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Abstract: Myricaria laxiflora (Tamaricaceae) is an endan-
gered plant that is narrowly distributed in the riparian
zone of the Three Gorges, along the Yangtze River, China.
Using bright-field and epifluorescence microscopy, we
investigated the anatomical and histochemical features
that allow this species to tolerate both submerged and
terrestrial environments. The adventitious roots of Myr.
laxiflora had an endodermis with Casparian bands and
suberin lamellae; the cortex and hypodermal walls had
lignified thickenings in the primary structure. In the
mature roots, the secondary structure had cork. The apo-
plastic barriers in stems consisted of a lignified fiber ring

and a cuticle at the young stage and cork at the mature
stage. The leaves had two layers of palisade tissue, a hya-
line epidermis, sunken stomata, and a thick, papillose
cuticle. Aerenchyma presented in the roots and shoots.
Several Myr. laxiflora structures, including aerenchyma,
apoplastic barriers in the roots and shoots, were adapted
to riparian habitats. In addition, shoots had typical xero-
phyte features, including small leaves, bilayer palisade
tissues, sunken stomata, a thick, papillose cuticle, and a
hyaline epidermis. Thus, our study identified several ana-
tomical features that may permitMyr. laxiflora to thrive in
the riparian zone of the Three Gorges, China.
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1 Introduction

Myricaria laxiflora (Tamaricaceae) is an endangered spe-
cies that prior to the construction of the Three Gorges
Dam (TGD) was narrowly distributed in the riparian
zone along the Yangtze River, China, from Banan County,
Chongqing Province, to Zhijiang County, Hubei Province
[1–5]. After TGD construction was completed in 2009, only
a few natural populations of Myr. laxiflora remained, all
downstream of Yidu and Zhijiang counties; asMyr. laxiflora
habitats upstream of the TGD were lost, some of the plants
from the upstream localities have been preserved ex situ
[4,6–9]. In its native environment along the Yangtze River,
Myr. laxiflora remains dormant while completely submerged
during summer flood pulses and then sprouts in the autumn
and winter after the floods recede [1–5]. Myr. laxiflora may
represent a promising plant with which to restore the
ecology of Yangtze River after the degradation associated
with TGD construction [8–14].

Like many other wetland plants,Myr. laxiflora is typi-
cally subjected to anoxic submersion during summer
flooding [2,3,15–17]. Aquatic and amphibious plants have
aerenchyma and tight barriers to store and retain oxygen
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in anoxic conditions and during water–solute exchanges
[18–21]. In the amphibious species Cynodon dactylon,
Artemisia lavandulaefolia, and Alternanthera philoxer-
oides, which we have studied from the Jianghan Plain
down to the Three Gorges, air spaces included aer-
enchyma and pith cavities in roots and shoots, and bar-
riers included the endodermis, exodermis, and suberized
peripheral ring [22–25]. Myr. laxiflora growing in the
riparian zone of the Yangtze River may have aerenchyma
and structures similar to these amphibious species.

Other species in the Tamaricaceae that are closely
related toMyr. laxiflora have diverse habitats and are widely
distributed in mountainous, cold, and arid regions world-
wide as well as in those with saline-alkali soils. Plants in the
Tamaricaceae are often used for ecological restoration
[26–33]. In this family, xerophyte shoots have abundant
palisade tissues under the epidermis [34–41]; the epidermis
itself has a thick, papillose cuticle [28,36,42] and sunken
stomata [38,43]. In addition, species that belong to Tamar-
icaceae have deep roots [32,34,44–46], which represent an
adaptation to drought stress [47–49].

The structure and physiology of Myr. laxiflora seeds
and shoots may play important roles in the propagation
of this species as well as its invasion of new habitats
[8–14,29,50]. However, little is known of the anatomical
and histochemical features that allow Myr. laxiflora to tol-
erate submersion and exposure. To our knowledge, the only
relevant previous study of this species showed that the
surfaces of young branches had smooth, thin cuticles [29].

To address this knowledge gap, we aimed to investi-
gate whether the anatomical and histochemical features
ofMyr. laxiflora were consistent with its tolerance to sub-
mersion as well as to diverse terrestrial environments.
Evidence of such adaptative features might help to explain
the ability of this plant to thrive despite summer dormancy
and to grow in diverse terrestrial environments during the
spring, autumn, and winter. To study the structures of
roots and shoots, we analyzed the anatomical and histo-
chemical characters of Myr. laxiflora samples, primarily
using berberine hemisulfate–aniline blue (BAB) to visua-
lize Casparian bands and lignified walls, Sudan red 7B
(SR7B) to visualize suberin lamellae, and toluidine blue
O (TBO) to visualize anatomical features.

