂t): Displacement current due to the presence of surface charges.

ϕAB =
∫ B

A
E.dL =

∂Q
∂t

Z (7)

The equation mentioned in this section is very important, as it serves as a link between
the internal circuit and the external circuit. Furthermore, the displacement current (ID) is
obtained by calculating the surface integral (JD) [44,49,51,57–60].

ID =
∫

JD.ds =
∫

∂D
∂t

.ds =
∂

∂t

∫
(∇.D)dr =

∂

∂t

∫
ρdr =

∂Q
∂t

(8)

Figure 3b presents the triboelectric series for some common materials. Triboelectrifica-
tion phenomena occur in practically commons material, including metals, polymers, silk,
and wood, among others [61,62]. As any of these materials can be used to make TENGs,
the range of accessible materials for TENG construction is broad. With respect to electron
transfer, the capacity of a material to gain or lose electrons is governed by the polarity
of the substance. It appears that selecting materials with a wide energy gap results in
increased output voltage. Most of the applications discussed this paper involve copper and
aluminium as electrode components, with Kapton, PDMS, and PTFE acting as the dielectric
material [7,63].
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Figure 3. (a) Description of the fundamental theories relating to the physics of TENGs. (b) Triboelec-
tric series for some common materials [45,64].

In this review paper, we intend to provide overview and synthesis of the key research
developments of TENGs in biological sensors [4,28,37,65–70], from design to application.
We assessed a wide range of self-powered sensors for human healthcare applications. In
Section 4, we review wearable self-powered sensors based on triboelectric nanogener-
ators [71,72], including smart shoes based on triboelectric nanogenerators, triboelectric
nanogenerators for motion sensors, triboelectric nanogenerators for tactile sensors [73],
smart face masks based on triboelectric nanogenerators, triboelectric nanogenerators for
sleep monitoring, and self-powered nerve/muscle stimulation based on the triboelectric
nanogenerators [42]. Finally, in Section 5, we discuss the applications, challenges, and
future trends in TENGs for biomedical sensors.

2. Overview of Self-Powered Sensors for Human Health Care

Wearable biosensors have garnered considerable interest, owing to their ability to
provide data that can be used for individualized therapy [40,74]. The majority of molecular
biosensors are dependent on electrochemical processes, such as potentiometric, amperomet-
ric, differential pulse voltammetric (DPV), and impedance sensing modes. These biosensors
can provide information on a molecular level that can be used to indicate human health
conditions [75,76]. Such electrochemical sensors provide a high degree of sensitivity and
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selectivity, in addition to a fast response, and can be easily adapted to wearable devices.
The various types of self-powered sensors, including implantable and wearable sensors,
are presented in Figure 4 [77,78].

Figure 4. Overview of self-powered sensors for human health care [79].

3. Implantable Self-Powered Sensors Based on Triboelectric Nanogenerators

Despite the disadvantages of some implantable self-powered sensors, they play key
role in medicine science. In the following paragraphs, we will discuss an implanted self-
powered sensor that is based on triboelectric nanogenerators and can monitor both the heart
respiration, in addition to blood pressure [20,37]. The main applications of such sensors is
sensing and monitoring. Most of the applications described in this section involve the use
of copper and aluminum as electrode components, with Kapton, PDMS, nylon, silicone
rubber, and PTFE acting as the dielectric material.

