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Background: Due to complicated and variable fundus status of highly myopic eyes,
their visual benefit from cataract surgery remains hard to be determined preoperatively.
We therefore aimed to develop an optical coherence tomography (OCT)-based deep
learning algorithms to predict the postoperative visual acuity of highly myopic eyes after
cataract surgery.

Materials and Methods: The internal dataset consisted of 1,415 highly myopic eyes
having cataract surgeries in our hospital. Another external dataset consisted of 161
highly myopic eyes from Heping Eye Hospital. Preoperative macular OCT images were
set as the only feature. The best corrected visual acuity (BCVA) at 4 weeks after surgery
was set as the ground truth. Five different deep learning algorithms, namely ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and Inception-v3, were used to develop the model
aiming at predicting the postoperative BCVA, and an ensemble learning was further
developed. The model was further evaluated in the internal and external test datasets.

Results: The ensemble learning showed the lowest mean absolute error (MAE) of
0.1566 logMAR and the lowest root mean square error (RMSE) of 0.2433 logMAR in
the validation dataset. Promising outcomes in the internal and external test datasets
were revealed with MAEs of 0.1524 and 0.1602 logMAR and RMSEs of 0.2612 and
0.2020 logMAR, respectively. Considerable sensitivity and precision were achieved in
the BCVA < 0.30 logMAR group, with 90.32 and 75.34% in the internal test dataset
and 81.75 and 89.60% in the external test dataset, respectively. The percentages of the
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prediction errors within ± 0.30 logMAR were 89.01% in the internal and 88.82% in the
external test dataset.

Conclusion: Promising prediction outcomes of postoperative BCVA were achieved by
the novel OCT-trained deep learning model, which will be helpful for the surgical planning
of highly myopic cataract patients.

Keywords: machine learning, visual acuity, high myopia, cataract, optical coherence tomography

INTRODUCTION

A predicted number of 938 million people of the world’s
population may suffer from high myopia by the year 2050
(Holden et al., 2016), leading to a major worldwide concern.
Eyes with high myopia were prone to early-onset and nuclear-
type cataracts (Hoffer, 1980; Zhu et al., 2018). Yet, nowadays,
surgery is the only effective therapeutic method for cataracts
(Thompson and Lakhani, 2015). With the advancement of
techniques, cataract surgery can now provide a promising
visual outcome in nonmyopes (Liu et al., 2017). However, for
highly myopic cataract patients, due to the more complicated
fundus conditions such as foveoschisis, chorioretinal atrophy,
or cicatrices from previous choroidal neovascularization (Chang
et al., 2013; Todorich et al., 2013; Gohil et al., 2015; Lichtwitz
et al., 2016; Li et al., 2018), their visual benefit from cataract
surgery remains hard to be determined preoperatively.

With the wide application of optical coherence tomography
(OCT), surgeons could assess the fundus status of highly
myopic eyes on an anatomical scale (Huang et al., 2018; Li
et al., 2018), but the morphological diagnoses were hard to
be directly associated with the actual manifested visual acuity
(VA). Therefore, difficulties might occur when surgeons want to
predict the postoperative VA and explain the prognosis to the
highly myopic patients during preoperative conversations, which
might thereby affect the overall surgical planning and patients’
satisfaction with the surgery later.

Recently, deep learning was found promising in automated
classification. Particularly, the ResNet and Inception algorithms
have their advantages on medical image analysis (Gulshan
et al., 2016; Fu et al., 2018; Grassmann et al., 2018). Such
techniques have the potential to revolutionize the diagnosis
and clinical prediction by rapidly reviewing large amounts of
morphological features and by performing integrations difficult
for human experts (Kermany et al., 2018). Hence, prediction
of the clinical manifestation based on deep learning analysis
of relevant morphological features is becoming possible and
important (Chen et al., 2018; Rohm et al., 2018). However, due to
the more complicated and variable morphological changes of the
fundus, no appropriate deep learning model has been developed
for highly myopic eyes currently.

In this study, on the basis of the OCT scans of highly myopic
eyes, we aim to predict their postoperative VA of cataract surgery
by developing and comparing five machine learning algorithms
and consequently evaluating the model on real-world datasets.

