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Abstract

The end timing of T waves in fetal electrocardiogram (fECG) is important for the evaluation of

ST and QT intervals which are vital markers to assess cardiac repolarization patterns. Moni-

toring malignant fetal arrhythmias in utero is fundamental to care in congenital heart anomalies

preventing perinatal death. Currently, reliable detection of end of T waves is possible only by

using fetal scalp ECG (fsECG) and fetal magnetocardiography (fMCG). fMCG is expensive

and less accessible and fsECG is an invasive technique available only during intrapartum

period. Another safer and affordable alternative is the non-invasive fECG (nfECG) which can

provide similar assessment provided by fsECG and fMECG but with less accuracy (not beat

by beat). Detection of T waves using nfECG is challenging because of their low amplitudes

and high noise. In this study, a novel model-based method that estimates the end of T waves

in nfECG signals is proposed. The repolarization phase has been modeled as the discharging

phase of a capacitor. To test the model, fECG signals were collected from 58 pregnant

women (age: (34 ± 6) years old) bearing normal and abnormal fetuses with gestational age

(GA) 20-41 weeks. QT and QTc intervals have been calculated to test the level of agreement

between the model-based and reference values (fsECG and Doppler Ultrasound (DUS) sig-

nals) in normal subjects. The results of the test showed high agreement between model-

based and reference values (difference < 5%), which implies that the proposed model could

be an alternative method to detect the end of T waves in nfECG signals.

Introduction

Many heart defects and complications start developing during the prenatal period [1, 2]. It is

estimated that around 1 out of 125 babies develop congenital heart defects before their birth

[1]. Some of the born babies may suffer from minor heart defects that go undiagnosed for

years [1]. For example, intrauterine growth restriction (IUGR), which affects around 3%—

10% of pregnant women, has been associated with several cardiovascular diseases that develop

during adulthood [2]. Therefore, to reduce the number of cardiovascular complications, fetal

heart rate (fHR) monitoring has grown to be a vital procedure for pregnant women [3].
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Currently, there are several invasive and non-invasive techniques that are used for monitor-

ing fetal cardiac function. Fetal magnetocardiography (fMCG), fetal electrocardiogram (fECG)

and Doppler Ultrasound (DUS) are examples of currently used techniques to monitor fetal

health [4, 5]. fMCG is a non-invasive technique and the magnetic equivalent to fECG [6, 7].

fMCG is known for its high accuracy [5], however, it is very expensive and requires special

rooms [7]. Furthermore, fMCG requires the need for highly specialized equipment and its cur-

rent practice is available in a few institutions worldwide [8].

DUS is a non-invasive method that detects cardiac activity of the fetus to calculate the HR

[4]. DUS involves risks because, up until this date, it is not confirmed if exposure to ultrasound

is completely safe for the fetus [9]. Also, sometimes, DUS fails to provide accurate assessment

of fHR. For accurate assessment of fHR, fetal scalp ECG (fsECG) is usually used [4]. In contrast

to DUS, fsECG can provide more information about the function of the heart. fsECG has been

used in STAN monitor to estimate the ST segment and the amplitude ratio T/R [4, 9]. STAN

analyzers have decreased the number of cesarean and hypoxic ischemic encephalopathy death

cases at the St George’s Maternity Unit [9].

Despite the accuracy of fsECG, it is considered risky because it may cause infection [10].

Furthermore, it can be used for short-term monitoring and during labor only [10, 11].

Another safer approach involves using non-invasive fECG (nfECG) which can be used before

and after labor [11]. nfECG can be collected, non-invasively, by attaching electrodes on the

abdominal surface of the mother. The collected signals from the maternal abdominal surface

are then processed to separate maternal ECG (mECG) from fECG [12]. Signals extracted by

nfECG are usually accompanied with high noise which makes it hard to detect low-frequency

waves such as T waves. T waves are generally hard to detect due to their low amplitudes com-

pared to R peaks. In addition, they occasionally overlap with P waves [13].

