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A transition from one developmental stage to another is accompanied by activation of
developmental programs and corresponding gene ensembles. Changes in the spatial
conformation of the corresponding loci are associated with this activation and can be
investigated with the help of the Chromosome Conformation Capture (3C) methodology.
Application of 3C to specific developmental stages is a sophisticated task. Here, we
describe the use of the 3Cmethod to study the spatial organization of developmental loci in
Drosophila larvae. We critically analyzed the existing protocols and offered our own
solutions and the optimized protocol to overcome limitations. To demonstrate the
efficiency of our procedure, we studied the spatial organization of the developmental
locus Dad in 3rd instar Drosophila larvae. Differences in locus conformation were found
between embryonic cells and living wild-type larvae. We also observed the establishment
of novel regulatory interactions in the presence of an adjacent transgene upon activation of
its expression in larvae. Our work fills the gap in the application of the 3C method to
Drosophila larvae and provides a useful guide for establishing 3C on an animal model.
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1 INTRODUCTION

The study of the basis of changes in the repertoire of active genes associated with the implementation
of specific development programs is an important task of modern developmental biology. One of the
basic changes of gene expression lies in the events that occur with a chromatin template. Current
views on gene activity suggest that significant changes in chromatin conformation of corresponding
loci accompany the developmental processes regardless of whether the development is discrete, like
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in Drosophila, or continuous, like in mammals, and can be
investigated using Chromosome Conformation Capture (3C)
methods (Du et al., 2017; Flyamer et al., 2017; Ke et al., 2017;
Ogiyama et al., 2018; Sun et al., 2019; Collombet et al., 2020).

Cell cultures and embryos are the focus of many studies
performed on Drosophila using C-methods. 3C protocols
suitable for cell cultures are widespread, while experiments
with embryos are less common (Sexton et al., 2012; Webber
et al., 2013; Stadler et al., 2017; Hug and Vaquerizas, 2018; Erceg
et al., 2019), and only a few experiments have been performed
with individual tissues, for example, salivary glands of wandering
3rd instar larvae (Eagen et al., 2015), wing imaginal discs (Li, 2016;
Vizcaya-Molina et al., 2018), eye–antennal imaginal discs
(Loubiere et al., 2020), imaginal discs (not specified)
(Bernardo et al., 2014), fat body (Bernardo et al., 2014), and
larval brain (Tolhuis et al., 2011). The same situation is observed
in studies where whole larvae are used. There is a significant gap
regarding the 3C procedure for the whole 3rd instar Drosophila
larvae. This stage is of special interest since 3rd instar larvae have
the largest and best developed imaginal discs and histoblast nests,
which can be considered as non-specialized precursors of
terminally differentiated adult cells that give origin to tissues
of an adult fly during metamorphosis (Gilbert, 2010). Thus,
understanding the differences in the state of genes between the
last larval stage and adult flies, including the level of the spatial
organization of chromatin, is very important for understanding
how one stage of development turns into another, the terminal
stage of an adult insect.

The study of the larval stages is a separate and rather difficult
task. For example, Drosophila larvae of the 1st, 2nd, and middle
3rd instars live in fly food, and larvae of the late 3rd instar appear
on the walls of fly tubes only transiently, before pupation. It is,
therefore, difficult to collect a large amount of 3rd instar larvae. It
is also difficult to collect large amounts of 1st and 2nd instar
larvae, which are rather small in size.

A common feature of the abovementioned experimental
works with Drosophila tissues is that the step of tissue fixation
and homogenization yields a cellular material (cell suspension),
which can further be processed using any type of the 3C protocol,
including an in situ/in-nucleus ligation protocol (Comet et al.,
2011; Rao et al., 2014; Nagano et al., 2015a, Nagano et al., 2015b,
Nagano et al., 2017; Flyamer et al., 2017; Stadler et al., 2017;
Bylino et al., 2021; Ulianov et al., 2021), a tethered ligation
protocol (Kalhor et al., 2012; Eagen et al., 2015, Eagen et al.,
2017; Gabdank et al., 2016), or a dilution ligation protocol
(Dekker et al., 2002; Tolhuis et al., 2002; Lieberman-Aiden
et al., 2009; Comet et al., 2011; Stadhouders et al., 2013;
Ulianov et al., 2016; El-Sharnouby et al., 2017; Vermeulen
et al., 2020). Therefore, it is of primary interest, first, to
carefully consider the initial stages of the 3C procedure,
including extraction of larvae from fly food, sorting them by
age, and preparing a cell material from them.

Here, we described for the first time a detailed procedure of the
3C experiment with whole Drosophila larvae. Important initial
steps of handling larvae, selecting the developmental stages, and
preparing a cell material, were thoroughly considered. Next, the
subsequent stages of preparation of experimental 3C and control

BAC libraries, preparation of a calibration curve, and analysis of
interactions are carefully described. To validate the results,
electrophoretic pictures of the resulting 3C libraries are shown
and raw qPCR data are provided to demonstrate that the libraries
are well-amplified. Finally, to prove the efficiency of our
procedure, we provided the experimental results obtained to
determine the interactions between regulatory elements of the
developmental locus Dad in S2 cells and wild-type (WT) and
transgenic larvae. Our work fills the gap in the application of the
3C method to Drosophila larvae and provides a useful guide for
establishing 3C on an animal model.

2 RESULTS

2.1 Collection, Sorting, and Homogenization
of Drosophila Larvae and Preparation of a
Larval Cell Material
2.1.1 Extraction of Total Larvae From Fly Food
Individual collection of late 3rd instar larvae from the walls of fly
cultivation tubes is laborious and requires a large number of tubes
with flies of the same developmental stage. It is more rational to
extract all larvae from food with the help of 20% (585 mM) or
0.8 M sucrose. Upon adding 20% sucrose, the larvae float up with
the liquid part of the food and can be collected individually from
the surface after stirring the contents with a spatula with a groove
to facilitate the process.

If a large amount of larvae is required, a system of three sieves
of different sizes can be used (Figure 1A). The sieves make it
possible to separate larvae of different stages and, most
importantly, to isolate the largest larvae of the 3rd instar,
which precedes the adult stage. These larvae are the principal
focus of this study. A 125-µm sieve retains 1st instar larvae,
embryos, and water. An 800-µm sieve retains raisins, pieces of
agarized food, dead adult flies, and the largest 3rd instar larvae. A
315-μm sieve retains early 3rd instar larvae and 2nd instar larvae.

2.1.2 Mass collection of 3rd and 2nd Instar Larvae for
Homogenization
If it is not necessary to separate the 3rd and 2nd instar larvae,
larvae can be picked up from a 315 μm sieve using a spatula with a
groove into a little glass with 20% sucrose. Then the larvae are
transferred from the glass into a 100-µm nylon cell strainer
(Corning Falcon, cat. no. 352360) and washed with the EW
buffer. After washing, the entire mass of the 3rd and 2nd
instar larvae are transferred using a paintbrush to a Dounce
homogenizer of an appropriate volume and homogenized with
pestle A to produce a cell material.

A disadvantage of this approach is that some amount of
semolina or corn meal particles (depending on what cereal is
used to prepare fly food) is collected together with the larvae
when collection is carried out with a spatula with a groove from a
315-μm sieve. The particles sediment with cell material after
homogenization to produce a uniform mixture of fixed cells and
cereal particles. Experiments end in failure when performed with
such a mixture.We concluded that it is necessary to separate fixed
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cell material from cereal particles after homogenization or,
alternatively, to cleanly separate larvae from fly food before
homogenization. Accordingly, we tried first to separate cell
material from cereal particles after homogenization and found
at the post-homogenization step that this method is inefficient, be
it performed with a sucrose cushion (not shown) or a
discontinuous sucrose gradient (Figure 1B); that is, the larval
cell material and homogenized cereal particles co-sedimented
simultaneously in both cases. Thus, it is necessary to separate
larvae from fly food at an earlier stage before homogenization.