MATERIALS AND METHODS

Ethics
The Institutional Review Board of the Eye and Ear, Nose,
and Throat (ENT) Hospital of Fudan University (Shanghai,
China) approved this study. The study adhered to the
tenets of the Declaration of Helsinki and was registered
at www.clinicaltrials.gov (accession number NCT03062085).
Written consent was obtained from the patients and all private
information was removed in advance.

Patients
An internal dataset including 1,415 highly myopic eyes from
1,415 patients was drawn from the database of the Shanghai
High Myopia Study between 2015 and 2020 at the Eye and ENT
Hospital of Fudan University (Shanghai, China). Eligible criteria
were as follows: (1) cataract patients with axial length (AL) over
26.0 mm, (2) had reliable macular OCT measurements before
cataract surgery, (3) underwent uneventful cataract surgeries,
and (4) had credible postoperative best corrected visual acuity
(BCVA) measured at 4 weeks after surgery. Exclusion criteria
were eyes with (1) corneal opacity or other corneal diseases that
may significantly influence the visual pathway, (2) congenital
ocular abnormities, (3) neuropathies that may influence the visual
acuity, (4) ocular trauma, and (5) other severe oculopathies
that may affect the surgical outcomes. The OCT images in the
internal dataset were taken from Spectrialis OCT (Heidelberg
Engineering, Heidelberg, Germany) or Cirrus OCT (Carl Zeiss
Meditec, Dublin, CA, United States).

Another external dataset consisted of 161 highly myopic
eyes of 161 patients drawn from the database of the Heping
Eye Hospital (Shanghai, China) with the same inclusion and
exclusion criteria. The OCT images in this external dataset
were taken from Spectrialis OCT (Heidelberg Engineering,
Heidelberg, Germany).

Datasets
The eligible internal database was randomly divided into a
training dataset, a validation dataset, and an internal test dataset
with a fixed ratio of 6:2:2. The eligible external database was all
used as an external test dataset. The actual BCVAs at 4 weeks
after cataract surgery were set as the ground truth. The Snellen
VA was converted to its logarithm of minimal angle of resolution
(logMAR) equivalent as previously described, with counting
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fingers being assigned a value of 1.9, hand motion 2.3, light
perception 2.7, and no light perception 3.0 (Lange et al., 2009).
Eyes with actual BCVAs < 0.30 logMAR (Snellen 6/12 or higher)
were defined as the good VA group, while eyes with actual
BCVAs ≥ 0.30 logMAR (Snellen 6/12 and lower) were defined
as the poor VA group (Quek et al., 2011).

Data Normalization
The e2e files from Spectrialis OCT or scan figures from Cirrus
OCT were extracted and preprocessed. All OCT images were
down-sized to 224 × 224 pixels, the default choice for deep
learning-based image classification. In order to simulate more
real-world situations and to improve model generalization ability,
it was performed on the image by changing the brightness,
saturation, and contrast with a factor uniformly sampled from [0,
2], respectively. After the color space normalization, the macular
OCT images were set as model input.

Deep Learning Models
In our study, to predict the BCVA after cataract surgery for highly
myopic patients, we constructed an ensemble learning using five
different deep convolutional neural networks (CNN) algorithms,
including Deep Residual Learning for Image Recognition
(ResNet, Microsoft Research) with 18, 34, 50, and 101 layers
(ResNet-18, ResNet-34, ResNet-50, and ResNet-101) (He et al.,
2016) and Inception-v3 (Szegedy et al., 2016). The postfix number
of ResNet referred to diverse depths of ResNet networks that lead
to different parameter scales. All five models were pretrained on
the ImageNet dataset. For each model, the last fully connected
layer which originally output 1,000 class was replaced to output
a single value to suit our task. The parameters of this layer were
randomly initialized.

Based on the training dataset, the model was optimized with a
target of minimizing the mean square error (MSE) loss function
using the Adam optimizer (Fu et al., 2018). The final output score
was calculated as the mean value of the ensemble model. MSE loss
was defined as:

MSE =
1
N

∑N

i = 1

(
ỹi−yi

)2
, (1)

where N indicates the number of input OCT images, ỹi indicates
the actual BCVA, and yi indicates the predicted BCVA.

