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Modulated phases of graphene quantum Hall
polariton fluids
Francesco M.D. Pellegrino1, Vittorio Giovannetti1, Allan H. MacDonald2 & Marco Polini3

There is a growing experimental interest in coupling cavity photons to the cyclotron

resonance excitations of electron liquids in high-mobility semiconductor quantum wells or

graphene sheets. These media offer unique platforms to carry out fundamental studies of

exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which

electron–electron interactions are expected to play a pivotal role. Here, focusing on graphene,

we present a theoretical study of the impact of electron–electron interactions on a quantum

Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons.

We show that electron–electron interactions are responsible for an instability of graphene

integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this

phase can be detected by measuring the collective excitation spectra, which is often at a

characteristic wave vector of the order of the inverse magnetic length.
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F
luids of exciton polaritons, composite particles resulting
from coupling between electron–hole pairs (excitons) in
semiconductors and cavity photons, have been intensively

investigated over the past decade1–3. Because of the light mass of
these quasi-particles, exciton-polariton fluids display macroscopic
quantum effects at standard cryogenic temperatures1–3, in stark
contrast to ultracold atomic gases. Starting from the discovery of
Bose–Einstein condensation of exciton polaritons in 2006 (ref. 4),
these fluids have been the subject of a large number of interesting
experimental studies exploring, among other phenomena,
superfluidity5,6, hydrodynamic effects7, Dirac cones in
honeycomb lattices8 and logic circuits with minimal dissipation9.

The isolation of graphene10—a two-dimensional (2D)
honeycomb crystal of carbon atoms—and other 2D atomic
crystals11 including transition metal dichalcogenides12,13 and
black phosphorus14, provides us with an enormously rich and
tunable platform to study light–matter interactions and excitonic
effects in 2D semimetals and semiconductors. Light–matter
interactions in graphene in particular have been extensively
explored over the past decade with both fundamental and applied
motivations14–18. Recent experimental advances have made it
possible to monolithically integrate graphene with optical
microcavities19,20, paving the way for fundamental studies of
cavity quantum electrodynamics at the nanometre scale with
graphene as the active medium. Progress has also been made
using an alternate approach applied previously to conventional
parabolic-band 2D electron liquids in semiconductor quantum
wells21 by coupling graphene excitations to the photonic modes
of a terahertz (THz) metamaterial formed by an array of split-ring
resonators22.

When an external magnetic field is applied to a 2D electron
liquid in a GaAs quantum well23 or a graphene sheet24,25, and
electron–electron (e–e) interactions are ignored, transitions
between states in full and empty Landau levels (LLs) are
dispersionless, mimicking the case of atomic transitions in a
gas. The cyclotron resonance of a 2D quantum Hall fluid can be
tuned to resonance with the photonic modes of a cavity or a THz
metamaterial21, thereby establishing the requirements for ‘cavity
quantum Hall electrodynamics’ (cQHED). Cavity photons have
already been used to carry out spectroscopic investigations of
fractional quantum Hall fluids26. cQHED phenomena present
several important twists on ideas from ordinary atom-based
cavity quantum electrodynamics because in this case, interactions
between medium excitations are strong and long ranged.
Furthermore the active medium can be engineered in
interesting ways, for example by using, instead of a single 2D
crystal, van der Waals heterostructures27–29 or vertical
heterostructures, which include both graphene sheets and
ordinary semiconductor quantum wells30,31.

In this article, we show that e–e interactions play a major
qualitative role in graphene-based cQHED. Before describing the
technical details of our calculations, let us briefly summarize the
logic of our approach. The complex many-particle system of
electrons in a magnetic field, interacting between themselves and
with cavity photons, is treated within two main approximations.
We use a quasi-equilibrium approach based on a microscopic
grand-canonical Hamiltonian and treat interactions at the mean-
field level. We critically comment on these approximations after
‘Results’ section. Our approach is similar to that used in refs 32–34,
except that simplifications associated with LL quantization allow
more steps in the calculation to be performed analytically.

The problem of finding the most energetically favourable state
of a graphene integer quantum Hall polariton fluid (QHPF) is
approached in a variational manner, by exploiting a factorized
many-particle wave function. The latter is written as a direct
product of a photon coherent state and a Bardeen–Cooper–

Schrieffer state of electron–hole pairs belonging to two adjacent
LLs. We find that e–e interactions are responsible for an
instability of the uniform exciton-polariton condensate state
towards a weakly modulated condensed state, which can be
probed experimentally by using light scattering. We therefore
calculate the collective excitation spectrum of the graphene QHPF
by employing the time-dependent Hartree–Fock approximation.
We demonstrate that the tendency to modulation driven by e–e
interactions reflects into the softening of a collective mode branch
at a characteristic wave vector of the order of the inverse magnetic
length.

Results
Effective model. We consider a graphene sheet in the presence of
a strong perpendicular magnetic field B ¼ Bẑ (refs 35,36). We
work in the Landau gauge with vector potential A0 ¼ �Byx̂. The
magnetic field quantizes the massless Dirac fermion (MDF) linear
dispersion into a stack of LLs, el;n ¼ l‘oc

ffiffiffi
n
p

, which are labelled
by a band index l¼±, which distinguishes conduction
and valence band states and an integer n¼ 0,1,2,y. Here
oc ¼

ffiffiffi
2
p

vD=‘B is the MDF cyclotron frequency35,36, vD ’ c=300
the Dirac band velocity (c being the speed of light in vacuum) and
‘B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ c=ðeBÞ

p
’ 25nm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B½Tesla�

p
is the magnetic length.

