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INSERM U1016, Paris, France

Abstract

Invasive aspergillosis (IA) is a life-threatening disease that occurs in immunodepressed patients when infected with
Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans.
Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune
system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to
trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3
inflammasome assembly, caspase-1 activation and IL-1b release from a human monocyte cell line. The ability of Aspergillus
hyphae to activate the NLRP3 inflammasome in the monocytes requires K+ efflux and ROS production. In addition, our data
show that NLRP3 inflammasome activation as well as pro-IL-1b expression relies on the Syk tyrosine kinase, which is
downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate
immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits
transcription of the gene encoding IL-1b. Thus, our data demonstrate that the innate immune response against A. fumigatus
infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1b; and a
second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and
secretion of the mature cytokine.
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Introduction

Invasive aspergillosis (IA) is a life-threatening disease that occurs

in patients with hematological malignancies [1,2], solid organ

transplants [3], or immunodeficiency syndromes or patients

receiving immunosuppressive treatment [4,5]. The genus Aspergil-

lus includes about 200 species, of which 20 have been reported as

human pathogens causing opportunistic infections, allergic states

and invasive aspergillosis.

Aspergillus fumigatus is considered as the second most-common

causative agent of fungal infection after Candida albicans. A. fumigatus

grows at physiological temperature (37uC), has a stable haploid

genome, and undergoes asexual reproduction, forming conidio-

spores that are released into the environment. Due to their small

size (2–3 mm in diameter), the conidia can penetrate deeply into

the respiratory airway by simple inhalation and adhere to

epithelial cells before infection starts [6–8].

Normally, this fungus is efficiently eliminated by the immune

system in healthy individuals; however it can trigger a severe IA

responsible for high rates of morbidity and mortality in

immunocompromised people [9,10]. In these patients, Aspergillus

spores begin to germinate in the lungs, forming branching hyphal

filaments that break off and enter the bloodstream, leading to

vascular invasion throughout the body [11]. Almost all organs can

be infected after fungal dissemination. Co-infection with other

pathogens such as cytomegalovirus (CMV) or Candida is very

common and complicates IA, making it harder to cure.

The innate immune response against A. fumigatus plays a crucial

role in controlling infection [12]. Several pattern recognition

receptors (PRRs) such as Toll-like receptor (TLR)-2, TLR-4 and

dectin-1 [13] have been observed to play a role in recognition and

clearance of the fungus [14–17]. These studies have shown that host

resistance to A. fumigatus involves the induction of pro-inflammatory

cytokines including INFc, interleukin (IL)-12, TNFa, and signifi-

cantly, IL-1b [18,19]. Nevertheless, the immunostimulatory mole-

cule(s) of A. fumigatus that are recognized by PRRs and the molecular

basis for inflammation initiation are still under investigation.

PRRs sensors of conserved motifs expressed on microbial

pathogens called ‘‘pathogen-associated molecular patterns’’

(PAMPs) [20]. PAMPs stimulate PRRs such as surface-bound

and endosomal TLRs, but also dectin-1 and cytosolic NOD-like

receptor (NLR) family members. Stimulation of these PRRs (TLR-

2, TLR-4, and dectin-1) during infection with A. fumigatus

subsequently leads to activation of transcription factors such as

NF-kB, whose translocation into the nucleus stimulates the
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upregulation of pro-inflammatory cytokines. Secretion of pro-

inflammatory cytokines (TNFa, IL-12 and IL-1b) and chemokines

(Mip-2 in mice, IL-8 in humans) helps to recruit neutrophils and

lymphocytes to the pulmonary infection site and insure clearance

of the fungus. Neutrophils and macrophages are the two main cell

types responsible for the innate host response against aspergillosis,

therefore the risk of infection is higher in subjects presenting an

inadequate number or anomalies of these cell types [21].

The pro-inflammatory cytokine, IL-1b, is synthesized as an

inactive cytoplasmic precursor, pro-IL-1b, which is processed into

a biologically active, secreted form by caspase- 1, a cysteine

protease [22,23]. The latter is synthesized as an inactive form that

is self-activated by cleavage, generating an enzymatically active

heterodimer composed of 10 and 20 kDa chains [22]. Recent

studies have implicated members of the NLR family of proteins in

the regulation of caspase-1 activation [22,24]. The NLR family is

composed of 23 cytosolic proteins, some of which recognize

PAMPs. The family includes nucleotide binding oligomerization

domain 1 (NOD1), NOD2 [12,16], the NLRP3/cryopyrin/Nalp3

‘‘inflammasome’’ component [25,26], and the NLRC4/Ipaf

inflammasome component [27,28].