3.1. Triboelectric Nanogenerators for Heart and Respiration Monitoring

Figure 5 depicts triboelectric nanogenerators for monitoring the heart and respiration.
Figure 5a illustrates sites on the human body that can be monitored with pulse waves derived
from actual measurements and biomechanical analysis. In this design, TENG devices are
mounted at multiple arterial sites to monitor the heart rate in real time [80,81]. Figure 5b
demonstrates biomedical applications of respiration-driven triboelectric nanogenerators. This
structure consists of two distinct varieties: type I, for aeroelastic vibration devices; and type II,
for motion-triggered devices [82]. Figure 5c shows a wireless respiration sensor that can be
worn to track the rate of breathing based on changes in the size of the stomach. The positive
and negative tribomaterials are 100 mm PTFE and 30 mm nylon, respectively, and two 50 mm
copper foils are affixed to the tribolayers as conducting electrodes. Furthermore, two acrylic
sheets provide support for dielectric materials [83]. Figure 5d is an illustration of in vivo
biomechanical energy harvesting with a TENG. An implanted triboelectric nanogenerator
(iTENG) has also been developed to capture energy from the periodic breathing of a live rat.
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The energy produced by breathing was then used to directly operate a prototype
pacemaker [84–86]. Significant progress has been achieved in the fabrication of TENG-
powered implanted medical devices [87]. Figure 5e demonstrates that a wireless mobile
system based on NSTENG can identify entire pulse waveforms and display them in real
time. This device can detect normal cardiac motion in rats with 99.73 percent accuracy.
NSTENG can monitor aberrant cardiac motion and identify minute heart motions that are
missed by ECG. Zhao et al. outlined the development of biosafe and novel-structure TENGs,
as well as implantable and wearable sensors [88]. Figure 5f shows the iTENG between
the heart and pericardium, with the Kapton side facing the left ventricular inferior wall.
Periodic cardiac contraction and relaxation triggers the iTENG’s friction layers, causing
contact and separation. Experimental resulted indicated a high electrical output, with a
Voc of 14 V and an Isc of 5 A in vivo [87].

Figure 5. Demonstration of triboelectric nanogenerators for heart and respiration monitoring. (a) Wear-
able triboelectric nanogenerators for heart rate monitoring [81]. (b) Respiration-driven triboelectric
nanogenerators for biomedical purposes [82]. (c) A portable triboelectric nanogenerator to measure
respiration in real time [83]. (d) An in vivo pacemaker running on an implanted triboelectric nanogen-
erator powered by the patient’s breathing [87]. (e) Eco-friendly in situ gap generation of a no−spacer
triboelectric nanogenerator to monitor cardiovascular activities [88]. (f) Self−powered wireless cardiac
monitoring is provided by the implanted triboelectric nanogenerator in the in vivo system [89].
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3.2. Triboelectric Nanogenerators for Blood Pressure Sensors

Blood pressure sensor triboelectric nanogenerators are depicted in Figure 6. Figure 6a
illustrates a 33 × 33 mm2 chest pressure sensor for respiratory monitoring. In a single
breathing cycle, the chest cavity expands and contracts, pushing and releasing the sen-
sor [90]. The 1 min signal indicated shallow and deep breathing modes with 30 and
9 breaths/min, respectively [91]. Figure 6b depicts front and back views of the heart, with
three potential implant sites: the left lateral wall (LLW), the right lateral wall (RLW), and
the posterior wall (PW) of the heart. When the iTEAS was anchored over the LLW, output
voltage peaks fluctuated regularly and steadily. The average time between two consecutive
maximum peaks was less than five seconds. The waveforms of the output voltage are
indicated by solid blue lines [92]. The blue dots show the maxima of the output volt-
age. The output peaks of the device placed over the RLW indicate fine but less consistent
cyclic variations, whereas the output peaks of the iTEAS positioned under the PW of the
heart fluctuated sporadically. During inhalation, output peaks increased from 4.8 to 6.3 V,
whereas during cessation, they declined, suggesting separate respiratory phases. The red
line represents the inclination of output amplitude fluctuations [93].

Figure 6. Demonstration of triboelectric nanogenerators for blood pressure sensors. (a) Triboelectric
nanogenerators based on expandable microspheres as highly sensitive pressure sensors to monitor both
the respiratory system and the pulse [91]. (b) Schematic representation of the left lateral wall (LLW),
right lateral wall (RLW), and posterior wall (PW) from anterior and posterior cardiac views [93].
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4. Wearable Self-Powered Sensors Based on Triboelectric Nanogenerators

During the last decade, wearable self-powered sensors based on TENGs have been
applied for healthcare monitoring. In this section, we discuss self-powered sensors based
on the triboelectric nanogenerators for smart shoes, motion sensors, tactile sensors, smart
face masks, sleep monitoring systems, and self-powered nerve/muscle stimulation. Most
of the applications discussed in this section involve copper and aluminum as electrode
components, with Kapton, PDMS, and PTFE acting as the dielectric material.