Next, we tried to separate larvae from fly food before
homogenization and observed that when a mixture of larvae and
cereal particles was left to stand for 20–30min in a glass with 20%
sucrose, but not the EW buffer or water, the cereal particles sank to
the bottom, while live larvae float on the surface of 20% sucrose
(Figure 1C). Then the larvae can be collected from the surface of
20% sucrose with a spatula with a groove in a 100-µm nylon cell
strainer and washed with EW before homogenizing. In order to
speed up the separation process, the larvae in 20% sucrose can be
transferred from a glass into 50-ml tubes and centrifuged at 2,500 g

FIGURE 1 | Initial stages of the 3C protocol: collection, sorting, and separation of larvae from fly food before and after homogenization. (A) TEST SIEVE Retsch
GmbH 200 mm×50 mm, 800 μm, 315 μm, 125 µm in comparison with standard vials forDrosophila cultivation. (B) Separation of larval cell material from cereal particles
after homogenization. Total larvae were extracted from fly food as described in Section 2.1.1. Then the sucrose solution containing the liquid part of the food with the
larvae was poured from fly vials into a set of 3 sieves depicted in Figure 1A, and the larvae were processed to obtain a cell material as described in Processing of
larvae extracted from fly food and preparation of cellular material inMaterials andMethods. After dissolving the cell material in ice-cold 1X PBS, the larval cell material was
either i) applied onto a discontinuous sucrose gradient (0.8, 1.6, and 2.3 M sucrose steps) and centrifuged at 1,000 g at +4°S or ii) centrifuged through a 20% (0.584 M)/
0.8 M sucrose cushion at 5,000 g. (C) Separation of larvae from fly food before homogenization. Larvae were extracted from fly food, as shown in (B), and collected as
described in Section 2.1.2. Then the larvae were transferred with a paintbrush from a 100-µm cell strainer into 3 different solutions: water, 20% sucrose, and EW buffer.
The larvae floating on the surface of a liquid or deep in the solution are marked with a red rectangle; the density of the rectangle shading symbolizes the number of larvae.
A blue rectangle shows the particles of cereal that sunk to the bottom. A purple rectangle shows a mixture of larvae and particles of cereal. In this experiment, the
separation of larvae and cereal particles was performed by letting the solutions with larvae and cereal particles stand at RT for 30 min. (D) Chromatin integrity control
obtained from WT Canton S larvae at different stages of development. Larvae were extracted from fly food, as shown in (B). Then 3rd instar larvae were individually
collected and washed as described in Individual collection of 3rd instar larvae for homogenization. A mixture of early 3rd and 2nd instar larvae was collected, as shown in
(C). The 2nd instar larvae were collected individually with tweezers from the mixture of 3rd and 2nd instar larvae from a 315-µm sieve. After that, the larvae were
processed, as shown in (B). Larval cell material (25 mg) was taken and centrifuged, the supernatant was removed, and the 3C protocol was performed until obtaining the
chromatin integrity control (see Protocol of the 3C experiment with Drosophila larvae in the SupplementaryMaterial). 1/10 of the sample volume (2.5 mg) was taken as
a control, and the control was processed according to the 3C protocol except that, to isolate DNA, 500 µl of an extraction buffer (EB) (see Materials and Methods)
containing 30 mM EDTA and 0.2 mg/ml Proteinase K was added in each tube instead of 1X T4 DNA ligase buffer and the DNAwas dissolved in 25 µl of 10 mM Tris-HCl,
pH 8.0. Five µl of the DNA preparation was examined by electrophoresis. Two biological replicates were performed for each type of larvae.
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for 1min. In this case, the larvae slightly sink into the thickness of
20% sucrose and quickly float back to the surface after
centrifugation, while the precipitated cereal particles do not. We
concluded that the approach of separating larvae and cereal particles
before the stage of larva homogenization proved to be efficient.
Another option that would help to separate larvae from cereal
particles is using fly food cooked without semolina or corn meal
and, preferably, without raisins (the addition of cereals and raisins to
fly food does not affect the total number of flies produced nor their
rate of development, unpublished data).

2.1.3 Individual collection of 3rd Instar Larvae for
Homogenization
In the case where only 3rd instar larvae are required, but not a
mixture of 2nd and 3rd instar larvae, 3rd instar larvae are
individually collected with tweezers from an 800-μm sieve in a
100-ml beaker glass with 20% sucrose. The solution with larvae
was poured into a 100-µm cell strainer, and the larvae were
washed with EW buffer. Approximately 100 larvae or a little more
(no more than 150) were necessary to collect. This number of
larvae is easy to homogenize in a 7-ml Dounce homogenizer with
pestle A, which disrupts tissues into individual cells. Filtration
through a 40-µm cell strainer yields ~50 mg of cell material,
which can serve to make two replicates of 25 mg each. We
observed that 200 or more larvae were hardly homogenized in
a 7-ml Dounce homogenizer (there was risk of breaking the
homogenizer or pestle), and a 15-ml Dounce homogenizer should
be used with this number of larvae.

As shown in Figure 1D, 50 mg of cell material obtained from
2nd instar larvae contained a lower amount of DNA than 50 mg
of cell material obtained from 3rd instar larvae; a mixture of 2nd
and 3rd instar larvae contained an intermediate amount of DNA.
Since larval growth and an increase in cell size are achieved
primarily via endoreplication in Drosophila larvae, that is, cell
growth and DNA replication occur in the absence of cell division,
most larval tissues are composed mainly of polyploid cells (Edgar
and Orr-Weaver, 2001; Edgar and Nijhout, 2004; Lee et al., 2009;
Zielke et al., 2013; Ren et al., 2020). Therefore, a higher degree of
cell polytenization in 3rd instar larvae is apparently responsible
for the extraction of a greater DNA amount from the same
amount of cell material. We used only 3rd instar larvae in
subsequent experiments.

Alternatively, embryos can be grown in large jars of a large
volume, for example, 200 ml, and 3rd instar larvae that have crawled
onto the walls can be collected with a paintbrush or tweezers or
rinsed off the walls with water. Extraction with sucrose will be
especially convenient for those who want to get larvae of earlier
instars and separate them into size fractions by age.

2.2 Processing of Larvae Extracted From Fly
Food and Preparation of Cell Material
This chapter is given in the beginning of the Materials and
Methods section (see Supplementary Material).

Two important methodological observations were made while
preparing 3S libraries from wild-type (Canton S) and mutant
(transgenic) larvae:

(i) The DNA yield from 10 mg of WT larval cell material pellet
was approximately 10–15 times lower than from the same
quantity of S2 cells. Although most Drosophila larval tissues
are composed mainly of polyploid cells (Edgar and Orr-
Weaver, 2001; Edgar and Nijhout, 2004; Lee et al., 2009;
Zielke et al., 2013; Ren et al., 2020), we suppose that the pellet
that forms after filtration through a 40-µm cell strainer and
that is analyzed may contain a sufficiently large number of
cells of the imaginal disc and histoblast nest (mitotic cells),
diploid in nature, as well as extracellular material, such as
remnants of the milled cuticle. This may be one of the reasons
that cell material obtained from larvae contains less DNA
than the same quantity of S2 cells. Another reason is that S2
cells have an altered karyotype and their ploidy varies from 1
to more than 8, with an average karyotype of 2X; 4A
corresponding to tetraploids (Zhang et al., 2010; Lee et al.,
2015). Therefore, it is very likely that a tetraploid cell culture
of the same quantity contains more DNA than milled larval
tissues.

(ii) The amount of DNA isolated from the same quantity of cell
material obtained from mutant lines carrying transgenic
insertions significantly varied from line to line and was
generally reduced (at least by a factor of 2–3) as
compared with the WT Canton S strain. This may be due
to the poor genetic background in the mutant lines or
impaired expression of the Dad gene. Dad expression is
required for inhibiting the BMP/Dpp/TGF-β signal
transduction pathway (Tsuneizumi et al., 1997; Marquez
et al., 2001; Sharifkhodaei and Auld, 2021). Direct
suppression of endomitosis and endoreplication has been
found to occur upon stimulation of the BMP/Dpp/TGF-β
pathway (Kuter et al., 1992), although an opposite situation is
observed, for example, in nematodes, where the BMP/Dpp/
TGF-β pathway stimulates endoreplication (Nystrom et al.,
2002; Lozano et al., 2006). Nevertheless, these data taken
together implicate the BMP/Dpp/TGF-β pathway in
controlling endoreplication

2.3 Processing of the Cell Material Prepared
From Drosophila Larvae
Taking into account the abovementioned observations, the
amount of starting cell material to prepare a 3C library should
be at least 25 mg in the case ofWT larvae and at least 50 mg in the
case of mutant larvae. It is necessary to check the DNA yield for
each particular mutant line since the yield may be significantly
lower than that for WT larvae. A comprehensive protocol of the
3C experiment withDrosophila larvae, from the processing of cell
material to obtain a purified 3C library to statistical analysis of the
3C experiment results, is presented in the Supplementary
Material. The part devoted to processing cell material covers
steps 1 through 25 of the protocol and comprises the following
sections:

I. Cell lysis
II. Nucleoplasm release and chromatin treatment with heat
III. Digestion of DNA in nuclei
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IV. Ligation of DNA in nuclei
V. Reversion of cross-links and isolation of a 3C library
VI. Treatment of the 3C library with RNase
VII. Purification of the 3C library on magnetic beads and DNA

analysis

The stages of reversion of cross-links and isolation of a 3C
library, treatment of 3C library DNA with RNase, and
purification of the 3C library on magnetic beads and DNA
analysis can be used as independent protocols and have been
thoroughly discussed by Bylino et al. (2021).