Upon infection, stimulation of TLRs or the cytosolic NOD1 or

NOD2 receptors activates transcription, synthesis, and secretion of

pro-inflammatory cytokines such as INFc, IL-12, and TNFa
[29,30]. Given the key role played by IL-1b in fever and

inflammatory disease [31], its production and secretion is tightly

controlled and requires typically two separate signals [32–34]. The

first signal comes from PAMPs and promotes transcription,

production and intracellular accumulation of the immature

cytokine. The second signal, usually derived from a ‘‘danger

signal’’ (DS), leads to the activation of an inflammasome,

activation of caspase-1, and secretion of the mature cytokine.

The requirement for two signals thus insures that IL-1b is secreted

by macrophages only if they are stimulated by PAMPs and the

PAMPs are produced under circumstances that could be viewed as

potentially dangerous to the host organism [25]. Examples of DSs

include host-cell components released from dying, infected or

stressed cells such as ATP, adenosine, uric acid, or chromosomal

proteins; but they could also be microbial PAMPs that are located

in ‘‘threatening’’ locations, such as flagellin in the cytosol of an

infected cell [33].

Several studies have recently described stimulation of the

NLRP3 inflammasome in the innate immune response to C.

albicans infection [35–37]. These were the first reports to show the

involvement of an inflammasome during a fungal infection.

However, stimulation of an inflammasome has not been described

yet during A. fulmigatus infection. Although caspase-1 activation

during A. fumigatus infection has not been investigated, studies

showing secretion of IL-1b by the human monocyte/macrophage

cell line, THP-1, following stimulation by A. fumigatus [19]

suggested that caspase-1 must be activated in these cells, either

directly by the fungal pathogen or in combination with a host-cell

derived DS.

The goal of this study was therefore to determine whether A.

fumigatus induces IL-1b secretion in a caspase-1 dependent manner

by THP-1 cells, and evaluate whether this fungus activates an

inflammasome. Our results show that A. fumigatus spores fail to

induce caspase-1 activation, unlike hyphal fragments, which

upregulate pro-IL-1b synthesis and stimulate caspase-1 activation.

Importantly we revealed the requirement of an NLRP3 inflam-

masome and its adaptor protein, apoptosis-associated speck-like

protein containing a caspase recruitment domain (ASC), in

activating caspase-1, thus revealing NLRP3 and ASC as key

regulators of inflammation during A. fumigatus infection.

Results

A. fumigatus hyphae upregulate pro-IL-1b expression and
induce IL-1b secretion in human monocytes

To assess whether A. fumigatus could induce directly the synthesis

or secretion of IL-1b, we examined the effect of different

morphological forms of this fungus. The human monocyte cell

line, THP-1, was infected with either conidia at a multiplicity of

infection (MOI) of 10, or hyphal fragments (HFs) for 6 hours. As a

positive control, the cells were primed with 10 ng/ml of

lipopolysaccharide (LPS) for 6 hours in order to stimulate pro-

IL-1b protein synthesis, with or without subsequent treatment with

an NLRP3 inflammasome stimulator, the bacterial toxin nigericin

for 1 hour. Real time PCR analysis showed that a 6 hour

incubation with HFs induced a drastic increase in transcription of

this pro-inflammatory cytokine gene, while spores provoked only a

2-fold increase (Figure 1A). Analysis of the supernatants by ELISA

revealed that mature IL-1b was secreted from cells treated with

LPS and nigericin, or only infected with HFs (Figure 1B).

However, no significant secretion, beyond basal cytokine secretion

levels, was seen when the cells were incubated with conidia

(Figure 1B), consistent with the inability of this fungal form to

induce transcription of the cytokine. To further investigate the

potential of conidia to induce a pro-inflammatory cellular

response, we incubated THP-1 cells in the presence of Aspergillus

spores for a longer period of time, long enough to initiate the

germination process. IL-1b and TNFa secretion was measured in

the supernatants 12 hours after infection with spores, compared to

6 hour stimulation with HFs. Interestingly, swollen conidia were

unable to induce any significant IL-1 b or TNFa secretion whereas

the HFs caused noticeable monocyte activation (Figure 1C,D).