4.1. Smart Shoes Based on the Triboelectric Nanogenerators

Figure 7 shows smart shoes utilizing triboelectric nanogenerators. Figure 7a demon-
strates a self-charging power system using a triboelectric nanogenerator for wearable
electronics. The triboelectric nanogenerator is made of multilayered elastomeric arches. A
pair of shoes with a maximum equivalent charge current of 16.2 A per shoe comprises a
triboelectric nanogenerator on the outsole to gather energy from walking or running [94].
Figure 7b displays a power-generating insole with multilayered triboelectric nanogener-
ators that record walking pressure. This application is an example of energy-harvesting
technology successfully applied for self-powered devices in everyday life, which could
have far-reaching ramifications [95].

Figure 7c shows a TENG-based shoe insole that can be used to collect energy from
human walking. This particular insole has a maximum output voltage of 220 V and a
maximum current density of 40 A. The shoe insole made of a single sheet of TENGs
that can be used to illuminate 30 white light-emitting diodes (LEDs) connected in series,
which can be achieved by using the TENG sheet as a light source [96]. A successful
application of a textile-based, humidity-resistant triboelectric nanogenerator (C-TENG) is
shown in Figure 7d. This kind of nanogenerator has the potential to be developed further
for self-powered healthcare sensors, for example, for detection of humidity, perspiration,
and gait phase. This devices represents a novel application of multifunctional textiles in
wearable energy harvesters and self-powered sensors, both of which are promising for
the development of future smart apparel items and personalized healthcare sensors [97].
Figure 7e shows that 3D-printed TENGs (3DP-TENGs) can be developed and readily
manufactured with a single integrated process that does not require additional assembly
stages. The two electrification components of TENGs are poly(glycerol sebacate) (PGS)
and carbon nanotubes (CNTs), which also function as electrodes. TENGs are naturally
responsive to biomechanical motions owing to their elastic PGS matrix, resulting in robust
energy outputs. Chen et al. proposed a novel technique the design and customization of
3D TENGs for varied electronic applications [98]. Figure 7f displays the ES-TENG structure.
With efficient motion transformation, the output performance of the proposed ES-TENG
is multiplied by more than a factor of ten. Although the ES-TENG does not interrupt the
regular stepping motion, daily stepping motion could provide as much as 13 µW/g of
specific power. The ES-TENG offers the potential of biomechanical energy harvesting for
a wide range of applications by generating considerably improved output performance
during natural daily walking motions [99].
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Figure 7. Demonstration of smart shoes based on triboelectric nanogenerators. (a) Multilayer
elastomeric triboelectric nanogenerators as shoe outsoles [94]. (b) Self-lighting shoe with LEDs in the
air cushion [95]. (c) A TENG−based shoe insole harvests human walking energy to light 30 white
LEDs in series [96]. (d) Self-powered gait phase detector with four integrated C−TENGs [97].
(e) Principle and functionality of 3DP−TENG [98]. (f) Schematic illustration of ES−TENG, which
consists of a bidirectional gearbox and a rotational TENG [99].

4.2. Triboelectric Nanogenerators for Motion Sensors

Figure 8 shows nanogenerators for triboelectric motion sensors. Figure 8a depicts
the development of a PTNG for energy generation and monitoring. In this design, a self-
powered walking sensor system leveraging PTNG analyzes human behavior while walking
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on a treadmill. The highest open-circuit voltage of a hybrid device was measured to be
21.9 V during a treadmill test at varying speeds [100].