2 Materials and methods

2.1 Sample collection and processing

In October 2019, we collected adventitious roots, stems,
and leaves specimens of Myr. laxiflora at the riparian of

the Yangtze River in Yidu County, Hubei, China. Approxi-
mately 50 adventitious roots and 20 shoots with leaves
were collected from 10 individuals.

Adventitious root and leaf samples were fixed in for-
maldehyde–alcohol–acetic acid immediately following
collection [51]. After fixation, the root tissues were sec-
tioned freehand under a stereoscope (JNOEC JSZ6, China),
using a two-sided blade razor. Adventitious root samples
(∼30–80mm long) were sectioned at 10, 20, 30, 40, or
50mm from the root tip. Aged tissue with attached cortex
was sloughed off. Each distance from the root tip was repre-
sented by 3–6 sections from different samples per stain.

Shoot bases were immersed in tap water immediately
following collection. Shoots (∼150–270 mm long) were
sectioned at 10, 20, 30, 40, and 50mm from the shoot
apex. Each distance from the shoot base was represented
by 3–6 sections from different samples per stain. Sections
(10–30 µm thick) were cut in the middle of the seedling
leaves. Leaves were represented by 3–6 sections from
different samples per stain.

2.2 Histochemistry and microscopy

Sections were stained with one of three stains. SR7B was
used to identify suberin in the cell walls [52], BAB was
used to identify Casparian bands and lignin in the cell
walls [53,54], and TBO was used to visualize tissue struc-
tures [55,56]. All specimens were examined using bright-
field microscopy under a Leica DME microscope and
photographed with a digital camera (Nikon E5400, Japan).
Specimens stained with BAB were viewed under an
Olympus IX71 epifluorescence microscope and photo-
graphed with a digital camera (RZ200C–21, China) [22].

3 Results and discussion

3.1 General structure

Myr. laxiflora had thick adventitious roots (Figure 1), fine
adventitious roots (Figure 2), and shoots (Figures 3 and 4).
The thick adventitious roots possessed four to five layers
of cortex cells in the primary structure (Figure 1a–d); in
the secondary structure, the cortex sloughed off with the
bark (Figure 1e–i). The fine adventitious roots contained
one or two layers of cortex cells in the primary structure
and only cork in the secondary structure (Figure 2). Both
thick and thin adventitious roots had diarch to tetrarch stele
with differentiated proto- and metaxylem, a cortex with
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an endodermis, a hypodermis, and a rhizodermis. The
cortex and hypodermal walls had lignified thickenings.
Aerenchyma were present in the root cortices.

TheMyr. laxiflora stem possessed cork and an epidermis
as well as a lignified phloem fiber ring enclosing a central
cylinder of bundles internal to the cortex (Figure 3a–i).

Figure 1: Photomicrographs of thick adventitious roots (50–80mm long) ofMyricaria laxiflora, showing some of the secondary growth; scale
bars = 50 µm. (a) Protoxylem, endodermis (arrowhead), lignified cortex, intercellular space, hypodermis, and rhizodermis. Staining: BAB.
(b) Protoxylem, endodermis (arrowhead), passage cells, cortex, intercellular space, hypodermis, and rhizodermis. Staining: SR7B.
(c) Protoxylem, metaxylem, endodermis (arrowhead), lignified cortex, hypodermis, and rhizodermis. Staining: BAB. (d) Protoxylem, meta-
xylem, endodermis (arrowhead), cortex, aerenchyma, hypodermis, and rhizodermis. Staining: SR7B. (e) Protoxylem, vascular cambia (white
arrowhead), divided pericycle (arrow), endodermis (black arrowhead), cortex, and aerenchyma. Staining: TBO. (f) Protoxylem, metaxylem,
cork, endodermis (arrowhead), passage cells, and cortex. Staining: BAB. (g) Primary xylem, cork, endodermis (arrowhead), and cortex.
Staining: SR7B. (h) Primary xylem, secondary xylem, cork, endodermis (arrowhead), passage cells, and lignified cortex. Staining: BAB.
(i) Secondary xylem, cork, and bark (whole arrow). Staining: SR7B. Inset shows cork. Staining: BAB. Abbreviations used in the figure
are as follows: ae– aerenchyma; BAB – berberine sulfate–aniline blue; ch – chloroplast; cr– cork; co – cortex; cu – cuticle; ep – epidermis;
hy – hypodermis; ic– intercellular space; mx –metaxylem; pc– passage cells; pt– palisade tissue; f – phloem fibers; pi – pith; xy – primary
xylem; px– protoxylem; rh – rhizodermis; st– spongy tissue; SR7B – Sudan red 7B; sx – secondary xylem; TBO– toluidine blue O; ve– vein.
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TheMyr. laxiflora leaf had palisade tissue, a hyaline mar-
ginal epidermis, stomata, and a cuticle with a papillose
surface (Figure 4a–f).