Thus, we conclude that in contrast to HFs, A. fumigatus spores are

unlikely to be critically involved in initiating IL-1b-dependent

inflammatory responses. We decided therefore to perform the

subsequent experiments only with the HFs of A. fumigatus.

A. fumigatus-induced caspase-1 activation correlates with
ROS production and K+ efflux

Caspase-1 activation is essential for pro-Il-1 b cleavage and

subsequently IL-1b secretion. In fact, cells stimulated only with

HFs activate caspase-1, as detected by Western Blot analysis of the

cell lysates and supernatant by the appearance of the active p20

subunit of caspase-1 (Figure 2A, inset). This result was confirmed

by measuring the presence of caspase-1 p20 subunits whose

activated form is secreted into the supernatant of infected THP1

cells, as detected by ELISA (Figure 2A).

Caspase-1 activation is remarkably reduced in the presence of

the irreversible caspase-1 inhibitor (Z-WEHD-FMK) (Figure 2A).

Consistent with this result, Il-1b secretion induced by Aspergillus

HFs was significantly decreased when monocytes were pretreated

with Z-WEHD-FMK, again confirming the requirement for

caspase-1 activation for Il-1 b secretion (Figure 2B).

A common feature of NLRP3 inflammasome activation by

diverse stimuli is the cell-signaling pathway relying on K+ efflux

and, concomitantly, production of reactive oxygen species (ROS)

[34,38]. To test the role of each of these variables, we first blocked

K+ efflux by increasing the concentration of extracellular

potassium, before stimulating the cells with HFs for 6 hours. IL-

1 b secretion (Figure 2C) and caspase-1 activation (Figure 2A)

were both significantly impaired by preventing K+ efflux.

Comparable results were obtained when we used the antioxidant,

N-acetyl-cysteine (NAC), as both IL-1b secretion and caspase-1

activation were strongly inhibited by incubating cells with NAC

during exposure to Aspergillus HFs (Figure 2A,C). Thus, we
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conclude that ROS production and K+ efflux are essential for HF-

induced caspase-1 activation and IL-1b secretion.

The NLRP3 inflammasome in monocytes is stimulated by
A. fumigatus

At least four inflammasomes have been described, based on:

NLRP1 (Nalp1), NLRC4 (Ipaf), NLRP3 (Nalp3/cryopyrin), and

AIM2 [34,38,39]. Murine Nalp1b detects anthrax LT, while

NLRC4 recognizes mainly flagellin, and AIM2 is activated in

response to cytosolic double-stranded RNA. Human Nalp1 is

sensitive to peptidoglycan fragments [40]. Until now, the only

inflammasome reported to be sensitive to cytosolic K+ concentra-

tions and ROS contains NLRP3. We reasoned therefore that the

NLRP3 inflammasome may be responsible for caspase-1 activa-

tion in response to A. fumigatus infection.

The role of NLRP3 and its adaptor protein, ASC, was

determined by gene silencing in THP1 cells. The mRNA expression

levels of either inflammasome component was significantly reduced

in knocked down (KD) cells, in comparison to non-target shRNA, as

measured by real-time PCR (Figure 3A). Protein depletion was also

confirmed using Western blot analysis (Figure 3A, inset). Because

secretion of mature IL-1b after stimulation of primed THP-1 cells

with nigericin relies primarily on NLRP3/ASC inflammasome

activation, we examined IL-1b secretion in ASC KD and NLRP3

KD cells as a functional control. THP-1 KD cells secreted

significantly less IL-b when stimulated with LPS and nigericin,

demonstrating the efficiency of NLRP3 and ASC gene silencing

(Figure 3B). In addition, these cells showed dramatic reductions in

IL-1b secretion and caspase-1 activation in response to HFs, when

compared to cells transfected with non-target shRNA

(Figure 3C,D,E), which also correlated with the extent of mRNA

depletion in the KD cells. The decrease in caspase-1 activation and

IL-1b secretion in the KD cells implies that A. fumigatus infection

induces caspase-1 activation through a process that requires, at least

partially, the assembly of the NLRP3 inflammasome.