Figure 8. Demonstration of triboelectric nanogenerators for motion sensors. (a) PTNG device for
energy harvesting and human motion detection [100]. (b) SF−TENG monitors various human
body motion states [101]. (c) A CSTN’s pushing action, bending motion, and twisting motion are
demonstrated [102]. (d) W−TENG sensor for detection of human walking posture [103]. (e) Concept
for a silk protein-based strain sensor and triboelectric nanogenerator (TENG) [104]. (f) Flexible
single-electrode triboelectric nanogenerators for biomechanical motion sensors [105].
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Figure 8b depicts a stretchable, highly durable, and deformable triboelectric nanogen-
erator (F-TENG) based on silica gel that can be used to collect mechanical energy from the
environment and monitor human motion and behavior via a highly sensitive response to
complex human motion, including stretching, folding, extrusion, and hitting [25,106–108].
A study by Zeng et al. promotes the use of TENGs in AI, sports monitoring, and large-scale
data collection [101]. Figure 8c shows a flexible, lightweight, biocompatible, coaxially struc-
tured triboelectric nanogenerator (CSTN). The device is wrapped in silicone rubber, with an
interior hollow circular tube as the core and outside hollow circular tubes as the shell to pre-
vent environmental contamination [109,110]. CSTNs can produce various electric signals
at different deformation angles. Therefore, a simple angle sensor function can be imple-
mented in self-powered lighting devices [111], portable electronics, motion detection, and
health monitoring [102]. As shown in Figure 8d, cotton film was used as the triboelectric
material in the construction of a unique wearable TENG (W-TENG). Triboelectric materials
include polytetrafluoroethylene (PTFE) and cotton films. W-TENGs can be used to collect
low-frequency mechanical energy from the environment, notably mechanical energy from
the human body, and convert it to electrical energy [112]. Furthermore, W-TENGs can be
used as human motion sensors to detect a person’s walking position [103].

Figure 8e shows nanostructured silk protein and silver nanowires (AgNWs) embedded
in nanostructured silk to generate a skin/textile-compatible, efficient, flexible, transparent
triboelectric nanogenerator (TENG) and strain sensor for biomechanical energy harvesting
and motion sensing. Strain sensors and bio-TENGs are combined on a single silk chip to
sense strain and absorb biomechanical energy [104]. The inexpensive, simple, biocompati-
ble, flexible, and transparent protein-based energy skin offers several advantages [113,114].
Figure 8f illustrates a flexible, single-electrode MXene/polydimethylsiloxane nanogen-
erator. High output provides 80 green LEDs in sequence with no extra electricity. The
textile-based composite can detect finger tapping, hand clapping, and hand hammering, in
addition to functioning as a triboelectric nanogenerator. These smart materials can serve as
energy sources [105].

4.3. Triboelectric Nanogenerators for Tactile Sensors

Figure 9 depicts nanogenerators for triboelectric tactile sensors. Figure 9a demonstrates
a self-powered and flexible electronic skin (e-skin) based on an ultra-stretchable triboelectric
nanogenerator (STENG) employing thermoplastic polyurethane/silver nanowires/reduced
graphene oxide (rGO). The e-skin (2 × 2 cm2) has a high open-circuit voltage (202.4 V)
and instantaneous power density (6 mW/m2). Zhou et al. proposed a unique and imple-
mentable approach for building self-powered, high-performance e-skin for soft robotics,
HMI, and the IoT [115]. Figure 9b shows transparent and flexible triboelectric nanogener-
ators based on ionogel and polydimethylsiloxane film for tactile sensing. Such nanogen-
erators can monitor physiological processes with sensitivity at varied tensile ratios [116].
Figure 9c shows a single-electrode, self-powered triboelectric sensor matrix. As the flexible
dielectric substrate, a 250 m thick PET film square was used to coat with masks with
unique patterns on both sides, and laser-drilled through-holes were assembled [109,117].
Magnetron sputtering was used to deposit patterned Ag electrodes on both sides of the
substrate once the mask was removed [118]. This device could be used for motion tracking,
touch sensing [65], and human–machine interactions [78]. Ultra-thin, soft, skin-integrated,
self-powered sensors based on FS-TENGs with porous poly(dimethylsiloxane) foam and
sophisticated serpentine silver nanowires are designed for applications of TENGs in sen-
sitive human–machine interactions (Figure 9d). FS-TENGs with 24 integrated sensors
on a glove and a tactile sensor array exhibit self-powered sensing and energy harvest-
ing [119]. Figure 9e shows bio-inspired TENG-powered e-skin sensors for robotic tactile
sensing applications. Characterization of the handshaking pressure and bending angles of
each bionic finger during a human handshake proves the tactile sensis abilities of TENG
e-skin sensors [83]. TENG e-skin sensors can be used to measure surface roughness and
hardness [120]. Figure 9f shows a tiny tactile sensor based on dual-mode TENGs. This
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self-powered dual-mode sensor can interpret object contact and hardness by studying the
contour of the current peak [121].