The spectrum is particle–hole symmetric, that is, e� ,n¼
� eþ ,n for each n. Each LL has macroscopic degeneracy
N ¼ Nf S=ð2p‘2

BÞ � NfN f, where Nf¼ 4 is the spin-valley
degeneracy and S¼ L2 is the sample area.

In this article, we address the case of integer filling factors,
which we expect to be most accessible experimentally. Because of
particle–hole symmetry, we can assume without loss of generality
that the chemical potential lies in the conduction band between
the n¼M and n¼Mþ 1 LLs. When the energy ‘o of cavity
photons is nearly equal to the cyclotron transition energy
OM � eþ ;Mþ 1� eþ ;M ¼ ‘ocð

ffiffiffiffiffiffiffiffiffiffiffiffi
Mþ 1
p

�
ffiffiffiffiffi
M
p
Þ, the full fermio-

nic Hilbert space can be effectively reduced to the conduction-
band doublet M,Mþ 1.

We introduce the following effective grand-canonical Hamil-
tonian:

H ¼ HphþHmatþHint�meNe�mXNX: ð1Þ

The first term, Hph, is the photon Hamiltonian,
Hph ¼

P
q;n ‘oqayq;naq;n, where ayq;n (aq,n) creates (annihilates) a

cavity photon with wave vector q, circular polarization n¼ L,R
and frequency oq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2þ c2q2=kr

p
, kr being the cavity dielectric

constant and c the speed of light in vacuum.
The second term in equation (1), Hmat, is the matter

Hamiltonian, which describes the 2D MDF quantum Hall fluid,
and contains a term due to e–e interactions. This Hamiltonian is
carefully derived in the Supplementary Note 1. In brief, one starts
from the full microscopic Hamiltonian of a 2D MDF quantum
Hall fluid36, written in terms of electronic field operators cl,n,k,x.
Here, l¼± is a conduction/valence band index, n is a LL index,
k ¼ � L=ð2‘2

BÞþ ð2p=LÞj with j ¼ 1; . . . ;N f is the eigenvalue
of the x-direction magnetic translation operator, and x is a
fourfold index, which refers to valley (K,K’) and spin (m,k)
indices. All the terms that involve field operators cl,n,k,x, cyl;n;k;x
acting only on the conduction-band doublet M,Mþ 1 are then
treated in an exact fashion, while all other terms are treated at
leading order in the e–e interaction strength37.

The third term, Hint, describes interactions between electrons
and cavity photons, which we treat in the rotating wave
approximation. This means that in deriving Hint we retain only
terms that conserve the sum of the number of photons and the
number of matter excitations. Details can be found in
the Supplementary Note 2. It is parameterized by the following
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light–matter coupling parameter

gq ¼ ‘oc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

2krLz‘oq

s
: ð2Þ

In equation (2) Lz � L is the length of the cavity in the ẑ
direction (V¼ LzL2 is the volume of the cavity). In what follows,
we consider a half-wavelength cavity setting o ¼ pc=ðLz

ffiffiffiffiffi
kr
p Þ.

Consequently25, g � g0 ¼ ‘oc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aQED=ð2p

ffiffiffiffiffi
kr
p Þ

p
, where aQED ¼

e2=ð‘ cÞ ’ 1=137 is the quantum electrodynamics fine-structure
constant.

Finally, in equation (1) we have introduced two Lagrange
multipliers, me and mX, to enforce conservation of the average
number of electrons and excitations38. Ne is the electron number
operator in the M,Mþ 1 reduced Hilbert space, while
NX¼NphþNex is the operator for the number of matter
excitations (excitons). The value of the chemical potential me

should be fixed to enforce hc|Ne|ci¼N . At zero temperature,
this condition is simply enforced in the variational wave function
defined below.

Variational wave function and spin-chain mapping. To find the
ground state of the Hamiltonian (1), we employ a variational
approach in which the many-particle wave function |ci is written
as33,39 a direct product of a photon coherent state and a Bardeen–
Cooper–Schrieffer state of electron–hole pairs belonging to the
M,M þ 1 conduction-band doublet:

jci ¼ exp �N ja j
2

2

� �
exp

ffiffiffiffiffi
N

p
aay0;L

� �
�
Y
k;x

cosðyk=2Þþ e� ifk sinðyk=2Þcyþ ;Mþ 1;k;xcþ ;M;k;x

h i
jc0i;

ð3Þ
where |c0i is the state with no photons and with the M-th LL
fully occupied. In writing equation (3), we have allowed
for phase-coherent superposition of electron–hole pairs with
k-dependent phases fk and excitation amplitudes sin(yk/2), to
allow for the emergence of modulated QHPF phases driven by
e–e interactions. Equation (3) can be written in terms of polariton
operators, as shown in Supplementary Note 3. The variational
parameters {fk}, {yk}, and a can be found by minimizing the
ground-state energy hc j H jci. We introduce the following
regularized energy (per electron)40:

E ¼ Eðffkg; fykg; aÞ �
hc j H jci� hc0 j H jc0i

N : ð4Þ

The variational wave function (3) and the functional
Eð fkf g; fykg; aÞ can be conveniently expressed in terms of the
k-dependent Bloch pseudospin orientations:

nðkÞ � 1
Nf

X
x

hc jsk;x jci

¼ sinðykÞcosðfkÞ; sinðykÞsinðfkÞ; � cosðykÞ½ �T; ð5Þ
where sk;x �

P
n;n0¼M;Mþ 1 tnn0c

y
þ ;n;k;xcþ ;n0;k;x and t¼ (t1,t2,t3)

is a three-dimensional vector of Pauli matrices acting on the
M,M þ 1 doublet. The variational wave function then becomes

jci ¼ exp �N ja j
2

2

� �
exp

ffiffiffiffiffi
N

p
aay0;L

� �
�exp � i

X
k;x

ykmðkÞ � sk;x=2

 !
jc0i;

ð6Þ

where m(k)¼ (sin(fk), � cos(fk),0)T is a unit vector orthogonal
to n(k) and |c0i contains all pseudospins oriented along the � ẑ

direction. Since exp[� iykm(k) � sk,x/2] acts as a rotation by an
angle yk around m(k), we can interpret the matter part of |ci as a
state, in which every pseudospin labelled by (k,x) is rotated
accordingly. The unit vector n(k) in equation (5) denotes the final
pseudospin direction at each k¼ 1yN f. The string {n(k)}k of
N f unit vectors can be viewed as a set of ‘classical’ spins on a
one-dimensional (1D) chain whose sites are labelled by the
discrete index k, as in Fig. 1.

In the same notation,

E ¼ E� E0þ‘ �onX ; ð7Þ
where

E � � g
1
N f

X
k

B � nðkÞþ 1
2

1

N 2
f

X
k;k0

�X3

‘¼1

J ‘ðk� k0Þn‘ðkÞn‘ðk0Þ

þDðk� k0Þ � nðkÞ�nðk0Þ½ �
�
;

ð8Þ

‘ �o � ‘oq¼0� mX ¼ ‘o� mX and

nX ¼
hc j NX jci
N ¼ ja j 2 þ 1

N f

XN f

k¼1

n3ðkÞþ 1
2

: ð9Þ

In equation (8), the quantity ‘ �o plays the role of a Lagrange
multiplier, E0 is a reference energy, which is defined, so that that
E ¼ 0 when nX¼ 0, and J ¼ ðJ 1;J 2;J 3Þ and D ¼ ð0;D2; 0Þ
are the symmetric and antisymmetric, that is, Dzyaloshinsky–
Moriya (DM)41,42, interactions between Bloch pseudospins.
Explicit expression for D, J and E0 are provided in

a

b

Figure 1 | Phases of a graphene integer QHPF. Pictorial representation of

the two phases supported by a graphene quantum Hall fluid interacting with

a uniform electromagnetic field (in yellow). (a) When e–e interactions are

weak, the ground state of the system |ci is a spatially uniform polariton

condensate. In pseudospin magnetic language, this state is a collinear

ferromagnet with all pseudospins, defined in equation (5), denoted by blue

arrows in the Bloch sphere, pointing along a common direction. (b) When

e–e interactions are sufficiently strong, the ground state of the system |ci
spontaneously break translational invariance. In pseudospin magnetic

language, this state is a spiral pseudospin state. The spiral is driven by

antisymmetric interactions between ẑ and x̂ pseudospin components as

explained in the main text.
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Supplementary Note 4, together with plots of the Fourier
transforms eJ ‘ðqÞ � N � 1

f

P
k J ‘ðkÞexpð� iqk‘2

BÞ and eD2ðqÞ �
N � 1

f

P
kD2ðkÞexpð� iqk‘2

BÞ in Supplementary Fig. 2. In
equation (9), we note a photon contribution nph¼hc|Nph|ci/
N ¼ |a|2 and an exciton contribution, nex ¼ hc jNex jci=N ¼
N � 1

f

P
k sin2ðyk=2Þ. It is somewhat surprising that DM

interactions appear in our energy functional (7), since these
require spin-orbit interactions and appear when inversion
symmetry is broken. Our microscopic Hamiltonian (1) does not
contain either SOIs or breaks inversion symmetry. In the next
section, we discuss the origin of pseudospin DM interactions.

Each of the terms in the expression (8) for E¼ E({fk},{yk},a)
has a clear physical interpretation. The first term on the right-
hand side is the energy of a set of independent 1D Bloch
pseudospins in an effective magnetic field with the usual Rabi
coupling and detuning contributions

B � �
ffiffiffi
2
p

ReðaÞ;
ffiffiffi
2
p

ImðaÞ; ðD� aeeÞ=ð2gÞ
h iT

; ð10Þ

where D�‘o� (OMþDee) is the detuning energy with Dee a
correction due to e–e interactions between electrons in the
M,Mþ 1 doublet and electrons in remote occupied LLs43–45