The maximal number of training epochs was set to be
80. We adopted an early stop strategy, which is the training
procedure stops when there is no performance improvement
on the validation dataset in 15 consecutive epochs. The initial
learning rate was set to 0.001 and would be decayed by 0.1 every
30 epochs. Each CNN algorithm was trained five times repeatedly,
and only the model with the best performance on the validation
dataset was reserved for the ensemble learning.

Evaluation
The metrics used to show the differences in logMAR
postoperative BCVA between the prediction and the ground
truth were mean absolute error (MAE, calculated for the

predictions of the algorithms compared to the ground truth) and
the root mean square error (RMSE), which were defined as:

MAE =
1
N

∑N

i = 1

∣∣ỹi − yi
∣∣, (2)

RMSE =
√

1
N

∑N

i = 1

(
ỹi−yi

)2
, (3)

where N, ỹi, and yi were defined as above.
Furthermore, sensitivity is defined as the proportion of

correctly predicted eyes with VA < 0.30 logMAR (or ≥0.30
logMAR) in the overall eyes having actual VA < 0.30 logMAR
(or ≥0.30 logMAR). Precision is defined as the proportion of
correctly predicted eyes with VA < 0.30 logMAR (or ≥0.30
logMAR) in the overall eyes having predicted VA < 0.30 logMAR
(or ≥0.30 logMAR).

The ensemble learning of the five CNN models was adopted
to develop the prediction model and then further evaluated using
the internal and external test datasets, which contain data the
model has not seen. The OCT reports in pdf format from both
test datasets were adopted and evaluated. The prediction error
was calculated by subtracting the predicted BCVA from the actual
BCVA. The percentage of BCVA prediction errors within ± 0.30
logMAR (Snellen 6/12, Re0.30logMAR) was then calculated (Gao
et al., 2015), which was defined as:

Re0.3logMAR =
1
N

∑N

i = 1
I
(∣∣ỹi−yi∣∣ ≤ 0.3 logMAR

)
, (4)

where N, ỹi, and yi were defined as above. I( · ) is the function
which returns 1 if the · is true, else return 0.

In order to make the performance more comparable, fixed
randomly generated seeds were used to shuffle the data
and initialize the models’ parameter. To better visualize the
prediction, gradient-weighted class activation mapping (Grad-
CAM) was used to highlight the model’s interests in the OCT
images in prediction VA (Selvaraju et al., 2020).

The illustration of the pipeline of our work is demonstrated in
Figure 1.

Statistics
Continuous variables were described as the mean ± standard
deviation. The Student’s t test or one-way ANOVA test followed
by Tukey’s test was used to compare the continuous variables
and the χ2 test was used to compare categorical variables.
The alignment of the predicted BCVA and ground truth was
demonstrated by scatter plots. Pearson correlation analysis was
used to evaluate the relationship between the predicted outcome
and the ground truth, and the Bland–Altman plot was used to
assess the agreement between the predicted outcome and the
ground truth. The information of the computer used in this study
was as follows: Intel Xeon 4144 (2.20 GHz), 128 gigabytes of
RAM, and three pieces of GeForce RTX 2080 Ti Ubuntu 18.04
LTS. Model development was performed by Python (version
3.7.5) with libraries of torch (version 1.4.0) and torchvision
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FIGURE 1 | An illustration of the pipeline of the tasks. The preoperative b-scan OCT image is fed into the model. It eventually outputs the prediction of postoperative
BCVA. BCVA, best corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; MAE, mean absolute error; RMSE, root mean square error;
Re0.30logMAR, the percentage of BCVA prediction errors within ± 0.30 logMAR.

(version 0.4.0), and statistical analyses were performed with
a commercially available statistical software package (SPSS
Statistics 20.0; IBM, Armonk, NY).

RESULTS

The clinical characteristics of the patients are demonstrated in
Table 1. No difference was found in age, sex, and mean actual
postoperative BCVA among the training, validation, internal test,
and external test datasets (p > 0.05).

The performances of all five CNN algorithms were compared
after training and validating for five times. The average values
of the five-time performances of the five models separately and
the ensemble learning outcomes combining all models’ decisions
using the validation dataset are presented in Table 2. Notably,
the ensemble learning showed the lowest MAE (0.1566 logMAR)
and the lowest RMSE (0.2433 logMAR). Therefore, the ensemble
learning model with the most promising performance was then
chosen for further development and evaluations.