Figure 9. Demonstration of triboelectric nanogenerators for tactile sensors. (a) Structural diagram of
STENG-based e-skin [115]. (b) Transparent and stretchy TENG-based tactile sensor structure [116].
(c) TESM structure for real-time tactile mapping [78]. (d) Foam-based TENGs as tactile glove sen-
sors [119]. (e) Diagrammatic representation of the mechanism of TENG e-skin sensors [120]. (f) Prin-
ciple of smart tactile sensors [121].

4.4. Smart Face Mask Based on Triboelectric Nanogenerators

Figure 10 depicts a triboelectric nanogenerator-based smart face mask, with the con-
struction of a hybrid air filter mask shown in Figure 10a. A tribocharge-enhanced hybrid
air filter mask with a 9.3–34.68 percent filtration improvement for particles of 0.3–2.5 µm
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compared to a state-of-the-art air filter utilized in disposable masks was designed for
effective collection of nano- to micro-sized particulate matter. A modest pressure drop of
approximately 110 Pa results in a significantly increased service life of 48 h with steady
filtration effectiveness of 94 percent for 0.3–0.4 µm and 99 percent for 1–2.5 µm [122].

Figure 10. Smart face mask based on triboelectric nanogenerators. (a) The filtering principle of a
tribocharge air filter face masks [122]. (b) Basic design of RS-TENG [123]. (c) Representation of the
potential functionality of a triboelectric self-powered mask [124]. (d) Output efficiency produced by
the PyNG when powered by human breathing [125].

Figure 10b illustrate the principle of RS-TENG. A triboelectric nanogenerator for respi-
ratory sensing (RS-TENG) was designed and connected to a facemask to provide respiratory
monitoring capabilities. This design facilitated the development of multifunctional health
monitoring devices during the COVID-19 pandemic due to its outstanding benefits, such
as its compact size, ease of production, simple installation, and cost-effectiveness [123].
Figure 10c shows a triboelectric face mask. The recommended mask is layered, with the
inner three layers working as a triboelectric (TE) filter and the outside layer serving as
an electrocution layer (EL). Owing to the electric field between electrocution layers, virus
particles are shocked in the EL. Four pairs of triboelectric textiles, PVC-nylon, PP-PU,
latex rubber-PU, and PI-nylon, were investigated to assess mask efficacy [124]. Figure 10d
shows the PyNG structure. PyNG can generate 42 V open-circuit and 2.5 µA short-circuit
output signals. The maximum power at 50 MΩ was 8.31 µW. The remarkable performance
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and unfettered wearing mode of PyNG make it a suitable wearable energy harvester and
self-powered multipurpose sensor [125].