Syk kinase provides both the first signal for IL-1b
synthesis and the second signal for caspase-1 activation
during A. fumigatus infection

Previous studies have shown that Aspergillus hyphae and conidia

have morphologically distinct and complex features that undergo

several modifications during swelling. The composition of the

conidial cell wall is complex and has not been completely defined,

whereas hyphae contain mainly four major carbohydrate polymers

of which one, the b-glucans, can activate dectin-1 in alveolar

macrophages [41]. This receptor uses an intracellular ITAM motif

to initiate signaling through a tyrosine kinase, Syk, in a MyD88-

independent manner [42,43]. Recent studies have revealed the

importance of Syk in inducing NF-kB activation and controlling

NLRP3-dependent caspase-1 activation during C. albicans infec-

tion. To examine whether Syk is involved in signaling during A.

fumigatus infection, we blocked its signaling with a specific Syk

inhibitor (Syk I) prior to HF exposure and measured IL-1b and

caspase-1 secretion into the supernatant. The results suggest that

Syk activation is indispensable for IL-1b secretion and caspase-1

activation (Figure 4A,B).

Figure 1. A. fumigatus hyphae upregulate pro-IL-1b transcription and induce IL-1b secretion in monocytes. One million THP-1 cells/ml
were treated with 10 ng/ml of LPS with and without nigericin, spores or HFs at an MOI = 10 for 6 hours (A, B), or spores for 12 hours and HFs for
6 hours (C, D). (A) Intracellular IL-1b gene transcription was quantified by real-time PCR and compared to control. (B, C) The amount of secreted IL-1b
was quantified by ELISA. (D) TNFa secretion was measured in supernatants by ELISA. Error bars represent standard deviation of at least three separate
experiments. * p,0.05; ** p,0.01; *** p,0.001, compared to infected untreated cells.
doi:10.1371/journal.pone.0010008.g001
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In order to further investigate the role of Syk, we used shRNAs

to knock down separately Syk and MyD88. The adaptor protein

MyD88 acts downstream of TLRs and is responsible for NF-kB

activation. MyD88-specific gene silencing was confirmed in THP1

KD cells by real-time PCR (not shown). Since A. fumigatus

stimulates TLR2/4 and Dectin-1 [12], knocking down Syk and

MyD88 resulted in a large decrease in transcription of the gene

encoding IL-1b, as shown by real time PCR (Figure 4C), and

simultaneously an abrogation of IL-1b secretion by THP-1 cells

(Figure 4D), compared to the SH control cells. However, only Syk

KD cells presented a significant reduction in caspase-1 activation

when stimulated with HFs for 6 hours (Figure 4E). These results

imply that signaling through Syk and MyD88 both converge on

NF-kB activation during innate responses against A. fumigatus

infection, but only Syk signaling results in NLRP3 inflammasome

activation.

A. fumigatus PAMP recognition is impaired in the
presence of corticosteroids

In a large cohort study, A. fumigatus-infected patients who were

under corticosteroid treatment were found to be at increased risk

of subsequent invasive aspergillosis, suggesting a deleterious effect

of these compounds on host anti-fungal resistance [44]. Therefore,

it was of interest to determine whether corticosteroid treatment

affects the ability of A. fumigatus to trigger secretion of IL-1b. Pre-

incubation of THP-1 cells with b-methasone, a potent anti-

inflammatory corticosteroid, followed by infection with HFs

resulted in a significant drop in IL-1b secretion (Figure 5A). To

distinguish between the ability of b-methasone to interfere with

pro-IL-1b gene expression or caspase-1 activation, we observed

that pro-IL-1b transcription induced by LPS is severely defective

when THP-1 cells were pretreated with b-methasone (Figure 5B).

These results show that corticosteroids inhibit primarily the ability

of monocytes to transcribe the gene for IL-1b, and may partially

explain why patients treated with corticosteroids fail to produce

pro-inflammatory cytokines, which are crucial for recruitment of

other immune cells to clear infections.

Discussion

Stimulation of PRRs (TLR-2, TLR-4, and dectin-1) during

infection with A. fumigatus leads to activation of transcription

factors such as NF-kB, whose translocation into the nucleus

stimulates upregulation of pro-inflammatory cytokines. In con-

trast, inflammasome assembly during aspergillosis has never been

described, although previous studies showing secretion of IL-1b by

THP-1 during infection by A. fumigatus [19] suggest that an

inflammasome and caspase-1 must be activated. Our studies reveal

that A. fumigatus does in fact stimulate both pro-IL-1b production

and caspase-1 activation, leading to mature IL-1b secretion into

the supernatant. However, our results suggest that only Aspergillus

hyphae, and not conidia, are capable of inducing inflammasome

assembly and caspase-1 activation in monocytes. Furthermore, we

showed that a NLRP3 inflammasome is involved in caspase-1

activation, since there was a profound suppression of IL-1b release

from NLRP3 and ASC knocked-down cells. We also showed that

the adaptor protein, ASC, is required for inflammasome activity.