2.4 Preparation of a Control Library
(Random Ligation Library) for Constructing
a Calibration Curve
The next step in the 3C procedure is to obtain a control library
consisting of Sau3A (BspI)-digested and then randomly ligated
DNA fragments of BAC(s) overlapping the locus (loci) of
interest. If the locus contains transgenic sequences, the BAC
can be mixed in an equimolar ratio with a plasmid carrying
such sequences. A control library is necessary for constructing
a calibration curve, which is used to calculate the relative
ligation frequencies (RLFs) of the fragments of interest in 3C
samples. We studied the conditions of BAC cultivation,
isolation, purification, restriction digestion, and random
ligation of the resulting restriction fragments. These stages
are described in detail in section 2 of the Supplementary
Material (subsections 2.1, 2.2, 2.3, and 2.4). This section
can be used as an independent protocol to grow and purify
BAC and to prepare a random ligation library. The part
devoted to the preparation of a random ligation BAC
library covers steps 26 through 34 of the protocol in the
Supplementary Material and comprises the following
sections:

VIII. Preparation of a random ligation BAC library for
constructing a calibration curve

The main conclusions from our experiments and optimization
of the above stages of the protocol are as follows:

(i) Induction of BAC replication (CHORI321 library pCC1BAC
series) occurs in the presence of L-arabinose in the culture
medium but not in the presence of inactivated tetracycline
hydrochloride or chlortetracycline.

(ii) In the absence of a replication inducer, the BAC behaves as
an ordinary multicopy plasmid despite the presence of a
single-copy origin of the F-factor, increasing in copy number
in the presence of chloramphenicol (Cm). The BAC copy
number rapidly decreases when Cm is absent or consumed
in the medium, and the BAC yield becomes very low.

(iii) The BAC can be efficiently isolated with a usual plasmid
isolation kit.

(iv) Purification of the BAC on AMPure XP beads appears to be
more efficient than standard EtOH precipitation (without
the addition of glycogen).

(v) Equimolar mixing of the BAC and the plasmid leads to an
equally represented ligation of the transgene and the BAC
fragments in the resulting control library.

2.5 Construction of a Calibration Curve and
Analysis of the 3C Library
The next step of the 3C procedure is analyzing the ligation
frequencies in the experimental 3C library (described in detail
for S2 cells by Bylino et al. (2021) and for larvae in the
Supplementary Material). Measurement of the number of
ligation events between spatially adjacent DNA regions in
genome-wide 3C (Hi-C) (Lieberman-Aiden et al., 2009; Rao
et al., 2014; Belaghzal et al., 2017; Akgol Oksuz et al., 2021;
Lafontaine et al., 2021) or in 3C covering a few (Capture-C)
(Hughes et al., 2014; Davies et al., 2016; Golov et al., 2020a;
Hua et al., 2021) or more (promoter capture Hi-C) (Mifsud
et al., 2015; Schoenfelder et al., 2018a) regions of interest is
based on the results of sequencing on the Illumina platform
(Davies et al., 2017; Grob and Cavalli, 2018). Its prohibitive
cost means that such datasets are reasonable to obtain when a
large number of interactions is to be analyzed or when
interaction partners are unknown. However, when a limited
number of interactions between several DNA regions is of
interest, the ligation frequency can be determined using real-
time qPCR. To achieve a greater sensitivity of the method,
TaqMan probes are used instead of SYBR Green–based
detection. A qPCR analysis of the ligation frequencies
utilizes a calibration curve, which is obtained from 10X
dilutions of a random ligation mixture of control DNA
digested with the same restriction endonuclease (RE) or a
RE that has the same cleavage site. The calibration curve can be
quantitative, that is, based on purified PCR products, which are
used in known concentrations, overlap the restriction sites of
interest, and are mixed in equimolar amounts before random
ligation, or semi-quantitative, that is, based on random
ligation of a digested BAC that covers the region of interest
(relative ligation frequencies) (Gavrilov et al., 2013). When a
transgenic construct is present in a region of interest, a
plasmid(s) containing the cloned region(s) or PCR
amplicons of transgenic regions can be combined with the
BAC in equimolar amounts before preparing a random
ligation library mix (Shidlovskii et al., 2021).

Before analyzing the ligation frequencies between restriction
fragments of interest in experimental 3C samples, several
important preliminary experiments should be performed: 1) to
optimize the conditions of qPCR with TaqMan probes, which will
be used to determine the ligation frequencies in experimental 3C
libraries (optional); 2) to study the ligation frequencies in random
ligation libraries (optional); 3) to determine the linear range of
amplification by testing several dilutions of a random ligation
library; and 4) to establish the amount of 3C DNA libraries
required to fit the calibration curve (in our case, this was done
with a model of S2 cells and then with a model of WT larvae).
These stages are described in detail in section 3 of the
Supplementary Material (subsections 3.1, 3.2, 3.3, and 3.4).
The part devoted to the preparation and preliminary testing of
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the calibration curve covers steps 26 through 35 of the protocol
and comprises the following sections:

IX. Preparation of the calibration curve based on a random
ligation library

X. Preliminary testing of dilutions of 3C samples against the
calibration curve

The main conclusions that can be drawn from our
experiments and optimization of the above stages of the
protocol are as follows:

(i) The detection threshold of the PCR product in the reaction
increases in direct proportion to the amount of the TaqMan
probe added to the reaction. The greater the probe amount,
the earlier occurs the threshold of 3C product detection (an
increase in probe concentration from 0.05 to 1 pM/µl leads
to the appearance of a signal 4.5 ± 0.5 Ct earlier). Therefore,
if the DNA content in the 3C library is low and a limited
amount of the starting material is available for preparing the
3C library, then increasing the concentration of the TaqMan
probe in the reaction up to 1 pM/μl makes it possible to
detect the product without generating additional amounts of
the 3C library.

(ii) When a plasmid containing the transgene and a BAC
containing a genomic locus of interest are combined in
equimolar proportion, a mixture of restriction fragments is
obtained, in which the ligation products of different regions
are equally represented.

(iii) A calibration curve prepared in a range from 1 ng/μl to
100 fg/μl from 10X dilutions of a random ligation library as
described in section 4 and in the protocol for larvae in the
Supplementary Material (step 35) can be routinely used to
determine the cross-linking frequency in an experimental
3C library. Each dilution is used in 4 technical replicates in
an amount of 5 μl per PCR mixture (then the template DNA
concentrations will be 5 ng–500 pg–50 pg–5 pg–500 fg per
PCR mixture, respectively). A linear amplification region
corresponds to a 10X dilution range from 10 ng/μl to 100 fg/
μl. The step between two calibration dilutions is 3.5–4.0 Ct.
It is convenient to select 4 dilutions to be used in the
experiment in parallel with the 3C samples.

(iv) 3C libraries prepared from 10mg of S2 cells according to the
protocol described by Bylino et al. (2021) are possible to dilute
by a factor of 10–15 (to a concentration of 1.24–6.23 ng/μl)
without impairing the reliability of contact determination.
With such a concentration of 3C libraries in the PCR
mixture, the calibration curve is built from dilutions of
100 pg–10 pg–1 pg–100 fg per μl (the product appears
between the 10 pg/μl and 1 pg/μl dilutions of the calibration
curve). The quantity of S2 cells required for the preparation of a
3C library is 10mg and may be diminished even to 5mg if
necessary. A twofold increase in the DNA concentration of the
3C library in PCR gives an increase of 1.75–2.0 Ct for S2 cells
and for WT larvae.

(v) At least 5–10 ng of the 3C library per PCR mixture prepared
from WT larvae is sufficient for detecting the ligation

products between DNA regions of interest at
100 pg–10 pg–1 pg–100 fg dilutions of the calibration
curve per µl (the product appears between the 1 pg/μl
and 100 fg/μl dilutions). For additional depth of the
calibration curve in the case of a limited amount of 3C
library DNA from larvae, a 10 fg/μl dilution can be
introduced into the range of the calibration curve. The
dilution is set in 8, rather than 4, technical replicates.
However, the dilution does not always fall within the
linear range of amplification.

(vi) At least 12–46 ng of 3C library DNA prepared from mutant
larvae is necessary to take in a PCR mixture for reliable
detection of ligation products (the product appears between
the 1 pg/μl and100 fg/μl or between the 10 and 1 pg/μl
calibration curve dilutions, depending on the mutant line
and the amount of DNA taken into the PCR mixture).

X. The stages of preparation of the qPCR master mix and the
general arrangement of a qPCR experiment with 3C
samples, normalization of ligation frequencies,
calculation, and statistical analysis of the 3C experiment
results are described in detail in section 4 of the
Supplementary Material (subsections 4.1, 4.2, and 4.3).
The part devoted to the preparation and preliminary
testing of the calibration curve covers steps 36 through
39 of the protocol in the Supplementary Material and
comprises the following sections of the protocol:
Preparation of the PCR master mix and the general
arrangement of a qPCR experiment with 3C samples.