3.2 Structure of the thick adventitious root

At 10mm from the root tip, the stele had diarch and
tetrarch protoxylem poles, the endodermis had Casparian
bands and almost complete suberin lamellae (only a few
passage cells), the cortex and hypodermal walls had ligni-
fied thickenings, and an intercellular space appeared
within the cortex (Figure 1a and b). At 20mm from the
root tip, the stele had metaxylem poles, the endodermis
had almost complete suberin lamellae, the cortex had irre-
gular lysigenous aerenchyma, and the rhizodermis was
still intact (Figure 1c and d). At 30mm from the root tip, a
redivided pericycle also formed phellogen to begin cork
production and the endodermis had few passage cells
(Figure 1e–g). At about 40mm from the root tip, the peri-
cycle over the protoxylem poles and the cells between
the primary xylem and the primary phloem had become
a vascular cambium to initiate the secondary xylem, the
cork was partially undeveloped, and the cortex begin to
slough off (Figure 1e–h). At >50 mm from the root tip

(mature adventitious roots), the cortex and hypodermis
had been sloughed off, the stele has a secondary xylem,
and the cork had suberized to form bark (Figure 1i).

3.3 Structure of the fine adventitious root

At 10mm from the root tip, Casparian bands, suberin
lamellae, and passage cells were present on the endo-
dermis, the cortex and hypodermal walls had ligni-
fied thickenings, and the stele had a diarch protoxylem
(Figure 2a and b). At 20 mm from the root tip, the endo-
dermis had almost complete suberin lamellae with a few
passage cells, the stele had a metaxylem, and the cortex
and hypodermis begin to slough off (Figure 2c and d). At
30 mm from the root tip, the pericycle redivided to form
phellogen and produce suberized cork, while the stele
had only primary xylem (Figure 2e and f).

We demonstrated that the primary structures of the
thick and fine adventitious roots exhibit similar anato-
mical and histochemical features of Myr. laxiflora. Myr.
laxiflora roots had a suberized endodermis and a lignified
hypodermis, while the cortex and hypodermal walls had
lignified thickenings near the endodermis. The cortex of
the thick adventitious roots had more cell layers than that

Figure 2: Photomicrographs ofMyricaria laxiflora fine adventitious roots (30–50mm long); scale bars = 50 µm. (a) Protoxylem, endodermis
(arrowhead), lignified cortex, intercellular space, hypodermis, and rhizodermis. Staining: BAB. (b) Endodermis (arrowhead), passage cells,
cortex, hypodermis, and rhizodermis. Staining: SR7B. (c) Protoxylem, metaxylem, endodermis (arrowhead), passage cells, lignified cortex,
intercellular space. Staining: BAB. (d) Protoxylem, metaxylem, endodermis (arrowhead), cortex. Staining: SR7B. (e) Primary xylem, cork.
Staining: BAB. (f) Cork. Staining: SR7B.
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of the fine adventitious roots. In addition, the thick
adventitious roots had a secondary structure containing
cork, as commonly observed in eudicots [57–59]. In contrast,
the fine adventitious roots had only primary xylem.

The young roots of Myr. laxiflora were similar in
structure to the young roots of Oenanthe javanica and
Alt. philoxeroides [25,60]. However, the hypodermis of
O. javanica has more cell layers than that ofMyr. laxiflora
as well as a cortex with spacious aerenchyma (although

this cortex lacks lignified walls); in addition, unlike Myr.
laxiflora, the roots of O. javanica are surrounded by aer-
enchyma, and the walls possess suberin lamellae [60].
The cortices and hypodermis of the aquatic roots of Alt.
philoxeroides have lignified walls and aerenchyma [25],
as well as broccoli and Cardamine hupingshanensis [61–63].
It is possible that the lignified thickenings we observed in
the roots of Myr. laxiflora relate to the riparian habitats of
the Three Gorges [25,61–63].