(see Supplementary Note 4). Because the MDF model applies
over a large but finite energy interval, we need to introduce an
ultraviolet cutoff nmax on the LL labels n of occupied states with
l¼ � 1. Our choice for nmax is explained in the Supplementary
Note 5. It is easy to demonstrate that Dee depends logarithmically
on nmax: Dee¼ (aeeOM/8)[ln(nmax)þCM] where aee¼ e2/(kr‘vD)
is the graphene fine-structure constant46 and CM is an ultraviolet-
finite constant. For M¼ 1 we find that C1 ’ � 2:510, in
agreement with earlier work45. The correction Dee to the
cyclotron transition energy is related to the extensively
studied47–49 renormalization of the Dirac velocity vD due to
exchange interactions which also occurs in the absence of a
magnetic field. The quantity aee involves only e–e interactions
within the M,M þ 1 doublet (see Supplementary Note 4). For
M¼ 1 we find aee ¼ aee‘ocð63=32þ

ffiffiffi
2
p
Þ
ffiffiffi
p
p

=32. The second
term in equation (8) describes interactions between Bloch
pseudospins, which originate microscopically from matter-
coherence dependence in the e–e interaction energy. At long
wavelength these interactions stiffen the polariton condensate
collective mode dispersion and support superfluidity. In the
absence of a magnetic field their role at shorter wavelengths is
masked by increasing exciton kinetic energy50.

Pseudospin DM interactions. In the QHPF exciton fluid kinetic
energy is quenched and, as we explain below, DM exciton–
exciton interactions play an essential role in the physics. We
therefore need to understand why D is finite. We start by
observing (see Supplementary Note 4) that D contains direct D2;d
and exchange D2;x contributions, which (a) are of the same order
of magnitude and (b) have the same sign. We can therefore focus
on the direct contribution, which has a simple physical inter-
pretation as the electrostatic interaction between two charge
distributions that are uniform along the x̂ direction and vary
along the ŷ direction, that is,

D2;dðk� k0ÞnzðkÞnxðk0Þ ¼ �
2

krN L

Z
dydy0 ln

jy� y0 j
‘B

� �
rzðy; kÞrxðy0; k0Þ;

ð11Þ
where

rzðy; kÞ ¼ � e
nzðkÞ

2

n
f2

Mþ 1ðy� k‘2
BÞ�f2

Mðy� k‘2
BÞ

þw2
� ;M ½f2

Mðy� k‘2
BÞ�f2

M� 1ðy� k‘2
BÞ�
o ð12Þ

and

rxðy; kÞ ¼ � enxðkÞ½wþ ;MfMþ 1ðy� k‘2
BÞfMðy� k‘2

BÞ
þw� ;MfMðy� k‘2

BÞfM� 1ðy� k‘2
BÞ�:

ð13Þ

Here fn(y) with n¼ 0,1,2,y are normalized eigenfunctions
of a 1D harmonic oscillator with frequency oc and w� ;n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � dn;0
p

captures the property that the pseudospinor corre-
sponding to the n¼ 0 LL has weight only on one sublattice36.

We now use a multipole expansion argument to explain why
D2;dðk� k0Þ 6¼ 0. We first note that rz(y,k) has zero electrical
monopole and dipole moments but finite quadrupole moment
QðkÞ � � e‘2

BQMnzðkÞ ¼ � e‘2
Bð1� dM;0=2ÞnzðkÞ. On the other

hand, rx(y,k) has zero electrical monopole but finite dipole
moment dðkÞ � � e‘BdMnxðkÞ ¼ � e‘B ½wþ ;M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ 1Þ=2

p
þffiffiffiffiffiffiffiffiffiffi

M=2
p

�nxðkÞ. Using a multipole expansion, it follows that the
leading contribution to equation (11) is the electrostatic
interaction between a line of dipole moments extended along
the x-direction and centred at one guiding centre and a line of
quadrupole moments centred on the other guiding centre. It
follows:

D2;dðk� k0Þ 	 � 2e2

EN L‘3
B

QMdM

ðk� k0Þ3
: ð14Þ

The interactions are antisymmetric, that is, their sign depends on
whether the dipole is to the right or to the left of the quadrupole.
The direct contributions between like pseudospin components
which contribute to J are symmetric because they are
interactions between quadrupoles and quadrupoles or dipoles
and dipoles.

Alert readers will have noted that only the ŷ-direction DM
interaction is non-zero, Dðk� k0Þ ¼ D2ðk� k0Þŷ. In contrast, the
usual DM interaction41,42 is invariant under simultaneous
rotation of orbital and spin degrees of freedom. This is not the
case for pseudospin DM interactions: the property that only the ŷ
component of D is non-zero can be traced to the property that,
for a given sign of pseudospin nx(k), the charge distribution
rx(y,k) in equation (13) changes sign under inversion around the
guiding centre (that is, y! � yþ 2k‘2

B).

Linear stability analysis of the uniform fluid state. We first
assume that the energy functional is minimized when yk and fk

in equation (3) are k-‘independent’, that is, yk¼ y and fk¼f for
every k. The functional E then simplifies to

Eðf; y; aÞ ¼ ‘ �o ja j 2 þð‘ �o�DÞsin2ðy=2Þþ aeesin4ðy=2Þ
þ 2

ffiffiffi
2
p

g ja j cosðfþ argðaÞÞsinðy=2Þcosðy=2Þ:
ð15Þ

The first term on the right-hand side of equation (15), which is
proportional to |a|2, is the free photon energy measured from the
chemical potential mX. The second term, which is proportional to
sin2(y/2), is the free exciton energy (as renormalized by e–e
interactions, which enter in the definition of D). The third term,
which is proportional to sin4(y/2), is the exciton–exciton inter-
action term. Finally, the term in the second line, which is
proportional to the Rabi coupling

ffiffiffi
2
p

g, describes exciton–photon
interactions.