The internal and external test datasets were used to determine
the performance of our prediction model using the ensemble
learning and to confirm the generalizability. As shown in Table 3,
the prediction model demonstrated stably promising outcomes
with MAEs of 0.1524 and 0.1602 logMAR and RMSEs of 0.2612

and 0.2020 logMAR in the internal and external test datasets,
respectively. In the internal test dataset, the sensitivity of our
model was 90.32% in the good VA group and 42.71% in the
poor VA group; the precision was 75.34% in the good VA
group and 69.49% in the poor VA group. In the external test
dataset, the sensitivity of our model was 81.75% in the good
VA group and 45.83% in the poor VA group; the precision
was 89.60% in the good VA group and 30.55% in the poor
VA group. The scatter plot of the predicted BCVA and the
ground truth (actual BCVA) was demonstrated in the internal
(Figure 2A) and external test datasets (Figure 2B). Pearson
correlation analysis revealed the significant relationships between
the predicted BCVA and the ground truth in the internal test
dataset (r = 0.55; p < 0.001) and external test dataset (Pearson
coefficients r = 0.50; p< 0.001). The Grad-CAM visualization was
used for the CNN models. Representative cases in the good VA
group (Figure 2C) and in the poor VA group (Figure 2D) were
demonstrated, showing the highly discriminative region of OCT
scans when predicting the VA.

The Bland–Altman plots assessing the agreement between
predictions and the ground truth are shown in Figure 3. The
95% confidence limits of agreement ranged from −0.52 to 0.50
logMAR in the internal test dataset and −0.22 to 0.44 logMAR
in the external test dataset, while no statistically significant
evidence of proportional bias was found (both p > 0.05).
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TABLE 1 | Demographic and clinical characteristics.

Internal datasets External test dataset

Training Validation Test

Number of eyes 851 282 282 161

Female gender (%) 391 (45.9%) 158 (56.0%) 150 (53.2%) 86 (53.4%)

Age (mean ± SD, years) 61.37 ± 10.45 61.93 ± 11.15 61.19 ± 9.47 62.45 ± 9.32

Actual postoperative BCVA (LogMAR, mean ± SD) 0.26 ± 0.33 0.25 ± 0.30 0.25 ± 0.31 0.14 ± 0.19

Number of OCT images in each BCVA range

<0.30 logMAR (Snellen 6/12 or higher) 559 186 186 137

≥0.30 logMAR (Snellen 6/12 or lower) 292 96 96 24

LogMAR, logarithm of the minimum angle of resolution; BCVA, best corrected distance visual acuity.

TABLE 2 | The performances of five algorithms and the ensemble learning using the validation dataset (n = 282).

Algorithms ResNet-18 ResNet-34 ResNet-50 ResNet-101 Inception-v3 Ensemble

MAE 0.1648 0.1737 0.1729 0.1723 0.1842 0.1566*

RMSE 0.2540 0.2677 0.2682 0.2600 0.2857 0.2433*

MAE, mean absolute error; RMSE, root mean square error.
*The best performances in MAE and RMSE.

TABLE 3 | The performances of the prediction model in the internal (n = 282) and
external test datasets (n = 161).

Algorithms Internal test
dataset

External test
dataset

MAE 0.1524 0.1602

RMSE 0.2612 0.2020

Sensitivity in each VA group*

<0.30 logMAR (Snellen 6/12 or higher) 90.32%
(168/186)

81.75%
(112/137)

≥0.30 logMAR (Snellen 6/12 and lower) 42.71% (41/96) 45.83% (11/24)

Precision in each VA group†

<0.30 logMAR (Snellen 6/12 or higher) 75.34%
(168/223)

89.60%
(112/125)

≥0.30 logMAR (Snellen 6/12 and lower) 69.49% (41/59) 30.55% (11/36)

MAE, mean absolute error; RMSE, root mean square error.
*Sensitivity = number of correctly predicted eyes with VA < 0.30 logMAR (or
≥0.30 logMAR) / overall number of eyes having actual VA < 0.30 logMAR (or
≥0.30 logMAR).
†Precision = number of correctly predicted eyes with VA < 0.30 logMAR (or
≥0.30 logMAR) / overall number of eyes having predicted VA < 0.30 logMAR (or
≥0.30 logMAR).