Determining the end of T wave is vital for the assessment of ST and QT intervals. Evalua-

tion of ST segment is important to diagnose hypoxia and ischemia [4, 11]; and evaluation of

QT interval is useful in diagnosing sudden infant death syndrome and intrapartum hypoxia

[11, 14]. Therefore, techniques or algorithms, which can pinpoint end of T waves in nfECG

records, can facilitate non-invasive monitoring of fetal cardiac function. To our knowledge,

there is no study that has been dedicated to estimating end of T waves in nfECG signals. This

study proposes a model to pinpoint end of T waves in normal nfECG records. The model esti-

mates T-end locations based on R peak locations only. Some abnormal fECG cases were

included in this study to investigate how the model changes with the presence of

abnormalities.

Model description

Early models of the heart action potential (AP) have been stemmed from the Hodgkin-Huxley

(HH) model [15]. The HH model provides an electric circuit representation for the electrical

performance of a nerve axon [16]. In the HH model, membranes are represented as capacitors,

and sodium and potassium ions are represented as currents [16]. D. Noble [15] discusses a car-

diac model based on HH that investigates sodium current activity in the Purkinje fiber. The

model in [15] shows that the sodium current exhibits a curve similar to the charging and dis-

charging of a capacitor in an RC circuit [17].

The function of sodium channels is mostly dominant at the start of the AP. As AP pro-

gresses, the number of open sodium channels decreases, and the number of open potassium

channels increases [18]. Potassium channels are the main contributors to the repolarization

phase, and the decay they exhibit at the end of the phase is very similar to an exponent decay

[18]. Due to the similarities between the graph of the cardiac AP or ventricular AP and the
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graph of charging and discharging of a capacitor in an RC circuit, a mathematical model based

on the RC circuit, was developed to pinpoint T-end locations. Since a T wave indicates the

repolarization phase in the AP [18], the developed mathematical model addresses only the

repolarization phase. In this study, the repolarization phase has been modeled as the discharg-

ing phase of a capacitor. In an RC circuit, the discharging phase of a capacitor is given in, (1)

[17].

VðtÞ ¼ v0 e
� t
RC ð1Þ

where t is the time in seconds, v0 is the initial voltage in volts, R is the resistance in ohms, C is

the capacitance in farads. (1) was used as the base to develop the mathematical model to calcu-

late T-end timings [17]. RC circuits can be used as passive low-pass or high-pass filters. When

designing such filters, a cut-off frequency fc is usually calculated. The relationship between fc
and RC is shown in (2) [17].

RC ¼
1

2pfc
ð2Þ

In fECG, frequency is equivalent to HR, and HR is the inverse of RR interval [19]. There-

fore, the time constant RC in (1), was replaced by a variable based on RR interval and the

expression in (2). The model in this study calculates T-end points beat by beat, thus, RR inter-

val was considered one beat at a time. Also, to facilitate calculations of T-end points, v0 in (1),

was set to 100. The final equation that was used to calculate the repolarization phase is given in

(3). RR interval and t in (3) were taken in milliseconds (ms) to facilitate calculations. Also, in

this model, calculations of the repolarization phases start from R peaks.

RðtÞ ¼ 100 e� 2pt
RR ð3Þ

(3) shows that the repolarization phase depends on RR intervals. In fact, the relationship

between the ventricular repolarization phase and the HR is supported in [20, 21]. F. Vahedi
et al. [20] address that in the absence of conduction abnormalities, an increase in HRs causes a

reduction in the heterogeneity of AP morphologies, ventricular depolarization instant, T-areas

and T-amplitudes. D. Bernardo et al. [21] state that in normal subjects, higher HRs result in

shortening in AP and repolarization phase. After calculating the repolarization curves for

beats, the mean values of R(t) were used as the base to develop another equation to determine

an interval in which an end of a T wave is expected to exist. The final equation was developed

after investigating how the mean value of R(t) associates with heart rates in several fECG beats.

Based on the mean value of R(t), a constant k is calculated to obtain an interval to calculate an

end of a T wave. The constant k is calculated using (4) where x is the reciprocal of RR in sec-

onds (s) for one beat.

k ¼j
meanðRðtÞÞ

x
�

6p

x2
j ð4Þ

Using (4), an interval within R(t) is calculated to find a value for an end of a T wave. The

value was obtained by taking the median of the interval described in (5).

End of Twave ¼ medianðk � 0:5 < RðtÞ < kþ 1Þ ð5Þ

An example of a beat from a nfECG with R(t), and estimated interval for T wave end is in

Fig 1. By taking the median of the interval, an end of a T wave was determined.