We seek for a solution of the variational problem dE ¼ 0
characterized by non-zero exciton and photon densities. For this
to happen, the common chemical potential mX needs to satisfy the
following inequality:

j‘ �oð‘ �o�Dþ aeeÞ jo2g2þ ‘ �oaee: ð16Þ

When this condition is satisfied, the solution of dE ¼ 0 is given
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by

argðaÞ ¼ p�f; ð17Þ

ja j 2¼ g2

2‘ 2 �o2
1� ‘ �oð‘ �o�Dþ aeeÞ

2g2þ‘ �oaee

	 
2
( )

; ð18Þ

and

cosðyÞ ¼ ‘ �oð‘ �o�Dþ aeeÞ
ð2g2þ‘ �oaeeÞ

: ð19Þ

The common chemical potential mX must be adjusted to satisfy
nX¼ [1� cos(y)]/2þ |a|2. In the spin-chain language introduced
above this state is a collinear ferromagnet in which all the classical
spins {n(k)}k are oriented along the same direction, as in Fig. 1a.
Note that, as expected, the energy minimization problem does not
determine the overall phase of the condensate.

We now carry out a local stability analysis to understand what
is the region of parameter space in which this polariton state is a
local energy minimum. A minimum of E, subject to the
constraint on the average density nX of excitations, is also a
minimum of the functional E({fk},{yk},a) defined in equation (8)
with |a| not considered as an independent variable but rather
viewed as a function of the variational parameters {yk} through
the use of equation (9), that is, with ja j! janXðfykgÞ j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nX�N � 1
f

P
k

sin2ðyk=2Þ
r

. With this replacement,

~E � Eðffkg; fykg; aÞj j a j! j aðykÞ j ð20Þ

becomes a functional of 2N fþ 1 independent variational
parameters, which can be arranged, for the sake of simpli-
city, into a vector w with components w ¼ ðargðaÞ; y1; . . . ;
yN f

;f1; . . . ;fN f
ÞT.

In this notation, the extremum discussed above can be
represented by the vector w0¼ (p�f,y,y,y,f,y,f)T. We have
checked that w0 is a solution of the equation rw~EðwÞ ¼ 0.
Whether w0 is a local minimum or maximum depends on the

spectrum of the Hessian

Kmnðw0Þ ¼
@2~EðwÞ
@wm@wn

����
w¼w0

; ð21Þ

which is a (2N fþ 1)� (2N fþ 1) symmetric matrix.
The homogeneous polariton fluid phase is stable only if

Kmn(w0) has no negative eigenvalues. The stability analysis is
simplified by exploiting translational symmetry to classify state
fluctuations by momentum. Stability phase diagrams for M¼ 1
and M¼ 2, constructed by applying this criterion, are plotted in
Fig. 2 for two different values of the cavity dielectric constant kr.
In this figure, white (grey-shaded) regions represent the values of
the detuning D and density nX of total excitations for which the
homogeneous fluid phase is stable (unstable). As expected, by
increasing kr (that is, reducing the importance of e–e interac-
tions) the stable regions expand at the expense of the unstable
ones. Note that the instability displays an intriguing ‘re-entrant’
character and that it can occur also when matter and light have
comparable weight, that is, when nexBnph.

We have checked that the root of instability of the
homogeneous fluid phase is e–e interactions. More precisely,
it is possible to see that in the absence of DM interactions—that
is, when D ¼ 0 in equation (8)—the instability disappears.
Symmetric interactions, however, still play an important
quantitative role in the phase diagrams, as explained in
Supplementary Note 6. The physics of these phase diagrams is
discussed further below where we identify the phase diagram
boundary with the appearance of soft-modes in the uniform
polariton fluid collective mode spectrum. Stable phases occur
only if �o40 (that is, mXo‘o). We remind the reader that this
condition on mX is additional to the one given in equation (16)
above.

Elementary excitations of the polariton fluid. We evaluate the
elementary excitations of the uniform polariton fluid1–3 by
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Figure 2 | Phase diagram of a graphene integer QHPF. White (grey-shaded) regions represent the values of the detuning D—in units of g—and density nX

of total excitations at which the homogeneous phase described by equations (17–19) is stable (unstable). (a) kr¼ 5 and M¼ 1; (b) kr¼ 5 and M¼ 2;

(c) kr¼ 15 and M¼ 1; and (d) kr¼ 15 and M¼ 2. In each panel, blue lines denote the location of points in the plane (D/g,nX), where the ratio between the

number of excitons and the number of photons is constant: nex/nph¼ 1/10 (dashed line), nex/nph¼ 1 (dash-dotted line) and nex/nph¼ 10 (dotted line).