4.5. Triboelectric Nanogenerators for Sleep Monitoring

Triboelectric nanogenerators for sleep monitoring are shown in Figure 11. Figure 11a
shows a wireless sleep monitoring system for active healthcare and remote diagnostics.
Inspired by pillow fillers, self-powered body-motion sensors with fractal down-like or
feather-like structure were designed for daily bedding [126]. This technology may offer
comfortable remote sleep healthcare and illness diagnostics for home-based sleep monitor-
ing of the elderly, with the goal of reducing the risk of unexpected death during sleep [127].
Figure 11b shows a flexible and affordable triboelectric nanogenerator (TENG) based on a
patterned aluminum–plastic sheet and an entrapped cantilever spring leaf for sleep–body
movement monitoring [128]. This discovery may increase the usage of self-powered TENGs
in healthcare and help build real-time mobile healthcare services [129]. Figure 11c demon-
strates a sleep monitoring (FB-TENG) structure for a pressure-sensitive, non-invasive, and
comfortable smart pillow that can monitor head movement in real time during sleep. The
FB-TENG is made of pressure-sensitive and durable porous poly(dimethylsiloxane) (PDMS)
with fluorinated ethylene propylene (FEP) powder. Kou et al. proposed a practical sensing
device for sleep monitoring that could be expanded in the future to real-time monitoring
of certain disorders, including brain ailments and cervical spondylosis [130]. Figure 11d
shows a large-scale triboelectric nanogenerator with a flexible sleep sensor. This technology
enables large-scale, low-cost TENG sensor production [131].

Figure 11. Triboelectric nanogenerators for sleep monitoring. (a) Structural design of a proposed
smart pillow [127]. (b) The use of the TES to monitor the body during sleep [129]. (c) Utilization of an
FB-TENG array in the form of a smart cushion for the purpose of monitoring head movement [130].
(d) Self-powered source for a bendable sensor for tracking human sleep [131].
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4.6. Self-Powered Nerve/Muscle Stimulation Based on Triboelectric Nanogenerators

A self-powered nerve/muscle stimulation based on triboelectric nanogenerators is
shown in Figure 12. Figure 12a demonstrates a self-powered system consisting of a stacked-
layer triboelectric nanogenerator (TENG) and a multiple-channel epimysia electrode for
direct stimulation of muscles. The two obstacles associated with direct TENG muscle
stimulation were studied further in [38,39]. The optimal stimulation efficiency can be
attained via systematic mapping using a multiple-channel epimysia electrode to address
the first obstacle of enhancing the efficiency of low-current TENG stimulation [25,132].
The second difficulty is the stability of TENG stimulation. The force output produced
by TENGs has been proven to be more stable than that of traditional square-wave and
enveloped high-frequency stimulation [133]. Figure 12b depicts stacked-layer triboelectric
nanogenerator (TENG)-driven electrical muscle stimulation using a flexible intramuscular
electrode with several channels. This multiple-channel intramuscular electrode maps
sparsely scattered motoneurons in muscle tissue, enabling high-efficiency TENG muscle
stimulation despite the TENG’s moderate short-circuit current [38]. Figure 12c shows a
self-powered implanted stimulator. Self-powered implanted electrical stimulators based on
triboelectric nanogenerators (TENGs) could improve osteoblast adhesion, proliferation, and
differentiation. Implanting a flexible TENG into living creatures verified the practicality
of the self-powered electrical stimulator [25]. Figure 12d illustrates a diode-amplified
triboelectric nanogenerator (D-TENGs). Diode-amplified triboelectric nanogenerators
(D-TENGs) may improve direct muscle stimulation [39].

Figure 12. Self-powered nerve/muscle stimulation based on triboelectric nanogenerators. (a) Diagram-
matic representation of electrical muscle activation directly driven by a TENG [133]. (b) Diagrammatic
representation of electrical muscle stimulation directly driven by a TENG [38]. (c) Self-powered im-
plantable electrical stimulator [25]. (d) D-TENGs are used for the purpose of direct muscle activation [39].