PLOS ONE Model based estimation of QT intervals in nfECG

PLOS ONE | https://doi.org/10.1371/journal.pone.0232769 May 11, 2020 3 / 15

https://doi.org/10.1371/journal.pone.0232769


Materials and methods

Data collection

58 pregnant women (age, (34 ± 6) years old, gestational age (GA): 20-41 weeks were recruited

at Tohoku University Hospital after obtaining their written informed consent. The study pro-

tocol was approved by the Tohoku University Institutional Review Board. Out of the 58 preg-

nant women, 49 had healthy fetuses (GA: 20-41 weeks) and 9 had unhealthy or abnormal

fetuses (GA: 24-36 weeks). The abnormalities were fetal tachycardia, fetal bradycardia and

long QT syndrome (LQTS), heart anomaly, heart failure, IUGR, placental dysfunction and

vasa previa. Among the 58 pregnant women, mECG, DUS and nfECG (from abdominal leads)

were collected from 55 women; however, mECG, DUS, nfECG and fsECG (from fetal scalp)

were collected from the rest of the 3 pregnant women at GA of 38-41 weeks. The records were

collected simultaneously for 20 minutes The nfECG signals were collected at a sampling rate of

1 KHz by attaching 12-electrodes on the abdominal surface of the mother. DUS records were

collected at 1.15 MHz from Ultrasound Transducer. fsECG records were collected by attaching

an electrode to the fetal scalp.

Signal processing

The raw signals collected from the maternal abdominal surface, have been processed in

MATLAB to extract fECG. Blind source separation with reference (BSSR) was applied on the

signals to extract nfECG records. The separation method, BSSR, is explained in detail in [22].

Extraction of nfECG signals of the whole 20 mintues period was not possible in all records,

because they had high noise which affected the extraction of fECG signals. Some records had

clear nfECG signals but noisy DUS records, therefore, they have not been included. In addi-

tion, beats with unclear T waves in fsECG were not included in this study. Of the 3 fsECG rec-

ords, one record was not used for validation due to the noisy signal. Records of fsECG had

base line and high frequency noise. The base line and high frequency noise were filtered in

MATLAB using the discrete wavelet transform. fsECG signals have been decomposed into 10

Fig 1. An example for T wave end estimation in one beat of nfECG. After plotting R(t), using (3), an interval in

which a T wave end is expected to exist was calculated; by taking the median of the interval, one point for an end of a T

wave was calculated.

https://doi.org/10.1371/journal.pone.0232769.g001
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levels using the Daubechies wavelets (db4). The baseline noise was filtered by removing levels

7-10 (1–7.8 Hz), and high frequency noise was removed by removing levels 1-4 (63–1000 Hz).

fECG feature extractions

A MATLAB code has been developed to identify the locations of R peaks in fECG records. The

R peaks were identified based on a threshold value that was changed based on R peak ampli-

tudes. Based on R peak locations, RR intervals were calculated to estimate the curves of R(t)

using (3). After calculating R(t), an interval in which a T wave is expected to exist was calcu-

lated through (4). The median of the interval was calculated to determine one point as an end

of a T wave using (5). Q values have been identified manually, and mostly; they have been

regarded as the lowest point that preceded an R peak for consistency. Similarly, values of aortic

closing (Ac) in Doppler signals have been recorded manually. In order to identify the timing

of Ac in M-mode Doppler images, durations with visible Ac have been identified. After that,

the M-mode images were aligned with the simultaneously recorded nfECG signal. The value

of Ac was determined by drawing a straight line from the Ac timing in the doppler image to

the nfECG signal.

Validation of the model-based results

Due to the lack of reliable nfECG databases with annotated T waves [9], other types of records

have been used to validate the results obtained from this study. The other records that were

used for validation were DUS and fsECG. In DUS records, end of T waves is equivalent to the

Ac as mentioned in several literature [2, 23–27]. In this study, the time duration in which an

Ac point was identified between two R peaks was approximately 170 ms–330 ms from an R

peak. Previous studies identified the same interval as 180 ms–260 ms in [24] and as 140 ms–

260 ms in [23]. The duration in this study was higher due to the presence of abnormal fECG

cases. The end of T wave in fsECG was measured by drawing a tangent to the T wave and a

baseline and the intersection of the tangent with the baseline was considered as the end timing

of a T wave [28].