XI. Normalization of ligation frequencies
XII. Calculation and statistical analysis of the 3C experimental

results

2.6 Critical Analysis of the Existing 3C
Protocols for Whole Drosophila Larvae.
Optimal Parameters, Peculiarities, and
Advice on Preparing and Processing Cell
Material Obtained From Larvae
Although a sort of universal 3C protocol has been previously
published to describe the processing of collected adult flies,
pupae, and embryos and to prepare cell material from them
(Comet et al., 2011), no detailed procedure has been reported yet
to allow 3C investigations inDrosophilawhole larvae. Prior to our
study, only one study was published to describe 3C with whole
Drosophila larvae (Bieli et al., 2015). A critical analysis of the very
brief procedure described by Bieli et al. (2015) revealed several
issues that would require significant changes. Based on our own
experience with larva processing and treatment of the cell
material obtained from them and from S2 cells (Bylino et al.,
2021; Shidlovskii et al., 2021), we suggest the following important
improvements to the previously published procedure:

(i) Fix larvae simultaneously with homogenization in a
Dounce homogenizer with FA used at a concentration
not exceeding 0.5% for 10 min (we found that fixation
with 1.8% FA for 20 min is excessive). We observed that
tissues of larvae are over-fixed even when fixation is
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performed with 0.5% FA for 25 min and that DNA of
over-fixed cells is poorly cut by a restriction
endonuclease (RE) and is not extracted with Ph/Chl,
remaining in the non-lysed cells (Bylino et al., 2021).

(ii) Quench FA with glycine used at an equimolar
concentration or in a slight excess to FA (Comet
et al., 2011; Sexton et al., 2012), keeping in mind two
reactive groups of FA vs. one group of glycine. For
example, we used glycine at 666 (equimolar) and 800
(slight excess) mM for 1% FA (666 mM molarity by the
number of reactive groups). Do not quench with a strong
molar deficiency of glycine to FA (with 0.125 M glycine)
since quenching is not likely to be complete in these
conditions (Splinter et al., 2012) or, if doing so,
immediately proceed to the next step after quenching
without storing the material (even after flash freezing
since cell fixation may still proceed during thawing).

(iii) Do not store fixed larval cell material inactivated with
glycine and washed with ice-cold 1X PBS on ice for
several days, for example, until controls #1 (chromatin
integrity) and #2 (chromatin restriction digestion) are
ready to understand if chromatin is not degraded and
well digested. Fixation followed by keeping the cell
material on ice does not allow maintaining the DNA
integrity. Degraded DNA was isolated from the cell
material and formed a smear, which disappeared after
treatment with bovine RNase A, which digests DNA,
especially in a degraded form, according to our results
(discussed by Bylino et al. (2021)). Instead, proceed to
the cell lysis stage immediately without storing the cell
material.

(iv) Do not use a too high RCF (10,000 g and higher), but
centrifuge larvae and cells at an RCF not exceeding
5,000–7,500 g. It has been shown that centrifugation
at more than 8,000 g leads to broken, sheared nuclei
(Louwers et al., 2009).

(v) Do not use mechanical force when treating the nuclei,
and handle the nuclei gently. For example, do not pass
the nuclei through a syringe needle because this can
affect the integrity of the nuclei and DNA. Instead, use a
40-µm cell strainer to filter the homogenate to obtain a
cellular material (Bylino et al., 2021).

(vi)Use chromatin treatment modes at 65°C (65°C with SDS
for 5–10 min and 37°C with Triton X-100 for 15 min) as it is
preferable for larval cells. We observed that the regimens of
chromatin treatment with SDS at 37°C (37°C with SDS for
10 min and Triton X-100 for 15 min or 37°C with SDS for 1 h
and Triton X-100 for 1 h), which provide for more efficient
ligation in the case of S2 cells (Bylino et al., 2021), did not give
the same improvement in the case of larval cell material.
(vii) After chromatin heat treatment at 37/65°C in the

presence of SDS/Triton X-100, wash the nuclei with
1X restriction buffer (RB) before restriction digestion
(Flyamer et al., 2017) since, even sequestrated with
Triton X-100, SDS is able to hamper the RE function
at high concentrations (Louwers et al., 2009) and only a
few REs can tolerate the conditions of 0.3% SDS

sequestrated with 1.8–2% Triton X-100 (Splinter et al.,
2012; van de Werken et al., 2012).

(viii) Omit the step of inactivation of RE at 65°C for 10 min in
the presence of high SDS concentrations (~1.2–1.3%) as
it negatively affects the structure of nuclei (Nagano et al.,
2015b). Instead, wash off the nuclei from RE with 1X T4
DNA ligase buffer before DNA ligation (Nagano et al.,
2013; Nagano et al., 2015a; Nagano et al., 2015b, Nagano
et al., 2017).

(ix) Do not ligate chromatin in the presence of 0.1% SDS
even sequestered with 1% Triton X-100. We observed
that 0.1% SDS even sequestered with 1% Triton X-100
gives strong inhibition during in-nucleus DNA ligation
(Bylino et al., 2021), although ligation in a solution of
plasmid DNA cleaved by 6 bp cutter in the presence of
0.1% SDS sequestered with 1% Triton X-100 appear to be
efficient (Gavrilov et al., 2013). It has previously been
proposed to wash the nuclei before DNA ligation
(Flyamer et al., 2017; Golov et al., 2020b). We
examined this important issue and found that at least
a triple washing of larvae nuclei suspension with 1X T4
ligase buffer at this stage efficiently prevents inhibition
and does not lead to DNA degradation (Bylino et al.,
2021).

(x) After Ph/Chl extraction, process 3C library preparations
with RNase I and then purify them on AMPure XP
paramagnetic beads (SPRI technology) in order to
remove RNase and to additionally purify the libraries
before PCR determination of ligation frequencies. We
observed that RNase I is efficient in removing RNA
impurities from DNA preparations and the «safest»
RNase for DNA treatment (Bylino et al., 2021). Use a
T4 DNA ligase concentration of at least 0.025WeissU/µl.
We determined that the T4 DNA ligase concentration of
0.0025 WeissU/μl is inefficient during in-nucleus
ligation and that an efficient concentration range is
from 0.025 to 0.25 WeissU/μl (Bylino et al., 2021).

The abovementioned steps were tested in our previous studies
(Bylino et al., 2021; Shidlovskii et al., 2021) and in this work and
were found to ensure the preservation of DNA integrity at all
stages. Our improvements allow the stable detection of distant
DNA site interactions in 3C libraries prepared from at least 25
(WT larvae) or 50 (transgenic mutant larvae) mg of starter
material. For a more detailed discussion of the steps described
earlier, see the main part and the supplementary in the study by
Bylino et al. (2021).

2.7 Analysis of Distal Interactions in the
Developmental Locus Dad in Drosophila
Larvae
2.7.1 Detection of the Dad Enhancer Interactions in
Drosophila Wild-type Larvae. Comparison of the 3C
Profiles in Wild-type Larvae and S2 Cells
To validate our optimizations of the 3C procedure for Drosophila
larvae, we chose the developmental locus Dad (daughters against
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decapentaplegic) as a model (Figure 2A). The Dad gene is a
regulatory response gene in the BMP/Dpp/TGF-β pathway and
encodes the receptor-binding protein important for negative
feedback in the transmission of the signal from receptors
activated by the Dpp ligand (Tsuneizumi et al., 1997; Marquez
et al., 2001; Sharifkhodaei and Auld, 2021). The BMP/Dpp/TGF-
β signal transduction pathway is important for the growth,
proliferation, and differentiation of cells of imaginal discs

(Peterson and O’Connor, 2014; Upadhyay et al., 2017). The
Dad gene has two enhancers, the proximal Dad13 enhancer
(the main enhancer) and the distal DadInt52 enhancer
(shadow enhancer) (Weiss et al., 2010; Neal et al., 2019). Both
enhancers are located in the introns of the gene (Figure 2A). We
studied the interactions of the enhancer Dad13 with the regions
inside theDad locus in WT larvae and compared the resulting 3C
profile with the profile obtained for S2 embryonic cells.