The list of NLRP3 inflammasome activators is growing, but the

mechanisms by which this NLR family member senses its

activators seem to converge on a small number of intracellular

perturbations such as K+ efflux and ROS production [38]. Our

data confirmed that A. fumigatus-induced NLRP3 inflammasome

activation in monocytes is associated with K+ efflux and ROS

production, since their inhibition resulted in a significant decrease

of caspase-1 activation and IL-1b secretion.

Since A. fumigatus expresses ligands for several PRRs, it is likely

that these ligands cooperate in transducing diverse signals. Our

studies with HFs are consistent with synergy between TLR-2,

TLR-4 and dectin-1 signaling, since depletion of MyD88 and Syk

significantly reduced pro-IL-1b production. Moreover, our results

highlighted the role of the Syk kinase as an inflammasome

activator in Aspergillus infection, and in contrast, ruled out any

involvement of MyD88 signaling in caspase-1 activation.

Disease caused by A. fumigatus, which is mostly nonpathogenic

for humans, is closely associated with the status of the host immune

system, particularly the innate immune system, rather than the

pathogenicity of the fungal pathogen. In fact, immunodeficiency is

a primary factor predisposing patients and animals to severe IA.

Here, we show that treatment with the corticosteroid, beta-

methasone, which induces immunosuppression, translated into

failure of human monocytes to produce IL-1b in response to LPS

or Aspergillus hyphae. Pro-inflammatory cytokines are crucial for

stimulating an effective immune response to A. fumigatus infection,

which includes recruitment of neutrophils to the alveolar spaces,

where they constitute more than 90% of the phagocytic cells [12].

Taken together, our data thus demonstrate that the innate

immune response against A. fumigatus infection involves a two step

activation process, with a first signal, due to TLR and dectin-1

ligation, promoting expression and synthesis of pro-IL1b; and a

second signal, involving Syk-induced activation of the NLRP3

inflammasome and caspase-1. Both signals, together, allow

secretion of mature IL-1b. In many immunosuppressed patients,

susceptibility to A. fumigatus infection could be caused by failure to

provide an effective response to the first signal.

Materials and Methods

Aspergillus growth and culture
A. fumigatus strain AFCOH1, isolated from patients at the City of

Hope National Medical Center (Duarte, CA) and kindly provided

by Drs. Joseph Lyons and Markus Kalkum (City of Hope), was

grown 5 to 7 days at 37uC in potato dextrose agar (BD/Difco).

Conidia were extracted from agar slants by gentle tapping and

resuspended into PBS containing 0.1% Tween 80 (PBS/Tw).

Clumps of conidia were dispersed with 3 mm glass beads, washed

with PBS/Tw and suspended in 30% glycerol. Aliquots were

frozen at 280uC and thawed to 37uC prior to use as described

previously [45].

To induce hyphal growth, 107 spores/ml were inoculated in

50 ml of potato broth (BD/Difco) and incubated for 24 hours

under 200 rpm agitation at 37uC. The mycelium was then dried

down onto Whatmann 54 paper using a Buckner funnel and a

Figure 2. A. fumigatus induced-caspase-1 activation depends on ROS production and K+ efflux. THP-1 cells were incubated with HFs for
6 hours in the presence or absence of 130 mM KCl, 25 mM NAC, 100 mM caspase-1/caspase-5 inhibitor (Z-WEHD-FMK), or pretreated for 30 min with
1 mM of Syk kinase inhibitor (Syk I). (A inset) Caspase-1 activation was analyzed by Western blot, using an antibody against the Caspase-1 p20
cleavage product. Each band intensity was measured by NIH ImageJ software (Ctrl = 1, HF = 4.848, HF + Z-WEHD-FMK = 2.92, HF + Syk I = 1.67, and HF
+ NAC = 1.54). (A) Secreted Caspase-1 p20 and (B, C) mature IL-1b p17 in the supernatant of infected cells, compared to the control, was assessed by
ELISA. Error bars represent the standard deviation of at least three separate experiments. * p,0.05; ** p,0.01; *** p,0.001, compared to infected
untreated cells.
doi:10.1371/journal.pone.0010008.g002
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side-arm flask attached to a vacuum pump. Hyphae were washed

3 times with 0.6 M MgSO4, and resuspended in PBS/Tw. To

yield hyphal fragments (HFs), this mycelium suspension was

broken down under vigorous vortexing in the presence of 3 mm

glass beads and stored at 4uC for up to one week.