Calculation of QTc

Bazett [29], Fridericia [30], Framingham [31], and Hodges [32] are commonly known QTc

formula, nevertheless, all of them are controversial [33, 34]. Bazett is the most commonly

used formula for correcting QT, however, its correction becomes unreliable when RR devi-

ates from 60 bpm [35–37]. In our study, we attempted to correct fetal QT using the four for-

mula, and we found that Framingham and Friderica provided consistent results. J. Wernicke
et al. [38] performed QTc analysis on children and adolescent and they suggested a new for-

mula, QTc = QT/RR0.38, which is close to Fridericia’s. Another study, by D. Phan et al. [39],

discusses QTc analysis on infants and young children and it shows that Fridericia provided

more consistent results over Framingham. Therefore, in this study, Fridericia was used for

QTc calculation.

Results

Analyses have been performed one minute at a time to identify the reference values for T-end

points per beat. Reference T-end points were identified from fsECG records and DUS records.

Therefore, only periods that had visible T waves in fsECG records or visible Ac in DUS records

have been considered in this study. The total number of beats that have been filtered for
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analysis was 25,334 beats. Of the 25,334 beats, reference T-end points were identifiable in

19,110 beats.

T-end points estimated by the model were compared with the reference values from a M-

mode Doppler image, a Doppler signal or a fsECG signal. Doppler images were available for

three subjects only, one normal and two abnormal (tachycardia and vasa previa). Fig 2 shows

examples of model-based estimation of end of T waves for normal nfECG. The estimated

Fig 2. A: A normal nfECG signal (blue graph) is simultaneously plotted with a Doppler signal (black graph). The

estimated T-end points (red dots) are compared with the Ac points in a simultaneously recorded Doppler signal. Ac

timings are used to pinpoint T-end timings because it is hard to locate them in the noisy nfECG signal. B: A normal

nfECG signal (blue graph) is simultaneously plotted with a M-mode Doppler image. The estimated T-end points (red

dots) are compared with the Ac points in a simultaneously recorded Doppler image.

https://doi.org/10.1371/journal.pone.0232769.g002
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values are compared with the Ac timings of a Doppler signal and a M-mode Doppler image.

Fig 3 demonstrates an example of a model-based estimation validated by a fsECG record and

Fig 4 shows an example for the LQTS case.

The mean, standard deviation (std) and root mean square error (RMSE) for QT and QTc of

normal and abnormal subjects have been calculated to validate the results obtained from the

model. A summary of the overall results is in Table 1 and a detailed result for the abnormal

cases is in Table 2. In Doppler records, QT is equivalent to Q-Ac.

Bland Altman plots [40, 41] were calculated to measure the degree of agreement between

the estimated and reference values of QT and QTc intervals. The Bland Altman plots of QT

and QTc intervals for the normal cases are shown in Fig 5. In Fig 5, the total number of points

that fall within the limits of agreement (LoA) is 16,367 (95%) and 16,378 (95%) for QT and

QTc intervals, respectively. The mean of QT and QTc for the normal values have been plotted

against GA as shown in Fig 6. The abnormal values have been included in the plot to compare

them with the normal values. Fig 6 shows an increasing trend between both of QT and GA and

QTc and GA.

Discussion

The ventricular repolarization phase in AP is mainly dominated by the action of K+ channels

[18, 42–44]. Throughout the AP, different types of K+ channels are activated to regulate the

flow of K+. After a depolarization occurs, a transient current of K+ (Ito) starts flowing outward

of the cell [18]. As AP progresses, the magnitude of the K+ flowing outwardly increases due to

the opening of more K+ channels. The latter current is denoted as the delayed rectified potas-

sium current (IK) [18]. IK flows during Phase 3 and is composed of a slow current (Iks) and a

rapid current (Ikr). During phase 4, another type of K+ current flows inwardly (Ik1) causing

hyperpolarization [18]. The ventricular AP is summarized in Fig 7.