FIGURE 2 | Comparison of the 3C profiles of live wild-type Drosophila larvae and S2 cells. (A) The model locus Dad with an anchor on the enhancer Dad13 in WT
Drosophila larvae and S2 cells is shown. Designations are as shown in Supplementary Figures S3A. Exons are highlighted grey; introns are shown white. (B) A
representative example of the 3C libraries prepared from WT larvae and S2 cells. Larvae were extracted from fly food, as shown in Figure 1B. One hundred WT larvae
were individually collected and washed, as shown in Figure 1D, and then processed to obtain a cell material, as shown in Figure 1B. Larval cell material (25 mg)
was taken for 3C library preparation. The cell material was centrifuged, the supernatant was removed, and a 3C library and controls #1 and 2were prepared as described
in Protocol of the 3C experiment with Drosophila larvae in the Supplementary Material. The 3C libraries and controls of S2 cells were prepared as shown in
Supplementary Figure S6 except that control #1 and the ligationmixture were purified using a 1.5X volume of AMPure XP beads and control #2 was purified using a 2X
volume of AMPure XP beads. For electrophoresis, in the case of S2 cells, 200 ng of DNA was used for controls #1,2 and the ligation mixture. In the case of larvae, the
DNA amount resolved in the gel was 25 ng for control #1, 50 ng for control #2, and 75 ng for the ligation mixture. Lane 1, control #1 (chromatin integrity control); lane 2,
control #2 (chromatin digestion control); lane 3, ligation mixture (3C sample). (C) Comparison of the 3C profile between live WT Canton S larvae and S2 embryonic cells.
Six independent biological replicates of the 3C library were analyzed for larvae and for S2 cells. The concentrations of all 3C libraries were made equal according to Qubit
readings before measurements. The frequency of ligation of the anchor fragment with the adjacent fragment (point #6) was arbitrarily taken as 100%, and the values of all
other experimental points were calculated proportionally. The relative ligation frequencies (RLFs) of experimental samples were normalized to RLFs within the
constitutively expressed RpII locus. Error bars indicate SEMs from six independent biological replicates of the 3C library. Each experimental point for each 3C library was
studied in 4 technical PCR replicates, and the data were averaged. One-tailed Student’s t-test was used for comparison between groups to calculate the reliability of the
revealed differences. An asterisk indicates the significance level: *p < 0.05, n = 12. (D) A model illustrating spatial differences in the location of regulatory elements of the
developmentalDad gene in cultured cells and liveDrosophila larvae. (E) Evaluation of the expression level of theDad gene in S2 cells and wild-type larvae. Total RNAwas
prepared, and the mRNA level was measured as described in the Isolation of total RNA and RT-qPCR section of Materials and Methods. For reverse transcription, the
same amount of RNA was taken from S2 cells and wild-type Canton S larvae. The Dad gene expression level was normalized to the β-tubulin 56D gene expression level.
The two genes showed similar amplification efficiencies. The Dad mRNA content was calculated using the ΔΔCt method. In addition to the ΔΔCt, a calibration curve
prepared from S2 cell DNA as described in Materials and Methods was used in the experiment. The results obtained using the calibration curve and ΔΔCt were similar.
The Dad expression level in S2 cells was arbitrarily taken as 1. Three independent total RNAs were prepared from S2 cells and from larvae, and each RT was studied in 4
PCR technical replicates. Error bars indicate SDs of 4 PCR technical measurements from three independent biological replicates of total RNA. One-tailed Student’s t-test
was used to evaluate the reliability of differences in between-group comparisons. An asterisk indicates the significance level: *p < 0.001, n = 6.
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FIGURE 3 | General scheme of the experiment with transgenic larvae, screening of crossovers, and 3C libraries obtained from the transgenic larvae. (A) Genetic
structure of transgenic flies and a general arrangement of the experiment with transgenic larvae used to determine the role of SAYP or the BAP170 Brahma/SWI/SNF
subunits in enhancer–promoter interactions. The SWI/SNF subunits BAP170 and SAYP tethered to the reporter promoter induce activation of the reporter in an adjacent
enhancer-dependent manner. (B) 3C libraries prepared from larvae carrying the reporter PlexAop-hsp70-lacZ transgene in the presence of either Ptub-lexA-BAP170 or
PBAP170-lexA-SAYP driver. The combinations of transgenes are indicated above the electrophoretic pictures. The experiment was performed as shown in Figure 2B for
larvae except that 150 larvae were collected and 50 mg of larval cell material was taken for 3C library preparation. Lane 1, chromatin integrity control; lane 2, chromatin
digestion control; lane 3, ligation mixture (3C sample). At least seven independent 3C libraries were prepared for each genotype. A representative example is shown for
two 3C libraries. (C) 3C libraries prepared from larvae carrying the PlexAop-hsp70-lacZ reporter only. 3C libraries and controls were prepared as shown in (A). Lane 1,
chromatin integrity control; lane 2, chromatin digestion control; lane 3, ligation mixture (3C sample). At least seven independent 3C libraries were prepared. Three
biological replicates obtained after fixation with different FA concentrations are presented. (D) Electrophoretic analysis of chromatin integrity controls and restriction
digestion controls prepared from larvae carrying the PlexAop-hsp70-lacZ reporter with or without the Ptub-lexA-BAP170 or PBAP170-lexA-SAYP driver. The controls were

(Continued )
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Individually collected 3rd instar Canton S larvae were used. 3C
libraries were prepared and analyzed as described earlier.
Electrophoretic analysis of the 3C libraries is given in Figure 2B.

When we addressed the 3C profile, we found that the profile of
Dad13 enhancer interactions in larvae differed from that obtained
for cultured cells. Although the upstream and downstream
regions interacted with the enhancer weakly in both larvae
and S2 cells, the promoter region was significantly closer to
the enhancer in larvae than in S2 cells (Figure 2C,
Supplementary Figures S10 and S11). The situation did not
differ when a smaller amount of larval cell material was used to
prepare the 3C library (Supplementary Figure S12C). This
means that our data fall within the linear sensitivity range of
the 3C method. Thus, our data suggest that there are differences
in the proximity of the enhancer to the promoter between WT
larval cells and cultured embryonic S2 cells (Figure 2D). The
differences may be associated with the Dad expression level.
Indeed, Dad is expressed at a low level in cultured cell lines
and is active in 3rd instar larvae, according to databases
(Chintapalli et al., 2007; modENCODE Consortium et al.,
2010; Larkin et al., 2021). To check this experimentally, we
performed RT-qPCR using equal amounts of S2 and WT 3rd
instar larval cell material and found that the Dad expression level
in cultured S2 cells was approximately 10 folds lower than in
larval cells. Thus, the differences in the enhancer–promoter
proximity within the Dad locus correlate with the gene
activity. The inactive state of the Dad locus in S2 cells can be
accounted for by its localization in the B compartment in S2 cells
and embryos (Sexton et al., 2012; Li et al., 2015; Cubeñas-Potts
et al., 2017; Eagen et al., 2017).

2.7.2 3C Profile of the Dad Locus in the Presence of an
Adjacent Transgene
Description of the experimental reporter system. We have
previously described the enhancer-trap system in flies that
contains a reporter transgene PlexAop-hsp70-lacZ activated by a
nearby enhancer in a Brahma complex (SWI/SNF)-dependent
manner (Shidlovskii et al., 2021). The flies carry a P-element
insertion of the reporter lacZ gene into the 5′ region of the Dad
gene in the 3R arm of the third chromosome (Figure 3A). The
reporter was placed under the control of the minimal hsp70
promoter fused with the operator sites for the DNA-binding
domain (DBD) of the LexA protein (PlexAop-hsp70-lacZ). The flies
also have a second transgene, which is integrated in the attP2 site
in the 3L arm of the same chromosome (Markstein et al., 2008;
Pfeiffer et al., 2008, Pfeiffer et al., 2010), thus expressing a fusion

protein that consists of one of the signature subunits of the
Brahma complex (SAYP or BAP170) and DBD of the LexA
protein (Figure 3A). These subunits are conservative (SAYP is a
homologue of PHF10 in humans; BAP170 is a homologue of
ARID2 in humans and RSC9 in yeast) and specify the PBAP/
PBAF subtype of the Brahma (SWI/SNF) chromatin remodeling
complex. The driver transgene in 3L was placed under the control
of Ptub (BAP170 fusion) or PBAP170 (SAYP fusion) promoter. As
was previously shown, targeted recruitment of the SAYP-lexA or
BAP170-lexA fusion to the LexA operator sites in the lacZ
promoter was accompanied by reporter gene activation in an
enhancer-dependent manner with a pattern similar to that of the
endogenousDad gene (Shidlovskii et al., 2021). In this regard, it is
of interest to elucidate whether such activation is accompanied by
spatial convergence of the captured enhancer and the reporter
gene promoter. For this purpose, a 3C library was prepared from
3rd instar larvae of fly lines carrying the PlexAop-hsp70-lacZ reporter
transgene with any of the two other transgenes that coded for a
fusion of either SAYP or BAP170 with the LexA DBD (Ptub-lexA-
BAP170 or PBAP170-lexA-SAYP driver transgenes). Larvae that
carried only the PlexAop-hsp70-lacZ reporter transgene were used as
a control.