5. Applications, Challenges, and Future Trends of TENGs for Biomedical Sensors

Figure 13 illustrates challenges associated with TENGs and future tendencies. In
January 2012, Wang’s group introduced the triboelectric nanogenerator concept, which
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employs contact electrification and electrostatic processes to harvest ambient mechanical
energy [62,75–78,117,126,132,134–138]. TENGs now include biodegradable, wireless, blue
energy, and smart city applications. When paired with AI, TENGs can power robots and
self-powered sensors. In ubiquitous computing, TENGs are recommended for extension of
sensor networks. Notwithstanding the papers outlining TENG-based devices for biomedi-
cal sensing, evaluating the performance of such devices can be difficult due to variances
in working modes, testing, materials, and applications. It is incorrect to presume that one
device performs better than another without considering other factors. Some suggestions
for future research include:

1. Materials used in biomedical monitoring are anticipated to be flexible, light, stretch-
able, washable, attractive, skin-friendly, and even environmentally beneficial from
the standpoint of wearability. As a result, researchers will gradually employ textile,
rubber, hydrogel, shape-memory polymers, and other innovative functional materials
to create well-designed TENG sensors.

2. With respect to sensing techniques, quantification could replace traditional two-
stage judgment (i.e., “0” and “1”) on a transient pulse with no intermediate state,
particularly for the control step. Furthermore, the composite mechanism of the
intermediate state in a human-like intelligent sensor should be investigated further.

3. From the standpoint of technical integration, multiparameter systems can be built with
advanced packaging and optimized modularization, and other novel technologies
can be introduced to support the development of wearable biomedical monitors.

Figure 13. TENG biomedical sensor applications, limitations, and trends for the future.

Table 1 shows a comparison of the performance output of various TENG devices
for biomedical sensors, such as heart and respiration monitoring, blood pressure sensors,
smart shoes, motion sensors [135], tactile sensors, smart face masks, sleep monitoring, and
self-powered nerve/muscle stimulation. Most of the electrodes used in TENG are made of
Al and Cu, most triboelectric layers comprising PDMS, PTFE, and Kapton.
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Table 1. Summary of various TENG techniques for biomedical sensors.

Structure Year Authors Applied Tribolayer Electrode Type Max Open-Circuit
Voltage (V )

Max Short-Circuit
Current Current Density Surface Power

Density
Power

Density and Power Advantages/Disadvantages

Heart and respiration
monitoring

2021 Shen et al. [81] Kapton/PDMS Cu 109 2.73 µA - - -
Monitors the condition of the heart

and respiration
system/Incompatible with the
cellular tissues of the heart in

some cases

2020 Li et al. [82] PTFE Cu 0.2–45 0.5–18 µA - 0.6–15 W/m2 -
2019 Zhang et al. [83] PTFE/nylon Cu 40 - - - -
2014 Zheng [87] Kapton/PDMS Al/Au 12 0.8 µA - 8.44 mW/m2 -
2021 Zhao et al. [88] Silicone rubber Cu 3.67 51.74 nA - - -
2016 Zheng et al. [89] PTFE/Kapton/PDMS Al/Cu 90 12 µA - 107 mW/m2 -

Blood pressure sensors 2019 Liu et al. [91] PDMS/FEP Cu ~70 - - - - Prevention of heart attack
and stroke2016 Ma et al. [93] Kapton/PDMS/PTFE Al/Au ~15 4 µA - - -

Smart shoes

2017 Li et al. [94] Dielectric elastomer Conductive Elastomer 50 16.2 µA ~8 mA/m2 0.1 W/m2 -

Energy harvesting/increased
vulnerability of shoes

2013 Zhu et al. [95] Kapton/PTFE Al 220 600 µA - - -
2013 Hou et al. [96] PDMS/ITO Cu/PET 220 40 µA ~0.08 mA/cm2 - 1.4 mW
2018 Jao et al. [97] PTFE Metal/chitosan-glycerol 130 15 µA 10 mA/m2 - -
2018 Chen et al. [98] PGS/CNTs Salt 170 11 µA 200 mA/m2 - 185.2 µW
2021 Yun et al. [99] FEP Al 3 k 20 µA - - 3 mW