Fig 3. Model-based estimation of end of T waves validated by a fsECG signal. The above figure shows a tracing for

nfECG with model-estimated end of T waves (red asterisk). The signal at the bottom shows a tracing of fsECG

recorded simultaneously with nfECG. The dashed lines indicate the end of T waves of fsECG. End of T waves in fsECG

were measured after drawing a tangent line at the T wave. The intersection of the tangent line with the baseline was

considered the end timing of a T wave.

https://doi.org/10.1371/journal.pone.0232769.g003
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H. Konarzewska et al. [42] conducted a study to see the difference between the left ventricu-

lar subepicardial myocytes and the right septal subendocardial myocytes in terms of the mag-

nitudes of Ik, Ik1 and Ito currents. The study was conducted on biopsy samples collected from

human subjects.H. Konarzewska et al. [42] studied the different magnitude of currents by

finding the relationship between the currents and different applied voltages. The time course

obtained for Ito and Ik1 inactivation were fitted with exponential equations. The equation

obtained for Ito inactivation was Ito1(t) = A0 + A1 e−t/T. The latter equation is similar to the

equation obtained in this study. Another study performed by K. Furutani et al. [43] discusses a

model for IK. K. Furutani et al. [43] mention two equations that model the activation and inac-

tivation of the IK channels and both equations have exponential expressions on them.

The model in this study has been developed based on our knowledge of AP of human

adults. To our knowledge, there is no previous research that addresses AP in human fetuses,

therefore, it is unknown how AP looks like in human fetuses and how it changes with GA. Sev-

eral previous research papers addressed changes of ventricular AP with GA in animal subjects.

S. Hamaguchi el al. [45] and J. Couch el al. [46] show that rats and mice fetuses exhibit a slightly

different AP than adult AP. Phases of AP (0-4) in prenatal rats/mice were visible in early GA

of fetal mice/rats. As the fetuses grew, phase 2 (plateau phase) of AP decreased until it

Fig 4. nfECG (blue graph) is plotted simultaneously with a Doppler signal (black graph) to locate T-end points. The figure shows

signals for a subject that suffers from bradycardia and LQTS.

https://doi.org/10.1371/journal.pone.0232769.g004

Table 1. Comparison between the estimated and reference values of QT and QTc intervals for the normal and abnormal nfECG records.

Category Number of beats RR (ms) HR (bpm) QT (ms) QTc (ms)

Reference Model-based RMSE Reference Model-based RMSE

Normal 17,227 425 ± 28 142 ± 9 245 ± 15 244 ± 16 10 326 ± 15 325 ± 14 13

Abnormal 1,883 415 ± 59 147 ± 20 253 ± 30 242 ± 34 17 339 ± 26 324 ± 30 23

https://doi.org/10.1371/journal.pone.0232769.t001
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disappeared. In neonatal and adult mice/rats, there is no phase 2 [46]. The fact that the plateau

period decreases at late GA may explain the reason behind increased HR in adult mice/rats

[47]. The repolarization phase in mice/rats showed exponential decays during various GA.

T. Huynh et al. [48], discuss how AP changes in fetal, neonatal and adult rabbits. In contrast

to mice/rats, the study demonstrates that the plateau phase increases with GA. In addition,

similarly to mice/rats, the repolarization phase in rabbits shows exponential decays. Based on

the research done on animal subjects, one can assume that AP of human fetuses may exhibit

similar trends to rabbits and opposite to mice/rats. Therefore, one can assume that the AP of

human fetuses increases with GA and the repolarization phase exhibits an exponential decay.

In fact, the results in Fig 6 further supports the assumption that the AP increases with GA. The

fact that QT and QTc increase with GA is also addressed in [49, 50].

The model developed in this study has been used to identify end of T waves in normal and

abnormal subjects. The results in Table 1 show that the mean values for the estimated and ref-

erence values are close in the normal and a little bit different in the abnormal case. The results

of the model in normal subjects have been validated by Bland Altman analysis, Fig 5. The

Bland Altman test shows that at least 95% of the data falls within the confidence bound for

both QT and QTc. For further validation, the mean values of QT and QTc for each subject has

Table 2. Detailed summary of the abnormal case results.