Genetic background affects digestion by restriction enzyme in
3C procedure. The chromatin of the Ptub-lexA-BAP170- and
PBAP170-lexA-SAYP-containing lines was digested normally with
DpnII and efficiently ligated after that (Figure 3B), whereas the
chromatin of the line containing only the PlexAop-hsp70-lacZ
transgene was inefficiently digested with DpnII in parallel
experiments, leading to poor ligation in the case of this line
(Figure 3C, left and central panels). Halving the concentration of
the fixing agent did not significantly improve digestion and
ligation (Figure 3C, right panel). Moreover, the yields of DNA
and especially total RNA were significantly reduced in the case of
the PlexAop-hsp70-lacZ-only line as compared with the driver-
containing lines (compare Figure 3B, two left and two right
panels). We concluded that the genetic background prevents
efficient digestion and ligation of chromatin in the case of the
PlexAop-hsp70-lacZ-only line. It is possible that the RE site is
methylated at A or C in this line and its digestion is thus
blocked (Kunert et al., 2003; Zhang et al., 2015; Deshmukh
et al., 2018), but this assumption requires further study. Thus,
these important observations suggest that the genetic background
can influence the success of the 3C procedure with different fly
lines. To overcome the difficulties with the genetic background of
the control PlexAop-hsp70-lacZ line, we used meiotic crossing over
between chromosomes as a powerful genetic technique for

FIGURE 3 | prepared as shown in (B) except that they were not treated with RNase. The top row of pictures shows the same samples but resolved electrophoretically for
a shorter time. Lane 1, chromatin integrity control; lane2, chromatin digestion control. Two independent replicates are shown for each genotype. (E) PCR analysis of the
crossover lines carrying the Ptub-lexA control driver and PlexAop-hsp70-lacZ reporter transgene in the same chromosome. A representative analysis is given in comparison
with other lines. Genomic DNA was extracted from flies as described in the section Genomic DNA isolation from fly lines for screening of crossover flies ofMaterials and
Methods. Lane 1, Ptub-lexA-BAP170 driver + PlexAop-hsp70-lacZ reporter; lane 2, PBAP170-lexA-SAYP driver + PlexAop-hsp70-lacZ reporter; lane 3, reporter transgene PlexAop-

hsp70-lacZ only; lane 4, control driver transgene Ptub-lexA (insertion in chromosome 3 #1); lane 5, control driver transgene Ptub-lexA (insertion in chromosome 3 #2); lane 6,
WT Oregon R; lane 7, crossover #2 (insertion from lane 4 was combined with the reporter transgene from lane 3); lane 8, crossover #6 (insertion from lane 5 was
combined with the reporter transgene from lane 3); lane 9, control PCRwith water instead of DNA (negative control #1); lane 10, control reaction with 50 mMTris-HCl, pH
8.0 instead of DNA (negative control #2). (F) Representative examples of 3C libraries prepared from crossover lines. Larvae, 3C libraries, and controls were processed as
shown in (B). Designations of lanes are as shown in Figure 2B. One replicate is shown for each crossover line.
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FIGURE 4 | Comparison of the 3C profiles in the Dad locus in the presence of an adjacent transgene. (A) The model locus Dad with the adjacent transgene is
shown. Designations are as shown in Supplementary Figures S3A and S6. A red circle and oval encompass the points under study. An anchor icon indicates the
location of the anchor primer at theDad13 enhancer. (B) Interaction profiles for indicated positions inDad locus with the adjacent reporter transgene were obtained in the
presence of the Ptub-lexA-BAP170, PBAP170-lexA-SAYP, or control Ptub-lexA driver transgene with the anchor at the Dad13 enhancer. Extraction, collection, and
processing of larvae and 3C library preparation were done as shown in Figure 2B for larvae except that 150 larvae were collected and 50 mg of larval cell material was
taken for 3C library preparation. Seven independent 3C libraries were prepared and analyzed for Ptub-lexA-BAP170 and PBAP170-lexA-SAYP larvae and 4, for control
Ptub-lexA larvae (two for each crossover line #2 and #6, respectively). The 3C experiment was done as shown in Figure 2C except that error bars indicate SEMs from 7 or
4 independent biological replicates of the 3C library for each case, respectively. Each experimental point for each 3C library was studied in 2–4 technical PCR replicates,
and the data were averaged. Point 10 was excluded from the analysis since points 9 and 10 are adjacent. The RLFs of experimental samples were normalized to RLFs
within the constitutively expressed RpII locus and to point #13 (intergenic spacer). The values between the two normalizations were averaged. An asterisk indicates the
significance level: *p < 0.05, n = 12. (C) The same as shown in (A), but the anchor is at the PlexAop-hsp70-lacZ promoter and the points under study are encompassed in
green. (D) The same as shown in (B), but the anchor is at the PlexAop-hsp70-lacZ promoter. The number of the prepared and analyzed 3C libraries is the same as shown in
(B). The frequency of ligation of the anchor fragment with the adjacent fragment (point #8) was arbitrarily taken as 100%, and the values of all other experimental points
were calculated proportionally. An asterisk indicates the significance level: *p < 0.05, n = 12. (E) RT–qPCR analysis of the expression level of the driver transgenes in
mutant larvae. mRNA expression of Ptub-lexA-BAP170, PBAP170-lexA-SAYP, and control driver Ptub-lexA was studied using primers annealing to the LexA domain-
coding sequence. The following genotypes were studied: PlexAop-hsp70-lacZ, Ptub-lexA-BAP170; PlexAop-hsp70-lacZ, PBAP170-lexA-SAYP; PlexAop-hsp70-lacZ, Ptub-lexA.
RT–qPCR was carried out as shown in Figure 2E except that only the ΔΔCt method was used for calculation and four independent total RNAs were prepared for each
driver line. The expression level in the line carrying the PlexAop-hsp70-lacZ reporter and the PBAP170-lexA-SAYP driver was arbitrarily taken as 1. An asterisk indicates the
significance level: *p < 0.05, n = 8. (F) RT–qPCR analysis of the expression level of the reporter transgene lacZ in mutant larvae. RT–qPCRwas done as shown in (E). The
following genotypes were studied: PlexAop-hsp70-lacZ, Ptub-lexA; PlexAop-hsp70-lacZ, Ptub-lexA-BAP170; PlexAop-hsp70-lacZ, PBAP170-lexA-SAYP, and PlexAop-hsp70-lacZ
only. RT–qPCR was done as shown in Figure 2E except that only the ΔΔCt method was used for calculation and 4 independent total RNAs were prepared for each line.
The expression level in the line carrying the PlexAop-hsp70-lacZ reporter and Ptub-lexA driver was arbitrarily taken as 1. N.S., non-significant (p > 0.05). An asterisk indicates
the significance level: *p < 0.05, n = 8. (G) A model illustrating the role of the tethered (t) SAYP/BAP170 in distal interactions in the Dad locus carrying an adjacent
transgene. The endogenous Dad promoter is regulated by the endogenous Dad enhancer, the two elements always forming a contact. In the absence of tSAYP/
BAP170, the transgene does not establish contact with the Dad gene. Recruitment of SAYP/BAP170 to the reporter promoter induces its recruitment into a joint
regulatory hub with the Dad enhancer and Dad promoter.
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separating harmful mutations and diluting the genetic
background (see a recombination scheme in Supplementary
Figure S13). Two independent lines carrying the PlexAop-hsp70-
lacZ reporter transgene in the presence of the Ptub-lexA control
driver were obtained. The presence of both transgenes in
crossover flies was confirmed by PCR (Figure 3E). Then 3C
libraries were prepared in parallel for each new control line.
Representative examples of the resulting 3C libraries are given in
Figure 3F.

Recruitment of SAYP and BAP170 to the reporter
promoter induces its convergence to the endogenous
enhancer. To verify that LexA-BAP170/LexA-SAYP-
mediated activation of the lacZ reporter is accompanied by
spatial convergence of the captured enhancer and the reporter
gene promoter, we compared the 3C profiles of the Dad locus
with the adjacent PlexAop-hsp70-lacZ transgene in the control
line, in the presence of the Ptub-lexA driver, with the 3C
profiles obtained for the two experimental lines, in the
presence of the Ptub-lexA-BAP170 or PBAP170-lexA-SAYP
driver. We observed that the ligation frequency between the
lacZ reporter promoter and Dad enhancer in the control line in
the presence of Ptub-lexA driver transgene was significantly
lower than in lines with the LexA-SAYP/BAP170 drivers,
either in direct (the anchor primer was located on the Dad
enhancer) (Figures 4A and B) or in reciprocal (the anchor
primer was located on the reporter transgene promoter)
(Figures 4C and D) experiments. We concluded that
transcription activation mediated by the tethering of the
Brahma complex subunit SAYP or BAP170 to the reporter
promoter is accompanied by spatial convergence of the
captured enhancer and the reporter lacZ gene promoter.
This correlates well with a Dad-like expression pattern of
lacZ in the presence of the LexA-BAP170 or LexA-SAYP
(Shidlovskii et al., 2021).