Motion sensors

2022 Matin Nazar et al. [100] Kapton Al/Cu 21.9 - - - 70 µW
Monitors walking behavior and
helps to improve the treatment

process/exposed sensors subject to
increased vulnerability

2022 Zeng et al. [101] FEP/silicone/PTFE/nylon Carbon black/Al 468 10.4 µA - - 1.25 mW
2018 Tian et al. [102] Silicone Ni/conductive silicone 380 11 µA - - 1.638 mW
2021 Zhang et al. [103] PTFE/cotton Conductive cotton 556 26 µA - 0.66 mW/cm2 -
2019 Gogurla et al. [104] PDMS/silicone AgNWs/Al/Cu/PET 110 ~0.1 µA - 2 mW/m2 -
2020 He et al. [105] MXene/PDMS Cu–Ni/textile 225 - 30 µA/cm2 10 mW/cm2 -

Tactile sensors

2020 Zhou et al. [115] TPU mats AgNWs/rGO 202.4 - - 6 mW/m2 - Increase efficiency, energy
harvesting and aids in the diagnosis

of disease/challenges associated
with washing; can cause skin
sensitivity and discomfort in

some users

2019 Zhao et al. [116] PDMS PAMPS ionogel 3.3 2.3 nA - - -
2016 Wang et al. [78] PDMS/Kapton PET ~60 - - - -
2021 Wu et al. [119] PDMS AgNWs 78.7 26.5 µA - 33.75 W/m2 -
2019 Yao et al. [120] PDMS AgNWs 3.48 26.29 nA - - -
2017 Li et al. [121] PDMS AgNWs/CuNWs/Al 90 9 µA - - -

Smart face masks

2021 Wang et al. [122] FEP/NBR Cu/AgNW 1.8 k - - - -
Increases performance and

efficiency/can cause skin sensitivity
in some users

2022 Lu et al. [123] FEP/acrylic Al 8 0.8 µA - - -
2021 Ghatak et al. [124] PVC/PP/latex rubber/PI Nylon/Pu ~90 ~25 mA - - 400 mW
2017 Xue et al. [125] PVDF Al 42 2.5 µA - - 8.31 µW

Sleep monitoring

2020 Zhang et al. [127] PTFE Cu ~350 ~40 µA - - 11.6 mW
Improves the treatment of insomnia

and sleep disorders
2016 Song et al. [129] CPP/PA Al/Cu 55 0.9 µA - ~120 mW/m2 -
2022 Kou et al. [130] PDMS/Kapton Al ~65 ~0.7 µA - - -
2018 Ding et al. [131] PDMS Al/textile electrode ~16 - - - -

Self-powered
nerve/muscle stimulation

2019 Wang et al. [133] PTFE Al - 55 µA - - - Monitoring the condition of the
nerve/muscle stimulation

system/incompatible with the
cellular tissues in some people

2019 Wang et al. [38] PTFE Al 47 35 µA - - 95 µW
2019 Tian et al. [25] PTFE/PDMS Au/PET 100 1.6 µA - - -
2019 Wang et al. [39] PTFE Al - 40 µA - - ~500 µW
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6. Conclusions

For energy harvesting and sensing in healthcare and biological applications, triboelec-
tric nanogenerators possess an abundance of advantageous characteristics, such as flexibil-
ity, low weight, and easy integration. Triboelectric nanogenerators confront a number of
obstacles, such as fatigue, likely loss of elasticity, and damage to auxiliary components. Sev-
eral features of TENG healthcare systems that provide wearable, minimally invasive, and
uncomplicated solutions while gathering energy from human motion were investigated.
Recent improvements in triboelectric devices were assessed in terms of their importance,
structure, capabilities, performance, and future potential. The protective and therapeutic
effects of TENG on numerous internal and exterior human organs need to be reported in
detail. Finally, we discussed the growth of TENGs and the problems and possibilities they
provide in healthcare and biological applications.
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