Category Number of subjects(number of beats) RR (ms) HR (bpm) QT (ms) QTc (ms)

Reference Model-based RMSE Reference Model-based RMSE

Bradycardia and LQTS 1 (200) 557 ± 8 108 ± 2 325 ± 9 324 ± 7 9 395 ± 11 394 ± 7 11

Tachycardia 2 (294) 334 ± 22 181 ± 13 218 ± 10 196 ± 9 22 314 ± 10 283 ± 6 32

HeartAnomaly 2 (645) 405 ± 8 148 ± 3 256 ± 10 237 ± 6 21 347 ± 14 321 ± 7 29

IUGR 1 (333) 432 ± 8 139 ± 2 248 ± 11 254 ± 10 10 328 ± 15 336 ± 12 13

VasaPrevia 1 (225) 406 ± 10 148 ± 4 239 ± 9 233 ± 6 12 323 ± 12 315 ± 6 16

HeartFailure 1 (13) 408 ± 4 147 ± 1.3 243 ± 13 231 ± 2 16 327 ± 17 311 ± 2 22

Placental Dysfunction 1 (173) 411 ± 8 146 ± 3 247 ± 9 237 ± 8 12 333 ± 12 318 ± 9 16

https://doi.org/10.1371/journal.pone.0232769.t002

Fig 5. The figures show Bland Altman plots for QT (left) and QTc (right) intervals of normal subjects. The total

number of points in both figures is 17,227. The total number of points that fall within the LoA is 16,367 (95%) and

16,378 (95%) for the QT and QTc intervals respectively. LoA: Limits of agreement.

https://doi.org/10.1371/journal.pone.0232769.g005
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been plotted against GA in Fig 6. The plot shows that all the normal subjects have differences

of less than 5% between the model-based and reference values.

Since there are no reference values for normal fetal QT and QTc [11], the values obtained

in this study have been compared with previous literature. C. Velayo el al. [2] report fHR, QT

and QTc values of (149 ± 9) bpm, (234 ± 23) ms and (370 ± 40) ms, respectively, for 20 healthy

fetuses (GA: 20-33 weeks). C. Velayo el al. [2] measured QT by identifying the Ac timings in

Doppler signals. Another study by A. Khandoker et al. (23), reports RR interval and Q-Ac val-

ues of (421 ± 33) ms and (225 ± 13) ms, respectively, for 21 healthy fetuses (GA: 28-36 weeks).

Fig 6. The figures show estimated and reference QT and QTc values plotted against GA. The normal cases are shown in circle

and the abnormal cases are shown in asterisk. Both model-based and reference values show linear increasing trends. In (A), LQTS

and tachycardia are outside the confidence bound in the model-based values plot. On the other hand, LQTS and one case of

tachycardia are outside of the confidence bound in the reference values plot. In (B), LQTS and tachycardia are outside the

confidence bound in the model-based values plot. In the reference values plot, only the LQTS case is outside the confidence bound.

LQTS = Long QT Syndrome.

https://doi.org/10.1371/journal.pone.0232769.g006
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N. Sato et al. [50] report values for normal fECG during the active and resting phases (GA: 18-

41 weeks). The reported values of fHR, QT and QTc during the active phase are (150 ± 1.7)

bpm, (244 ± 3.2) ms and (384 ± 4) ms, respectively (n = 31, GA = 34 ± 2.9 weeks). During the

resting phase, the reported values are (139 ± 1.1) bpm, (246 ± 2.8) ms, and (374 ± 4) ms,

respectively (n = 29, GA = 35 ± 0.6 weeks).

J. Stinstra et al. [49] measured several fECG features from a total of 582 healthy fetuses (GA:

29—34 weeks) using fMCG within several medical centers. Different values of QT and QTc

have been reported for each center. The total number of subjects that had their QT and QTc

evaluated was 412 and 274, respectively. The ranges of values that are reported for QT and

QTc are ((227 ± 12) ms—(255 ± 13) ms) and ((370 ± 10) ms—(400 ± 20 ms)), respectively.

Another study done by S. Abboud et al. [51], reports values of QT with a min of 205 ms, a max

of 338 ms and an average of (255 ± 28) ms for 17 fetuses (GA: 32-41 weeks). The values of nor-

mal QT obtained for this study, Fig 6, fall within the ranges mentioned in the previous litera-

ture. The above-mentioned literature has used Bazett’s formula [29] for QTc calculations.

Therefore, the obtained values in this study for QTc cannot be compared with them because a

different formula has been used.