Increased expression of the driver is accompanied by an
increase in the ligation frequency of the enhancer with the
promoter and enhanced reporter expression. When comparing
the 3C profiles of the Ptub-lexA-BAP170- and PBAP170-lexA-
SAYP-containing driver lines in a direct experiment, no
significant differences were found between the lines and, in
both the lines, the strongest interaction of the Dad13 enhancer
was observed with the endogenous Dad promoter, which is closer
to the Dad13 enhancer, than the lacZ promoter is (Figures 4A
and B), much the same as in WT larvae (Figure 2C). When
comparing the 3C profiles of the Ptub-lexA-BAP170 and PBAP170-
lexA-SAYP lines in a reciprocal experiment, a significant
difference in the ligation frequency of the lacZ promoter and
Dad13 enhancer was found between the lines (point #5). The
difference might result from different expression levels of the
driver under the control of different promoters, Ptub (constitutive
strong promoter of the α1-tubulin gene) or PBAP170 (−373/+135
bp). To check, we measured the abundance of the driver mRNA
in the Ptub-lexA-BAP170 and PBAP170-lexA-SAYP lines and the
control Ptub-lexA line by RT-qPCR. We observed that the
expression of Ptub-lexA-BAP170 was indeed significantly
higher than that of PBAP170-lexA-SAYP and was comparable to
that in the control Ptub-lexA line (Figure 4E). Thus, there is a

direct relationship between the level of lexA-SAYP/BAP170
drivers and the ligation frequency of the lacZ promoter with
the Dad13 enhancer.

To verify that the difference in expression of the Ptub-lexA-
BAP170 and PBAP170-lexA-SAYP transgenic constructs results in
differences in expression of the lacZ reporter gene, we measured
the lacZ mRNA level in the Ptub-lexA-BAP170/PBAP170-lexA-
SAYP lines, the control Ptub-lexA-containing line, and the
PlexAop-hsp70-lacZ only line. Indeed, transcriptional activation of
lacZ correlated with the driver type: significant differences in lacZ
mRNA expression level were found between the Ptub-lexA-
BAP170 and PBAP170-lexA-SAYP lines (Figure 4F). Both Ptub-
lexA-BAP170 and PBAP170-lexA-SAYP driver lines differed in
lacZ expression from the control Ptub-lexA-containing line, and
no significant difference was found between the Ptub-lexA-
containing line and the PlexAop-hsp70-lacZ only line. The control
line, which carried only the PlexAop-hsp70-lacZ transgene, showed
almost no activation of transcription (Figure 4F). We concluded
that greater expression of the driver results in more pronounced
upregulation of reporter gene expression. At the same time, low
expression of the PBAP170-lexA-SAYP driver was enough to
induce interactions between the lacZ reporter promoter and
the Dad13 enhancer.

Thus, recruitment of the SAYP/BAP170 subunit to the
reporter gene promoter mediates its interaction with the
enhancer, and this is accompanied by changes in chromatin
fiber conformation.

We hypothesized that the activation of expression is
apparently accompanied by the association of compatible (co-
regulated in our case) regulatory elements into a complex
(chromatin hub), which probably shares transcription factors
and other common components of the transcription machinery
(Figure 4G). Our data also suggest that recruitment of the PBAP
chromatin remodeling complex to the promoter may be a
prerequisite for establishing the interaction with enhancers in
Drosophila.

3 DISCUSSION

The principles of developmental gene functioning are an
important problem in current biology. The expression of
developmental genes is tightly linked to their conformation.
Conformational changes in developmental genes can proceed
simultaneously with the activation of their expression
(Schoenfelder et al., 2015a; Bonev et al., 2017; Freire-Pritchett
et al., 2017; Rubin et al., 2017; Schoenfelder et al., 2018b; Novo
et al., 2018), or a specific conformation can pre-exist and serves as
a scaffold to facilitate the activation (Jin et al., 2013; Ghavi-Helm
et al., 2014; Schoenfelder et al., 2015b; Bonev et al., 2017; Cruz-
Molina et al., 2017; Rubin et al., 2017; Comoglio et al., 2018; Ing-
Simmons et al., 2021). Interactions between cis-regulatory
elements in both cases can be investigated using 3C-based
methods. In the present work, we investigated the 3C
procedure for whole Drosophila larvae using a developmental
geneDad (daughters against decapentaplegic) as a model. We give
a complete description of the 3C experiment on Drosophila
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larvae, including isolation of larvae from fly food, their sorting by
age, fixation, homogenization, preparation of cellular material,
preparation of experimental 3C and control libraries, analysis of
interactions, and calculation of the experimental results.

3.1 The 3C Procedure for Whole Larvae and
a Dad Gene Model
The 3C protocol has previously been optimized with S2 cells
(Bylino et al., 2021). Here, we applied the procedure toDrosophila
3rd instar larvae. The steps that we adapted from the protocols
previously developed for cultured cells and zygotes of mammals
(Rao et al., 2014; Flyamer et al., 2017; Golov et al., 2020b) (see
Supplementary Figure S6 legend) also proved applicable to
Drosophila primary cells obtained from whole 3rd instar
larvae. The quality of the resulting 3C libraries was acceptable,
as demonstrated by electrophoresis (Figure 2B and Figures 3B
and F). To further validate our procedure, we used it to study the
conformation and distal interactions between regulatory
elements in the developmental locus Dad in WT larvae. We
observed that the conformation differed between cultured S2 cells
(a repressive conformation) and live larvae (an active
conformation) (Figure 2D), and this observation correlated
well with Dad expression level in larvae and S2 cells
(Figure 2E). The Dad gene codes for a negative feedback
regulator of the BMP/Dpp/TGF-β signaling pathway. Its low
expression in S2 cells is in good agreement with the literature
data that S2 cells produce a weak response to treatment with the
Dpp ligand since these cells do not express some components of
the BMP/Dpp/TGF-β pathway (Cherbas et al., 2011; Neal et al.,
2019). Low or altered expression of developmental genes in
cultured cells is a general problem typical not only for
Drosophila but also for mammals and can be overcome at
least partly by using primary cell cultures (Antequera et al.,
1990; Kitsis and Leinwand, 1992; Zaitseva et al., 2006).

3.2 Enhancers of the Dad Locus
The Dad locus contains two functional enhancers: Dad13 is the
first enhancer in the chain (a primary enhancer) and the
DadInt52 enhancer downstream (a shadow enhancer) (Weiss
et al., 2010). The Dad13 enhancer is thought to be the primary
element that drives the expression of the gene (Weiss et al., 2010;
Neal et al., 2019). According to our data, a two-humped curve is
absent in the graph in Figure 2C, when an anchor is on theDad13
enhancer, indicating that the Dad13 enhancer is not in complex
with the Dad promoter and DadInt52 enhancer. This is in good
agreement with the leading role that the first enhancer in a chain
of gene enhancers plays in regulating expression in higher
eukaryotes and their evolutionary precursors (Song et al.,
2019; Bylino et al., 2020). The finding additionally correlates
well with observations by Weiss et al. (2010) and Neal et al.
(2019), who showed that the Dad13 enhancer provides a proper
transcriptional response and drives the expression of the reporter
gene in a pattern virtually identical to that of endogenous Dad,
while DadInt52-driven expression is weak and only partially
overlaps that of Dad13. Altogether, our data emphasize that
the DadInt52 enhancer is a shadow enhancer and plays an

auxiliary or redundant role in comparison with the Dad13
enhancer. However, it cannot be ruled out that DadInt52 is
involved in the regulation at a developmental stage other than
embryos (Weiss et al., 2010) or 3rd instar larvae (this work). Our
results concerning the leading role of the first enhancer are in
good agreement with the results by Bieli et al. (2015), who have
studied the enhancer–promoter interactions in whole larvae for
the developmental gene apterous. They have similarly found that
the apterous enhancer closest to the promoter (the first in the
chain) interacts with the promoter more strongly than the second
enhancer (the second in the chain). Moreover, the leading
enhancer interacted with the promoter more strongly than
with the control region situated downstream of the apterous,
like in our case (point #13). This suggests that the mode of
regulation is universal for developmental genes and emphasizes
the leading role of the first enhancer in a chain of enhancers.

3.3 3C Experiment With WT and Mutant
Larvae
Having studied the interactions in cultured cells and WT larvae,
we applied our procedure to the mutant fly lines that carried a
reporter transgene adjacent to the Dad gene and demonstrated
conformational changes in the Dad locus upon activation of
transgene expression (Figures 4B and D). The induction of
expression was achieved through the recruitment (targeted
tethering) of SAYP or BAP170 subunits of the SWI/SNF
remodeling complex to the reporter promoter and subsequent
assembly of the SWI/SNF complex (Shidlovskii et al., 2021).
Recruitment of SAYP/BAP170 to the lacZ promoter leads to
the discrimination of this promoter among the other promoters
of the transgene (P-element promoter and mini-white promoter)
and specific activation of lacZ expression following a Dad-like
pattern (Shidlovskii et al., 2021), thus, providing an example of
specificity of enhancer–promoter communication (Galouzis and
Furlong, 2022). Accordingly, we hypothesized that the targeted
recruitment of the specific SWI/SNF subunits to the promoter is
accompanied not only by an increase in gene expression but also
by spatial convergence of the regulatory elements. We observed
that this was the case (Figures 4B and D). At the same time,
surprisingly, the recruitment of the SAYP/BAP170 resulted in
more pronounced interactions of the Dad13 enhancer not only
with the reporter promoter but also with the Dad promoter
(Figure 4B) and enhanced interaction of the two promoters
with each other (Figure 4D). We hypothesized that both
promoters and the Dad13 enhancer combine to form a ternary
complex (chromatin hub), which possesses a more stable
conformation compared with a dual Dad promoter-enhancer
complex and provides a basis for a higher ligation frequency
(Figure 4F). Alternatively, increased ligation between regulatory
elements may be interpreted as an activation chromatin hub,
where enhancement of both promoter activation might take place
due to the looser chromatin structure induced by targeted
recruitment of SAYP/BAP170 and subsequently of Brahma
complex. However, we do not know whether the Dad13
enhancer activates both promoters simultaneously or
sequentially or whether this activation occurs in different cells
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[discussed in (Peng and Zhang, 2018)]. The first scenario is
supported by many observations of the co-localization of
regulatory elements of co-expressed genes within the same
transcription factory (Osborne et al., 2004; Mitchell and
Fraser, 2008; Sutherland and Bickmore, 2009; Rieder et al.,
2012). Such genes usually share the components of the
transcription apparatus, and co-expression of two transgenes/
endogenes closely located in the genome and regulated with the
same enhancer and competition between two promoters for one
enhancer is well-documented in the literature (Raj et al., 2006;
Papantonis et al., 2010; Bartman et al., 2016; Fukaya et al., 2016;
Lim et al., 2018; Stavreva et al., 2019).