Figure 4 shows the distributions of the difference between the
ground truth and the predicted BCVA in both test datasets.
The percentages of the prediction errors within ± 0.30 logMAR
were 89.01% in the internal test dataset and 88.82% in the
external test dataset.

Further analysis was conducted on the falsely predicted cases
in the test datasets. They can be divided into two groups: (1)
underestimated cases: the ground truth < 0.30 logMAR (good
VA) but the predicted VA ≥ 0.30 logMAR (poor VA), and (2)
overestimated cases: the ground truth ≥ 0.30 logMAR (poor VA)
but the predicted VA < 0.30 logMAR (good VA). Supplementary
Table 1 shows the distribution of all falsely predicted cases.

These cases can be attributed to the following four categories:
(A) vague OCT images induced by extraordinarily cloudy
cataract (under- or overestimated, 39.6%); (B) morphological
changes on OCT scan exist but might have poor effect on
VA (underestimated, 8.1%), e.g., changes located away from
the macular, which were irregularly focused by the model; (C)
morphological changes on OCT scan exist but might have unclear
effect on VA (under- or overestimated VA, 46.8%), e.g., rough
retinal pigment epithelium layer or irregular inner segment/outer
segment layer; and (D) morphological changes on OCT scan
exist which might have some effect on VA, but were presented
as signal-deficient lesions and were accidentally ignored by the
model (overestimated VA, 5.4%). Representative cases in the four
categories with their Grad-CAM visualizations are presented in
Supplementary Figure 1.

DISCUSSION

Highly myopic cataract patients usually inevitably have macular
complications such as foveoschisis, chorioretinal atrophy, and
cicatrices from previous choroidal neovascularization (Chang
et al., 2013; Todorich et al., 2013; Gohil et al., 2015;
Lichtwitz et al., 2016; Li et al., 2018), which could render
the preoperative prediction of visual acuity after cataract
surgery very difficult, even though an OCT scan can be
used for morphological diagnosis (Jeon and Kim, 2011). In
the present study, by using the preoperative OCT scans
of macular as input, we developed and validated a deep
learning algorithm to predict the postoperative BCVA of
highly myopic eyes after cataract surgery and revealed that
the ensemble model showed stably promising performance
in both internal and external test datasets with MAEs of
0.1524 and 0.1602 logMAR and RMSEs of 0.2612 and 0.2020
logMAR, respectively.
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FIGURE 2 | The scatter plots of the predicted BCVA and the actual BCVA (ground truth) in the internal (A) and external (B) test datasets. Representative cases of
Grad-CAM visualization in the good VA group (C) and in the poor VA group (D). Red regions corresponds to highly discriminative areas of OCT scans when
predicting the VA. All values were provided in logMAR units. BCVA, best corrected distance visual acuity; logMAR, logarithm of the minimum angle of resolution;
Grad-CAM, gradient-weighted class activation mapping.

FIGURE 3 | The Bland–Altman plots of the predicted BCVA and the actual BCVA (ground truth) in the internal (A) and external (B) test datasets. All values were
provided in logMAR units. BCVA, best corrected distance visual acuity; logMAR, logarithm of the minimum angle of resolution.

Cataract patients usually expect a significant improvement
of VA after removal of the cloudy lens (Zhu et al., 2017).
However, those with high myopia are more concerned

about their VA improvement during the surgical planning
stage. Myopic maculopathies are the main source of the gap
between the expected outcomes and the actual potentials
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FIGURE 4 | The distribution of the difference between the predicted BCVA and the actual BCVA (ground truth) in the internal (A) and external (B) test datasets. All
values were provided in logMAR units. The vertical axis indicates the relative frequency of each BCVA delta value. BCVA, best corrected visual acuity; logMAR,
logarithm of the minimum angle of resolution; Re0.30logMAR, the percentage of BCVA prediction errors within ± 0.30 logMAR.

their fundus have. Hence, a forecast model which could
tell the patients their potential postoperative visual acuities
might be helpful with their surgical decisions (Rönbeck
et al., 2011). Nevertheless, the prediction of VA for highly
myopic eyes has always been very difficult. Although high-
resolution OCT may reveal morphological changes and thereby
identify eyes at high risk of developing clinically significant
macular complications affecting the postoperative visual
outcomes (Hayashi et al., 2010), it is still hard for cataract
surgeons to specifically determine the exact postoperative
VA preoperatively.