Reagents and cell line
The human acute monocytic leukemia cell line (THP-1) was

obtained from American Type Culture Collection (ATCC). N-

acetyl cysteine (NAC), glibenclamide, beta-methasone and Echer-

ichia coli LPS were from Sigma (St. Louis, MO). KCl was from

Fisher Scientific, Syk inhibitor was from Calbiochem (Cat.

No. 574711) and Z-WEHD-FMK was purchased from R&D

Systems (Minneapolis, MN).

Cell culture infection and treatments
THP-1 cells were cultured in tissue culture flasks (Costar,

Corning, NY) using RPMI medium (Gibco) supplemented with

10% heat-inactivated fetal calf serum (Gibco) and incubated in a

humidified incubator at 37uC with 5% CO2. One million cells/ml

were plated in medium and conidia or HFs were added at a

multiplicity of infection (MOI) of 10 and incubated for 6 hours at

37uC with 5% CO2. Cells were spun down at 1200 rpm, 4uC for

5 min, and supernatants were stored at 280uC for cytokine assay

Figure 3. The NLRP3 inflammasome controls the anti-A. fumigatus innate immune response. THP-1 cells were stably transfected with
shRNA targeting NLRP3 or ASC in order to induce gene silencing. (A inset) Western blot analysis of wildtype (WT) cells, cells treated with non-target
control (SH control), and cells treated with shNLRP3, confirming decreased expression of the NLRP3 protein after mRNA depletion. Western blot was
performed with an anti-NLRP3 antibody, which detects the 118 kDa protein. (A) mRNA levels of NLRP3 and ASC were quantified by real-time PCR and
compared to wild type (WT) and non-target control (SH Ctrl). Supernatants of each of the knocked down (KD) cells treated with nigericin after LPS
priming, or HFs for 6 hours was analyzed by ELISA for the presence (B, C) caspase-1 p20 and (D, E) mature IL-1b. All values are representative of at
least three independent experiments. The error bars represent the standard deviation of at least three separate experiments. * p,0.05; ** p,0.01; ***
p,0.001, compared to infected untreated cells.
doi:10.1371/journal.pone.0010008.g003
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use and pellets are resuspended in the appropriate lysis buffer for

RNA extraction or Western blot analysis. Treatment with

inhibitors or other reagents was performed at the indicated times

and concentrations.

Generation of THP-1 cells expressing shRNA
THP-1 cells stably expressing shRNA against NLRP3 and ASC

were obtained by transducing THP-1 cells with lentiviral particles.

The sequences 59- CCGGGCGTTAGAAACACTTCAAGAAC-

TCGAGTTCTTGAAGTGTTTCTAACGCTTTTTG-39 for

human NLRP3 (Sigma; Cat. No. NM_004895), 59-CCGGCG-

GAAGCTCTTCAGTTTCACACTCGAGTGTGAAACTGAA-

GAGCTTCCG TTTTTG-39 for human ASC (Sigma; Cat.

No. NM_013258), 59-CCGGCCTGTCTCTGTTCTTGAAC-

GTCTCGAGACGTTCAAGAACAGAGACAGGTTTTT-39for

human MyD88 (Sigma; Cat No. NM_002468), and 59-CC-

GGGCAGGCCATCATCAGTCAGAACTCGAGTTCTGACTG-

ATGATGGCCTGCTTTTT-39 for human spleen tyrosine kinase

(Syk) (Sigma; Cat #: NM_003177) were used separately to silence

gene expression following the manufacturer’s instructions. Non-

target shRNA control cells were also generated using an irrelevant

sequence (Sigma; Cat. No. SHC002V).