3.4 Competition Between Two Promoters
for the Same Enhancer
Competition between the lacZ and Dad promoters can also occur
in order to establish separate contacts with the enhancer. Indeed,
mutually inhibitory co-expression of genes has been
demonstrated when two different sequentially located globin
genes are regulated by one enhancer (LCR) in cis (Deng et al.,
2014; Bartman et al., 2016). It strongly resembles the organization
of the Dad locus under study. In this model, one would expect an
“enhancer hijacking” phenomenon. In the case of hijacking of the
Dad13 enhancer by the transgenic promoter, the 3C profile would
show a decrease in interaction with the endogenous Dad
promoter, which would be accompanied by a corresponding
increase in interaction with the transgenic promoter. However,
it was not detected. Moreover, in our case, lacZ is apparently
expressed at a significantly lower level than the Dad gene (data
not shown). Due to this, it is not possible to reliably determine by
RT-qPCR whether an increase in lacZ expression in the presence
of SAYP/BAP170 is accompanied by a corresponding decrease in
Dad endogene expression. The presence of the lacZ transgene has
just a slightly negative effect on Dad expression (data not shown)
and may be caused by disruption of Dad promoter structure
(hypomorphic mutation) rather than by enhancer hijacking.
Thus, our data indicate that, even if the reporter promoter
hijacks some of the Dad13 enhancer activity, it does so in a
very weak manner.

3.5 Activation of RNAPII Promoter by RSC/
PBAP/PBAF Complex Depends on Natural
Genomic Context
Our previous data showed that targeted recruitment of the SAYP/
PHF10 PBAP signature subunit fused with GAL4 DBD to the
hsp70 promoter [−259/+198, containing GAF and six HSF sites
(Ingolia et al., 1980; Steller and Pirrotta, 1984, 1985; Weber et al.,
1997; Wu et al., 2001; Kwak et al., 2013)] under the control of
UAS strongly induces reporter gene expression in a PBAP-
dependent manner (Vorobyeva et al., 2009). These
experiments were performed with a transient transfection
model and a model of a reporter transgene integrated into the
genome in multiple copies in a Drosophila S2 cell culture. In our
experiments described in this work and in the study by
Shidlovskii et al. (2021), the upstream LexA binding sites were

combined with the minimal hsp70b core promoter (−45/+207
bp), lacking upstream GAF and HSF binding sites, and this
reporter transgene was placed in genomic context in a single
copy. Targeted recruitment of the SAYP/BAP170 subunits to the
promoter was insufficient for reporter activation, required an
active enhancer to occur in the genomic vicinity, and was
accompanied by the convergence of the enhancer and the
hsp70 promoter. Although the hsp70 promoters used in the
previous and current models differ in length, our data may
point to the importance of the genomic context: a reporter
located in a plasmid or in the genome may show different
behaviour. Apparently, the chromatin environment and its 3D
conformation make a significant contribution to the reporter
gene activity.

Previously, the effect of targeted Brahma subunit recruitment
on gene activity was tested in yeast and human cells. Recruitment
of the RSC/PBAP/PBAF complex subunits Sth1 or Swh3/Rsc8
(MOR/BAF155/170) to the core promoter did not induce
expression of the RNAPII promoter (Laurent et al., 1992;
Treich and Carlson, 1997), whereas recruitment of the ySWI/
SNF/BAP/BAF complex subunits SNF2, SNF5, SNF6, and SNF11
to the same promoter sufficed to induce expression (Laurent et al.,
1990; Laurent et al., 1991; Laurent et al., 1992; Treich et al., 1995).
Thus, these data may indicate that different roles are played by the
ySWI/SNF and RSC complexes in RNAPII promoter regulation
in yeast. Subunits of the human BAF complex, hBRM and
hDPF3a (D4/TTH/BAF45B/C/D), induced expression of
several RNAPII promotes upon their targeted recruitment in
human cell cultures (Muchardt and Yaniv, 1993; Trouche et al.,
1997; Cui et al., 2016). All of these promoters possess a long
enhancer/promoter region, and their BAF-driven activation
depends on cell activators. However, the reporter was in a
plasmid in all of these cases; therefore, the data cannot
provide direct evidence that the test proteins act similarly in
the natural genomic context.

Genome-wide data show that BAF occupies enhancer regions,
while PBAF is found on both enhancers and promoters
(Nakayama et al., 2017; Carcamo et al., 2022). We also found
that PBAP occupies both Dad enhancer and promoter
(Shidlovskii et al., 2021). We hypothesized that, in addition to
the catalytic function, PBAP/PBAF mediates interactions
between enhancers and promoters in a non-catalytic mode
(Kwok et al., 2015; Jordan-Pla et al., 2018).

3.6 Role of SWI/SNF in Establishing
Long-Range Contacts Between Enhancers
and Promoters
Since the targeted recruitment of the SWI/SNF subunits to the
reporter promoter and its activation is accompanied by changes
in the conformation of the chromatin fiber, we hypothesized that
SWI/SNFmay facilitate the organization of long-range regulatory
gene contacts in the interphase in Drosophila. This mechanism of
gene regulation might be basic, more ancient, and more universal
than the regulation via cohesin-dependent loop extrusion, which
is absent in Drosophila (Rowley et al., 2017; Eagen, 2018;
Gambetta and Furlong, 2018; Matthews and White, 2019;
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Bylino et al., 2020; Kaushal et al., 2021). The hypothesis about the
role of SWI/SNF in the spatial regulation of gene expression is
strongly supported in the literature. For example, loop formation
mediated by the SWI/SNF complexes was found in microscopic
(Bazett-Jones et al., 1999), real-time in vitro (Lia et al., 2006;
Zhang et al., 2006; Sirinakis et al., 2011), biochemical, and genetic
studies (Ni et al., 2008; Kim et al., 2009a, Kim et al., 2009b; Shi
et al., 2013; Jégu et al., 2014). Even in mammals, where cohesin
brings together distant regions of immunoglobulin genes,
regulating the switching of types of antibodies by the loop
extrusion mechanism (Thomas-Claudepierre et al., 2013;
Zhang et al., 2019), it has been shown that SWI/SNF assists
this process (Kwon et al., 2000; Bossen et al., 2015). The interplay
between SWI/SNF and CTCF on their DNA binding sites has also
been detected (Euskirchen et al., 2011; Barutcu et al., 2016; Wood
et al., 2016); similar data have been reported for condensin II and
SWI/SNF (Wu et al., 2019). Thus, in organisms where loop
extrusion appears to be the main regulatory mechanism of
distant interactions, SWI/SNF also contributes to the
organization of this type of regulation. Our data indicate that
SWI/SNF is necessary for establishing enhancer–promoter
communication in Drosophila.

4 CONCLUSION

(i) The 3C procedure optimized using S2 cells as a model can be
successfully applied to studying the chromatin conformation
and interactions between regulatory elements of
developmental genes in living Drosophila larvae.

(ii) Whole larvae can be used to study not only ubiquitous
intragenomic interactions but also tissue-specific ones. Our
results indicate that, even if an interaction is specific for a
limited set of cells in larvae, the 3C procedure using whole
larvae allows its quantitative measurement and comparison
in different lines.

(iii) The genetic background may affect the overall DNA yield
and digestion with a restriction enzyme in the 3C procedure.

(iv) The model locus Dad exists in different conformations in
3rd instar larvae and cultured S2 embryonic cells. The active
conformation correlates with the transcriptional activity of
the gene in living larvae.

(v) Targeted recruitment of SAYP and the BAP170 subunits
(SWI/SN and PBAP) to a reporter promoter induces the

convergence of the promoter and endogenous enhancer.
This is accompanied by an increase in reporter gene
expression.
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