In recent years, deep learning has been widely applied
for its ability to process highly complex tasks through a
neural network, which can be seen as a mathematical function
composed of a large number of parameters provided by medical
images. An OCT scan of macular could provide millions of
morphological parameters affecting the VA (Abdolrahimzadeh
et al., 2017; Chung et al., 2019). The neural network was able
to identify the corresponding features and thereby automatically
generate the target VA predictions. Therefore, using deep
learning algorithms to predict the postoperative BCVA was
practicable and meaningful. Compared with other types of
neural networks, CNN can initially identify a few adjacent
pixels as local lower-level features and then merge them into
global higher-level features, and thus, it has been proven
effective widely in the field of medical image analysis (Anwar
et al., 2018). In the current study, when taking a preoperative
OCT image as input, the ensemble learning showed the
most promising performance, and the model automatically
predicted the postoperative BCVA for highly myopic eyes
having cataract surgeries with promising accuracies. With this
model, surgeons only need to input an OCT image of macular,
and a predicted postoperative BCVA together with a Grad-
CAM visualization could be generated. The expectant surgical
outcomes could be discussed between the surgeons and highly
myopic patients before surgery. Patients might more thoroughly
understand their macular status and how it might affect
the visual outcome of cataract surgery. It might also help

with surgical decisions such as whether to choose premium
IOL implantations.

Previous reports about applying deep learning approaches
to predict VA outcomes were mainly in the field of retinal
or macular diseases, such as age-related macular degeneration,
diabetic retinopathy, or retinopathy of prematurity (Chen et al.,
2018; Rohm et al., 2018; Huang et al., 2020). The morphologies
of featured lesions for these diseases were relatively simple
or identifiable. Yet, there are rare studies about implementing
the deep learning approach on high myopia due to its more
complicated and variable fundus status (Zhu et al., 2020). It
might be more valuable to predict the VA outcomes based
on the diverse fundus morphologies for highly myopic eyes.
Moreover, dozens of features from the patients’ medical history
were adopted or annotated one by one to train their models
(Chen et al., 2018; Rohm et al., 2018; Huang et al., 2020). It
might be highly difficult to ensure that during applications,
such many features from real-world patients were available
simultaneously and completely. The data missing problem
might be serious and may result in uncertain accuracies, thus
restricting the generalizability of their models. Our study, mainly
targeting VA prediction of highly myopic eyes, adopted the
OCT scan as the only input feature, which examines almost
every highly myopic patient before their cataract surgery.
Hence, the data missing problem could be rare when clinically
applying our model.

Notably, our model has shown considerable sensitivity and
precision in the good VA group in both test datasets (all
>75%), thus solving nearly 60% of the problems after cataract
surgery according to a previous report (Barañano et al., 2008).
As for the poor VA group, the model demonstrated relatively
lower sensitivity and precision, which might due to the very
complicated and changeable characteristic of the fundus status
among these highly myopic patients. As for the falsely predicted
cases in categories A and C, manually predicting the VA can
still be tricky for experienced cataract surgeons. In the future,
the accuracy could be further improved by the model training
with larger sample sizes. As for the falsely predicted cases in
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categories B and D, they revealed less focus on the signal-
deficient signs by the model intrinsically, but only made up very
minimal proportions. This can be further improved by manual
annotations of the signal-deficient lesions when more cases are
included in model training in the future. Currently, as there are
no perfect ways to accurately predict the surgical benefit of highly
myopic patients with very poor fundus condition, our predictions
by the deep learning model might still provide valuable references
for preoperative communications and clinical decisions for this
special population.

In conclusion, based on macular OCT images taken before
cataract surgery, we are taking the lead to originally develop the
deep learning prediction model for highly myopic eyes, which
can provide promising predictions of postoperative BCVA for
cataract patients with high myopia. Our model will be helpful
for surgical planning and preoperative conversations with highly
myopic cataract patients.
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