The model has been developed mainly to predict end of T waves in normal subjects. The

abnormal subjects have been included in order to test how the accuracy of the model changes

with the presence of abnormalities. The results in Table 2 show variations in accuracy among

the abnormal cases. The highest accuracy is observed for the LQTS case (QT RMSE = 9 ms

and QTc RMSE = 11 ms). The least accuracies are observed for the tachycardia (QT

RMSE = 22 ms and QTc RMSE = 32 ms) and heart anomaly (QT RMSE = 21 ms and QTc

RMSE = 29 ms) cases. The high accuracy for the LQTS implies that this model could be a good

Fig 7. Ventricular AP. During depolarization or phase 0, Na+ and Ca+ channels open causing influx of Na+ and Ca+. The depolarization

phase increases cellular potential. When the cellular potential reaches a certain level, specific K+ channels open causing a transient flow

of K+ out of the cell, phase 1. The transient current is known as Ito. The efflux of Ito causes a slight reduction in the cellular potential.

Phase 1 is followed by phase 2 or plateau phase in which the efflux of Ito is balanced by the influx of Ca2+. In phase 3, more K+ channels

open to restore the cell into the resting potential. The current in phase 3 is known as Ik and it has two components, rapid (Ikr) and slow

(Iks). The efflux of Ik current continues until the cell is restored to its resting potential in which the dominant current is a leak K+ current

known as Ik1.

https://doi.org/10.1371/journal.pone.0232769.g007
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estimate for QT and QTc in fetuses suffering from LQTS. The plots in Fig 6A show that tachy-

cardia and LQTS fall outside the confidence interval in the model-based plot. On the other

hand, LQTS along with one case of tachycardia are outside the confidence bound in the refer-

ence values plot. Fig 6B shows that LQTS and tachycardia are outside the confidence bound in

the model-based values plot. In the reference values plot, only LQTS is outside the confidence

bound. The separation of LQTS from the normal subjects was evident in both the model-based

and reference values plots. LQTS occurs mainly due to mutations in the genes responsible of

encoding the pore-forming α-subunits of some of the ion channels responsible of the AP [52].

The affected channels could be the channels responsible of the regulation of Ikr, Iks or INaþ . The

latter channels are also expressed in the sinoatrial node (SAN). Therefore, LQTS are usually

present in individuals with abnormal HRs [52]. The LQTS case in this study suffers from bra-

dycardia as well. Since the model estimates the end of T wave based on RR, it could calculate

the end of T waves for the LQTS case.

The tachycardia results in Fig 6 were different in the reference and model-based values

which further confirms the inability of the model of evaluating T wave ends in tachycardia

cases. The values provided by the model indicates that the QT and QTc intervals of tachycardia

should be shorter than normal, since they were less than the lower confidence bound. On the

other hand, the reference values plots show, mostly, that the QT and QTc intervals for fetuses

with tachycardia are normal since they are within the confidence bound. Although the model

was good for LQTS and bad for tachycardia, it is hard to draw conclusions about the validity

of the model for the LQTS case. The number of subjects in both cases was low, therefore, the

model should be applied on more subjects, specially, subjects who have high HRs with LQTS.

The model developed in this study shows good results for the normal cases. Nevertheless,

there are some limitations with the study. Most of the beats in this study have been validated

using Doppler signals. Therefore, more accurate methods should be used for the validation of

the results. Since fsECG signals are limited to late GA, M-mode Doppler images could be a bet-

ter method of validation. Another limitation is the inability to measure the location of Q peaks

from Doppler records directly. It would have been more accurate to compare Q-Ac from

Doppler signals with QT from nfECG records.

Conclusion

End of T waves are important for QT estimation which are biomarkers for many cardiac com-

plications including sudden cardiac death. However, identifying the end of T waves in nfECG

is challenging due to the high level of noise as compared to T wave amplitude. In this study, a

novel method for estimating the end timings of T waves based on RR intervals in nfECG has

been discussed. The model showed high agreement with reference values in healthy as well as

some unhealthy fetuses. The highest accuracy was observed in a fetus suffering from bradycar-

dia and LQTS showing the prolongation of QT intervals. On the other hand, the least accura-

cies were observed for tachycardia and heart anomaly cases. The good results obtained for the

normal fetuses imply that the model is effective in predicting T wave end timings in nfECG

records of normal fetuses. Therefore, the model can be used for the prediction of a QT interval

non-invasively from RR interval. However, this technique needs further validation on a large

number of normal and LQTS cases in future clinical studies.
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