These curves have been calculated with reference to the homogenous phase.
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linearizing the Heisenberg coupled equations of motion of the
matter Bloch pseudospin and photon operators using a Hartree–
Fock factorization for the e–e interaction term in the Hamiltonian
(see Supplementary Note 7). The collective excitation energies
diagonalize the matrix

M ¼

‘ �oq 0 � g
x0;q � g
y0;q
0 � ‘ �oq gx0;q gy0;q

2igy0;q 2ig
y0;q � i2Jx0y0 ðqÞ � i½OMFþ 2Jy0y0 ðqÞ�
� 2igx0;q � 2ig
x0;q i½OMFþ 2Jx0x0 ðqÞ� i2Jy0x0 ðqÞ

0BB@
1CCA:
ð22Þ

The first two-components of eigenvectors of M correspond
to photon creation and annihilation, and the third and fourth
to rotations of the Bloch pseudospin in a plane (denoted
by x̂0 � ŷ0 in the Supplementary Note 7) orthogonal to its
ground state orientation. In equation (22) ‘ �oq ¼ ‘oq� mX,
gx0;q � eifcosðyÞgq=

ffiffiffi
2
p

, gy0;q � ieifgq=
ffiffiffi
2
p

,

OMF ¼
2g2

‘ �o
� 2eJ 1ð0Þ; ð23Þ

Jx0x0 ðqÞ ¼ ½eJ 1ðqÞsin2ðjq�fÞþ eJ 2ðqÞcos2ðjq�fÞ�cos2ðyÞ
þ eJ 3ðqÞsin2ðyÞ;

ð24Þ

Jy0y0 ðqÞ ¼ eJ 2ðqÞsin2ðjq�fÞþ eJ 1ðqÞcos2ðjq�fÞ; ð25Þ

<e½Jx0y0 ðqÞ� ¼ sinð2jq� 2fÞcosðyÞ½eJ 2ðqÞ� eJ 1ðqÞ�=2; ð26Þ

Im½Jx0y0 ðqÞ� ¼ eDðqÞcosðjq�fÞsinðyÞ; ð27Þ

and q¼ [q cos(jq), q sin(jq)]T.
The solution of the eigenvalue problem yields two hybrid

modes that can be viewed as lower polaritons (LP) and upper
polaritons (UP) that are dressed by the condensate and have
strong mixing between photon and matter degrees of freedom at
‘BqtvD

ffiffiffiffiffi
kr
p

=c � 1. Figure 3 illustrates the dispersion relations
of these two modes for M¼ 1. For wavelengths comparable to the
magnetic length, q‘B � 1, the UP mode has nearly pure photonic
character, while the LP mode is a nearly pure matter excitation
with a dispersion relation that is familiar from the theory of
magnon energies in systems with asymmetric DM exchange

interactions51:

Oq ! 2Im½Jx0y0 ðqÞ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½OMFþ 2Jx0x0 ðqÞ�½OMFþ 2Jy0y0 ðqÞ� � f2<e½Jx0y0 ðqÞ�g2

q
:

ð28Þ
Figure 3b shows the LP dispersion relation for three different

polar angles jq. In all cases, a local roton-like minimum occurs at
a wave vector 2=‘Boqo3=‘B. The global minimum of the LP
dispersion occurs along the direction jq¼f, where the impact of
DM interactions is strongest, that is, Im½Jx0y0 ðqÞ� is maximum—
see equation (27). The mode energy vanishes, and a Hessian
eigenvalue crosses from positive to negative signalling instability,
when

½OMFþ 2Jx0x0 ðqÞ�½OMFþ 2Jy0y0 ðqÞ� � j Jx0y0 ðqÞ j 2 : ð29Þ
Since the LP mode becomes unstable at a ‘finite’ wave vector
� 1=‘B, we conclude that the true ground state spontaneously
breaks translational symmetry. We emphasize that softening of
collective modes in quantum Hall fluids can be experimentally
studied, for example, by inelastic light scattering52.

Modulated phase of QHPFs. Motivated by the properties of
magnetic systems with strong asymmetric spin interactions51, we
seek broken translational states in which the Bloch pseudospins
execute a small amplitude spiral around a mean orientation, as in
Fig. 1b. This is a state in which yk,fk have a rather simple
k-dependence of the form:

yk ¼ yþ u cosð‘2
BQ
kÞ;

fk ¼ f� v sinð‘2
BQ
kþjÞ:

�
ð30Þ

Equation (30) physically describes a small-amplitude spatially
periodic contribution to the uniform condensate state (3) with
yk¼ y and fk¼f. One should therefore not confuse the
condensed state described by equations (3 and 30) with a
uniform condensate, in which electrons and holes form pairs with
a finite centre-of-mass momentum53.

Because the form factors of electrons in M and Mþ 1 LLs
differ, this state has non-uniform electron charge density with
periodicity ð2p=Q
Þŷ. The Fourier transform of the density
variation

dnq ¼
Z

d2reiq�r ch jCyðrÞCðrÞ cj i � c0h jCyðrÞCðrÞ c0j i
h i

;

ð31Þ
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Figure 3 | Collective excitation spectrum of the homogeneous fluid phase. (a) Dispersion relations of upper and lower dressed polariton modes (solid

lines) in the long-wavelength q‘Boo1 limit. The dashed line (dash-dotted line) represents the cavity photon dispersion (bright electronic collective mode),

when the electron–photon coupling gq is set to zero. In this panel jq¼f. The inset shows a zoom of the lower polariton dispersion relation for q‘B ! 0.