Western blotting
Samples were lysed using RIPA Lysis Buffer (Millipore) and

loaded onto a 15% SDS-PAGE gel, and then transferred to a

Figure 4. Syk kinase signaling provides the stimulus for both IL-1b synthesis and caspase-1 activation during A. fumigatus infection.
THP-1 cells were pretreated with 1 mM of the Syk kinase inhibitor (Syk I) for 30 min prior to challenge with HFs, and (A) mature IL-1b and (B) active
caspase-1 p20 subunit were measured by ELISA. MyD88 and Syk were stably silenced by RNA interference using shRNA. (C) Transcript levels of pro-IL-
1b in MyD88 KD and Syk KD cells treated with HFs was measured using real-time PCR. Representative real-time PCR values representative of three
independent experiments are shown. The secretion (D) of IL-1b and (E) caspase-1 p20 into the supernatants of MyD88 KD and Syk KD cells treated
with HFs was assessed by ELISA. All values are representatives of at least three independent experiments. Error bars represent standard deviation of at
least three separate experiments. * p,0.05; ** p,0.01; *** p,0.001, compared to infected untreated cells.
doi:10.1371/journal.pone.0010008.g004
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polyvinylidene difluoride membrane (Millipore) as we previously

described [46]. Blots were blocked for 1 hr with 5% (w/v) nonfat

dried milk in TBST. The membrane was incubated overnight at

4uC with rabbit antihuman caspase-1 antibody (Millipore)

followed by an incubation with a conjugated anti-rabbit IgG

horseradish peroxidase (Millipore). For confirmation of NLRP3

depletion by RNA interference, a 9% gel was used and the blot

was incubated with rabbit anti-human NLRP3 antibody (Sigma;

Cat. No. HPA012878). Immunoreactive proteins were detected

with ECL Plus Western Blotting Detection Reagents (Amersham,

Scituate, MA) using a gel doc system (Biorad, Hercules, CA).

Intensity of bands was determined using NIH ImageJ software

[47].

RNA isolation and real-time PCR
mRNA was isolated from THP-1 cells using the Qiagen RNeasy

kit (Qiagen, Valencia, CA) following manufacturer’s instructions,

and total RNA was converted into cDNA by standard reverse

transcription with TaqmanH reverse transcriptase kit (Applied

Biosystems, Foster City, CA). Quantitative PCR was performed

with 1/50 of the cDNA preparation in an Mx3000P (Stratagene,

La Jolla, CA) in a 25 ml final volume with Brilliant QPCR Master

Mix (Stratagene). The primers for human GAPDH were: 59-

CTTCTCTGATGAGGCCCAAG-39 forward, 59GCAGCAAA-

CTGGAAAGGAAG-39 reverse. Primers for human NLRP3:

59- CTTCCTTTCCAGTTTGCTGC-39 forward, 59-TCTCG-

CAGTCCACTTCCTTT-39 reverse. Primers for human ASC:

Figure 5. The inflammatory response against A. fumigatus is impaired in immunosuppressed monocytes. (A) THP-1 cells were
stimulated for 10 min with 30 mM b-methasone prior to stimulation with HFs for 6 hours. IL-1b secretion was measured by ELISA. (B) THP-1 cells were
stimulated for 10 min with 30 mM b-methasone prior to stimulation with 10 ng/ml LPS for 6 hours. IL-1b mRNA was quantified by real-time PCR.
doi:10.1371/journal.pone.0010008.g005
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59-AGTTTCACACCAGCCTGGAA-39 forward, 59- TTTTC-

AAGCTGGCTTTTCGT-39 reverse. Primers for Syk: 59-AGA-

GCGAGGAGGAGCGGGTG-39 forward, 59-CCGCTGAC-

CAAGTCGCAGGA-39 reverse. Primers for MyD88: 59AGCG-

CTGGCAGACAATGCGA-39 forward, 59-TCCGGCGGCA-

CCTCTTTTCG-39 reverse. Primers for Il-1b: 59-CAGC-

CAATCTTCATTGCTCA-39 forward, 59-TCGGAGATTCG-

TAGCTGGAT-39 reverse. The real-time PCR included an initial

denaturation at 95uC for 10 min, followed by 40 cycle of 95uC for

30 s, 55uC for 1 min, 72uC for 1 min, and one cycle of 95uC for

1 min, 55uC for 30 s, 95uC for 30 s.

ELISA measurement of cytokine and caspase
Commercially available ELISA kits for human IL-1b

(Ebioscience) and human caspase-1 (R&D systems) were used

according to the manufacturers’ instructions.

Statistical analysis
The difference between groups was performed using GraphPad

Instat software (GraphPad Software Inc, La Jolla, CA) by

Student’s test. The level of significance between groups was set

at P ,0.05. All experiments were performed at least 3 times (unless

stated otherwise) and the data was presented as the cumulative

result of all the experiments done.
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