Figure 3: Photomicrographs of Myricaria laxiflora stems (150–270mm long). Scale bars = 50 µm. (a) Pith, primary xylem, phloem fibers,
cortex, intercellular space, and epidermis. Staining: TBO. (b) Pith, primary xylem, phloem fibers, cortex, chloroplast, epidermis, and cuticle.
Staining: BAB. Inset shows phloem fibers and cuticle. Staining: SR7B. (c) Secondary xylem, vascular cambia (arrowhead), phloem fibers,
cortex, divided cork, and epidermis. Staining: TBO. (d) Pith, secondary xylem, phloem fibers, cortex, and cuticle. Staining: BAB.
(e) Secondary xylem, phloem fibers, cortex, intercellular space, chloroplast, cork, and cuticle. Staining: SR7B. (f) Secondary xylem,
vascular cambia (arrowhead), phloem fibers, cortex, intercellular space, cork, and epidermis. Staining: TBO. (g) Pith, secondary xylem,
phloem fibers, cortex, cork, and cuticle. Staining: BAB. (h) Secondary xylem, phloem fibers, cortex, cork, and cuticle. Staining: SR7B.
(i) Pith, secondary xylem, phloem fibers, cortex, cork, and cuticle. Staining: BAB. Inset shows bark (arrow). Staining: SR7B.
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The roots of wetland or aquatic eudicots from Jianghan
Plain (China) or from the Amazon Basin, such as Art.
lavandulaefolia, Art. selengensis, Ranunculus trichophyllus,
and Tabernaemontana juruana, possess an endodermis,
a uniseriate exodermis, and a cortex that lacks lignified
walls [24,64,65]. In contrast, the roots of wetland grasses,
such as Oryza sativa, Phalaris arundinacea, Phragmites
australis, and Zizania latifolia, possess an endodermis
and a multiseriate exodermis [20,22,23,66,67]. The bar-
riers of these wetland or aquatic species were stronger
than Myr. laxiflora with an endodermis and lignified
cortex as well as hypodermis in roots.

3.4 Stem structure

The stem had a lignified phloem fiber ring, enclosing a
central cylinder of bundles internal to the cortex, and an
epidermis with a thick cuticle. At 10mm from the new
shoot apex, the fiber ring enclosed vascular bundles, and

a spacious pith was present in the center (Figure 3a and b).
At 30–40mm from the new shoot apex, the vascular cam-
bium produced an internal secondary xylem; the phloem
fibers had strengthened and lignified; and the cortical cells
had redivided to form suberized cork, one cell layer thick,
under the epidermis (Figure 3c–e). At the new shoot base,
the cork had several layers of suberized cells (Figure 3f–h).
In 1-year-old shoots, the cylinder bundles had spacious
secondary xylem, and the cork has suberized to form
bark (Figure 3i). Intercellular spaces and chloroplasts were
present in the stem cortices (Figure 3a, b, e, and f).

Young stems of Myr. laxiflora possessed a lignified
fiber ring, a thick cuticle, and a cortex either with chloro-
plasts and small aerenchyma or with one layer of cork
cells. In contrast, mature stems had prominent secondary
xylem in the center of the stem and a thick bark. In con-
trast, Zhang et al. [29] found that young branches of Myr.
laxiflora had smooth, thin cuticles. The lignified fiber ring
in the young stems of Myr. laxiflora was similar to the
lignified sclerenchymal ring observed in C. hupingshanensis,