Note that the dispersion behaves as (q)1/2 in this limit. (b) Dispersion relation of the lower polariton mode, along three directions: jq¼f (solid line),

jq¼fþp/4 (dash-dotted line) and jq¼fþp/2 (dashed line). All the data in this figure have been obtained by setting kr¼ 5, B¼0.5 Tesla, M¼ 1,

nX¼0.1 and D¼ g.
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is non-zero only for q¼ (0, nQ*), where n is a relative integer. In
equation (31) C(r)¼

P
l,n,k,xhr|l,n,kicl,n,k,x with

hr jl; n; ki ¼ eikxffiffiffiffiffi
2L
p w� ;nfn� 1ðy� ‘2

BkÞ
lwþ ;nfnðy� ‘2

BkÞ

� �
; ð32Þ

is a field operator that creates an electron at position r (ref. 36).

For this form of variational wave function we have fixed y, f, a,
u, v, Q* and j by minimizing E. A summary of our main
numerical results for u, v, y and Q* is reported in Fig. 4 for two
values of the detuning D. Minimization yields j¼ 0, f¼ �p/2
and arg(a)¼ p�f. The dependence of |a| on nX is given by
ja j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nX� 1� cosðyÞJ0ðuÞ½ �=2

p
, where J0(x) is the Bessel function

of order zero. Fig. 4a,b illustrate the weak dependence of the
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Figure 4 | Variational parameters of the modulated phase. This figure shows the optimal values of the variational parameters u,v,y and Q* in

equation (30) for a cavity dielectric constant kr¼ 5, highest occupied LL M¼ 1 and different values of the detuning D. (a,c) D¼ 2g. (b,d) D¼ 3g.

(a,b) Dependence of the characteristic wave number Q* (in units of 1=‘B) on the density nX of total excitations. (c,d) Dependence of the quantities u (blue

squares), v (green triangles) and y (cyan diamonds) on the density nX of total excitations. Grey-shaded areas have the same meaning as in Fig. 2.
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Figure 5 | Energetics and photon densities in the modulated phase. Data denoted by red circles represent the quantity re in equation (33) plotted as a

function of nX. Data denoted by blue squares represent the ratio between the photon density nph and the density nX of total excitations, as a function of nX

and for the modulated phase only. Data in this figure have been obtained by setting the dielectric constant at kr¼ 5 and the highest occupied LL at M¼ 1.

Above the horizontal blue line, nph/nX410%. Different panels refer to different values of the ratio D/g: (a) D/g¼ 2; (b) 2.5; (c) 2.75; and (d) 3.
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characteristic wave number Q* on the density nX of total
excitations. In Fig. 5, we report, for each value of nX, the ratio

re ¼
Em� Eh

Eh� E0j j : ð33Þ

The numerator in equation (33) is the difference between the
energy of the condensed modulated phase, Em, described by
equation (30), and that of the condensed homogeneous phase, Eh,
described by equations (17–19). In the condensed modulated
phase, it follows that reo0. The denominator in equation (33) is
the condensate energy in the homogeneous phase. In Fig. 5 we
clearly see that, depending on the detuning D and the density of
excitations nX, the modulated phase comes with a condensate
energy gain re in the window E 5–15%, with values of the photon
fraction that are well above 10%.

Discussion
In this article, we have made two major simplifying approxima-
tions that deserve a detailed discussion. We have (i) used a quasi-
equilibrium approach based on a grand-canonical Hamiltonian
and (ii) treated e–e interactions at the mean-field level.

(i) Exciton-polariton condensates differ from ultracold atomic
gases in that the condensing quasi-particles have relatively short
lifetimes, mainly because of photon losses in the cavity or
metamaterial. External optical pumping is therefore needed to
maintain a non-equilibrium steady state. It has been shown54

that the resulting non-equilibrium steady state can be approxi-
mated by a thermal equilibrium state when the thermali-
zation time is shorter than the exciton-polariton lifetime.
Equilibrium approximations have been successfully used in the
literature to describe exciton-polariton fluids in semiconductor
microcavities2,38,39,55,56. Experimental studies in GaAs quantum
wells have shown that the thermalization time criterion is satisfied
above a critical pump level57 and that polariton–polariton
interactions (which are responsible for thermalization) are
strong58. We assume below that a similar thermal equilibrium
state can be achieved in graphene QHPFs. Because polaritons
interact more strongly when they have a larger excitation fraction,
quasi-equilibrium polariton condensates are expected to be more
accessible experimentally when the cavity photon energy is higher
than the bare exciton energy, that is, at positive detuning.

(ii) The possibility of non-mean-field behaviour in the matter
degrees of freedom is an issue. Mean-field-theory is accurate for
dilute excitons at low temperatures59, but could fail at high
exciton densities. In particular, the modulated phase we have
found may undergo quantum melting. However, matter degrees
of freedom at integer filling factors in the quantum Hall regime
tend to be often well described by mean-field theory37. The
accuracy of mean-field theory is generally related to the restricted
Hilbert space of LLs, which preclude the formation of competing
correlated states with larger quantum fluctuations. There are
several examples of interesting broken symmetry states in both
semiconductor quantum wells and graphene that are accurately
described by mean-field theory, including spin-polarized
ferromagnetic states at odd filling factors60, coherent quantum
Hall bilayers in semiconductors systems with coupled quantum
wells61 and spin-density wave states in neutral graphene36. In
some cases, the state selected by mean-field-theory energy
minimization is the only state in the quantum Hall Hilbert
space with a given set of quantum numbers, and therefore is
exact. The situation here is similar to the coherent bilayer state61

in that we have coherence between adjacent LLs.
Finally, we mention that physics similar to that described in

this article is not expected to be limited to graphene but should
equally occur in 2D electron gases in semiconductor (for example,
GaAs) quantum wells. There are a number of quantitative

differences in detail, however. Most critically, the anharmonic LL
spectrum of graphene should make it possible to achieve a better
selective coupling to a particular M,Mþ 1 doublet25.

Data availability. The data files used to prepare the figures shown
in the manuscript are available from the corresponding author
upon request.

References
1. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein

condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).
2. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366

(2013).
3. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton-polariton condensates. Nat.

Phys. 10, 803–813 (2014).
4. Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature

443, 409–414 (2006).
5. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a

semiconductor microcavity. Nature 457, 291–295 (2009).
6. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat.

Phys. 5, 805–810 (2009).
7. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons.

Science 332, 1167–1170 (2011).
8. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a

honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).
9. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778

(2013).
10. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191

(2007).
11. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci.

USA 102, 10451–10453 (2005).
12. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S.

Electronics and optoelectronics of two-dimensional transition metal
dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

13. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal
dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

14. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-
dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

15. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and
optoelectronics. Nat. Photon. 4, 611–622 (2010).

16. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat.
Photon. 6, 749–758 (2012).

17. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-
dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793
(2014).

18. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-
dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

19. Engel, M. et al. Light-matter interaction in a microcavity-controlled graphene
transistor. Nat. Commun. 3, 906 (2012).

20. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12,
2773–2777 (2012).

21. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D
electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

22. Valmorra, F. et al. Low-bias active control of terahertz waves by coupling large-
area CVD graphene to a terahertz metamaterial. Nano Lett. 13, 3193–3198
(2013).

23. Hagenmüller, D., De Liberato, S. & Ciuti, C. Ultrastrong coupling between a
cavity resonator and the cyclotron transition of a two-dimensional electron gas
in the case of an integer filling factor. Phys. Rev. B 81, 235303 (2010).

24. Chirolli, L., Polini, M., Giovannetti, V. & MacDonald, A. H. Drude weight,
cyclotron resonance, and the Dicke model of graphene cavity QED. Phys. Rev.
Lett. 109, 267404 (2012).

25. Pellegrino, F. M. D., Chirolli, L., Fazio, R., Giovannetti, V. & Polini, M. Theory
of integer quantum Hall polaritons in graphene. Phys. Rev. B 89, 165406 (2014).

26. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a
two-dimensional electron gas. Science 346, 332–335 (2014).

27. Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based
heterostructures: materials with tailored properties. Phys. Scr. T146, 014006
(2012).

28. Bonaccorso, F. et al. Production and processing of graphene and 2D crystals.
Mater. Today 15, 564–589 (2012).

29. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499,
419–425 (2013).

30. Principi, A., Carrega, M., Asgari, R., Pellegrini, V. & Polini, M. Plasmons and
Coulomb drag in Dirac-Schrödinger hybrid electron systems. Phys. Rev. B 86,
085421 (2012).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13355

8 NATURE COMMUNICATIONS | 7:13355 | DOI: 10.1038/ncomms13355 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


31. Gamucci, A. et al. Anomalous low-temperature Coulomb drag in graphene-
GaAs heterostructures. Nat. Commun. 5, 5824 (2014).

32. Kamide, K. & Ogawa, T. What determines the wave function of electron-hole
pairs in polariton condensates? Phys. Rev. Lett. 105, 056401 (2010).

33. Byrnes, T., Horikiri, T., Ishida, N. & Yamamoto, Y. BCS wave-function
approach to the BEC-BCS crossover of exciton-polariton condensates. Phys.
Rev. Lett. 105, 186402 (2010).

34. Kamide, K. & Ogawa, T. Ground-state properties of microcavity
polariton condensates at arbitrary excitation density. Phys. Rev. B 83, 165319
(2011).

35. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K.
The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

36. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field.
Rev. Mod. Phys. 83, 1193–1243 (2011).

37. Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid
(Cambridge University Press, 2005).

38. Su, J. J., Kim, N. Y., Yamamoto, Y. & MacDonald, A. H. Fermionic physics in
dipolariton condensates. Phys. Rev. Lett. 112, 116401 (2014).

39. Eastham, P. R. & Littlewood, P. B. Bose condensation of cavity polaritons
beyond the linear regime: the thermal equilibrium of a model microcavity.
Phys. Rev. B 64, 235101 (2001).

40. Barlas, Y., Pereg-Barnea, T., Polini, M., Asgari, R. & MacDonald, A. H.
Chirality and correlations in graphene. Phys. Rev. Lett. 98, 236601 (2007).

41. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of
antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958).

42. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism.
Phys. Rev. 120, 91–98 (1960).

43. Iyengar, A., Wang, J., Fertig, H. A. & Brey, L. Excitations from filled Landau
levels in graphene. Phys. Rev. B 75, 125430 (2007).

44. Bychkov, Y. u. & Martinez, G. Magnetoplasmon excitations in graphene for
filling factors nr6. Phys. Rev. B 77, 125417 (2008).

45. Shizuya, K. Many-body corrections to cyclotron resonance in monolayer and
bilayer graphene. Phys. Rev. B 81, 075407 (2010).

46. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H.
Electron-electron interactions in graphene: current status and perspectives. Rev.
Mod. Phys. 84, 1067–1125 (2012).
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