Figure 4: Photomicrographs of Myricaria laxiflora leaves. Scale bar = 50 µm. (a) Adaxial surface, stomata (arrowhead), and hyaline
epidermal margin (arrow). Unstained. Inset shows stomata (arrowhead), and fine papillae (*). Staining: BAB. (b) Abaxial surface and vein.
Unstained. Upper inset shows lower and marginal epidermal walls with thick cuticle (arrowhead) and papillae (*). Staining: BAB. Lower
inset shows large papillae (*). Staining: BAB. (c) Middle blade, vein, upper epidermis with cuticle and fine papillae (white #), lower
epidermis with cuticle and large papillae (gray #), stomata (arrowhead), palisade tissue, aerenchyma, spongy tissue, and papillae (*).
Staining: SR7B. (d)Marginal blade, upper epidermis with cuticle and fine papillae (white #), lower epidermis with cuticle and large papillae
(gray #), stomata (arrowhead), palisade tissue, papillae (*), and marginal epidermis (arrow). Staining: SR7B. (e) Blade, upper epidermis (*),
lower epidermis (#), palisade tissue, spongy tissue, and hyaline epidermal margin (arrow). Staining: TBO.
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P. arundinacea, and Z. latifolia [22,23,63,67]. This ring might
serve to increase themechanical strength of the young stem.
Suberized cork, which is commonly observed in eudicots
[58,59], is similar to the phellem of Art. selengensis and
Alt. philoxeroides [24,25] and to the suberized and lignified
peripheral mechanical ring in the Paspalum distichum, Pha.
arundinacea, and Z. latifolia [22,23,67]. This suggests that
Myr. laxiflora’s tolerance to flooding is typical of amphibious
plants. The shoot cortices have chloroplasts, which are pre-
sent in other Tamaricaceae species [28,30,68]. These obser-
vations indicate that Myr. laxiflora has features that belong
to Tamaricaceae taxology and serve as adaptations to the
environments in the Three Gorges.

3.5 Leaf structure

The upper surface of the leaf has obvious stomata, small
epidermal cells, a thin cuticle, and fine papillae. The
lower surface and edge of the leaf have sunken stomata,
large epidermal cells, a thick cuticle, and large papillae
(Figure 4a–d, e). The edges of the epidermal cells are
hyaline (Figure 4a and e). Palisade tissue was observed
below and above the adaxial and abaxial epidermis,
respectively; scant spongy mesophyll tissue was observed
between the layers of palisade tissue (Figure 4c–e).
Aerenchyma was present in the middle of the leaf blade
(Figure 4c).

The leaves of Myr. laxiflora are typical of xerophytes
adapted to arid environments: they are small and have
two layers of palisade tissue, sunken stomata, and a thick
papillose cuticle. Bilayer palisade tissues are also found
in several other xerophytes, including Myr. bracteate
[26], Myr. germanica [70], Reaumuria soongoriea [35],
Tamarix ramosissima [30], Elaeagnus angustifolia [36],
Eschweilera tenuifolia [69], Populus euphratica [36,40],
Peganum nigellastrum [39], Alhagi sparsifolia [34], and
Ziziphus jujuba var. spinosa [41]. Similarly, the leaves of
several xerophyte plants, including Myr. germanica [70],
Tam. laxa [28,42], Tam. ramosissima [30], Tam. chinensis
[68], Ela. angustifolia [36], and Caragana spp. [37,38],
have sunken stomata, thick cuticles, and surface papillae
[59]. The epidermis at the abaxial margins of the leaves
of Myr. laxiflora was largely hyaline and may function
similar to the white hairs on xerophyte leaves [36,37] or
the hyaline tips of bryophyte leaves [71].

In plant tissues, aerenchyma help to retain oxygen
when the plant is submerged, in order to improve sur-
vival [15–17,20,72,73]. The roots of Myr. laxiflora had aer-
enchyma and histochemical features similar to those of

Alt. philoxeroides aquatic roots, even though Alt. philox-
eroides shoots have large air spaces [25], and the leaves
have lysigenous of xeromorphic New Zealand hemp [59],
whileMyr. laxiflora shoots have narrow intercellular spaces.
In contrast, the shoots of wetland plants, such as Pas.
distichum, Art. lavandulaefolia, and Art. selengensis, have
spacious pith cavities and cortical lacunae, which might
facilitate survival when submerged over long periods
[22–24,64,67].

4 Conclusion

We identified that Myr. laxiflora have typical amphibious
plant features, including apoplastic barriers consisting of
the endodermis, lignified wall thickenings, cork, and cuticle
as well as the aerenchyma, suggesting that Myr. laxiflora is
well adapted to the riparian habitats of the Three Gorges
along the Yangtze River [16–19,24,25,54,60,63,72]. The shoots
of Myr. laxiflora have typical xerophyte features, common
across the Tamaricaceae, including small leaves, bilayer pali-
sade tissues, sunken stomata, a thick papillose cuticle, and a
largely hyaline epidermis [26,28,30,35–37,40,42,59,68,69].
Our results help to explain how the rare plant Myr. laxiflora
survives in flooded and receded environments and may help
to contextualize the taxonomy, evolution, and phylogeny of
Myr. laxiflora within Tamaricaceae.
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