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Abstract
Background  Remote health monitoring with wearable sensor technology may positively impact patient self-management 
and clinical care. In individuals with complex health conditions, multi-sensor wear may yield meaningful information about 
health-related behaviors. Despite available technology, feasibility of device-wearing in daily life has received little attention 
in persons with physical or cognitive limitations. This mixed methods study assessed the feasibility of continuous, multi-
sensor wear in persons with cerebrovascular (CVD) or neurodegenerative disease (NDD).
Methods  Thirty-nine participants with CVD, Alzheimer’s disease/amnestic mild cognitive impairment, frontotemporal 
dementia, Parkinson’s disease, or amyotrophic lateral sclerosis (median age 68 (45–83) years, 36% female) wore five devices 
(bilateral ankles and wrists, chest) continuously for a 7-day period. Adherence to device wearing was quantified by exam-
ining volume and pattern of device removal (non-wear). A thematic analysis of semi-structured de-brief interviews with 
participants and study partners was used to examine user acceptance.
Results  Adherence to multi-sensor wear, defined as a minimum of three devices worn concurrently, was high (median 98.2% 
of the study period). Non-wear rates were low across all sensor locations (median 17–22 min/day), with significant differ-
ences between some locations (p = 0.006). Multi-sensor non-wear was higher for daytime versus nighttime wear (p < 0.001) 
and there was a small but significant increase in non-wear over the collection period (p = 0.04). Feedback from de-brief 
interviews suggested that multi-sensor wear was generally well accepted by both participants and study partners.
Conclusion  A continuous, multi-sensor remote health monitoring approach is feasible in a cohort of persons with CVD or 
NDD.

Keywords  Wearable sensors · Neurodegenerative disease · Cerebrovascular disease · Adherence · User acceptance · 
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Introduction

Advances in wearable sensor technology have made it pos-
sible to monitor aspects of health outside of the clinic, cap-
turing data that can positively impact clinical care, patient 
self-management of symptoms, and overall health [1]. For 
persons with complex health conditions such as those liv-
ing with neurodegenerative disease (NDD) or cerebrovas-
cular disease (CVD), remote monitoring, supplementary to 
clinical care, has the potential to improve quality of life and 
health outcomes by improving disease tracking, monitor-
ing treatment adherence and effectiveness, and improving 
healthcare decision-making [2–5]. Objective monitoring 
using remote technologies may also reduce reliance on self-
report measures and barriers to healthcare access for those 
living in remote regions or those who live long distances 
from the clinics that provide specialized care [6–8]. Remote 
monitoring is particularly valuable for recording behaviors 
that occur sporadically and thus may not manifest during 
clinical appointments, behaviors that vary over time, and 
those symptoms that present differently in clinic versus at 
home [4, 9, 10]. Wearable technology, when paired with 
telemedicine as a virtual care tool, has also demonstrated 
clinical utility in the context of the COVID-19 pandemic 
[11–13]. Further, extended sensor wear in the home envi-
ronment can reveal patterns in health-linked behaviors that 
can be captured with greater ecological validity and fidelity 
than point-in-time assessments or symptom diaries [14, 15].

The focus of the current work, conducted as part of the 
Ontario Neurodegenerative Disease Research Initiative 
(ONDRI), is directed to the application of wearable sensors 
for those with NDD and CVD; however, the implications 
of the work extend to many other clinical populations. To 
maximize the clinical utility of wearable sensors, they must 
be acceptable to end-users and capable of capturing data 
relevant to behaviors and outcomes that are important to 
clinical decision-making. Thus, it is important to consider 
inputs from clinicians, patients, and care partners regarding 
their needs and concerns related to wearable sensors. Moreo-
ver, sensor systems must be built with enough flexibility to 
suit a variety of potential applications, including tailored use 
to meet specific needs [16, 17]. These matters are becoming 
increasingly important as evidence accumulates in support 
of assessing multiple domains of health (e.g., sleep, activity, 
social engagement, cognition), independently or with respect 
to one another, to account for the multiple impairments that 
occur in complex health conditions [6]. For example, con-
tinuous, 24-h monitoring with wearable sensors presents an 
opportunity to objectively quantify both activity and sleep 
to understand circadian rest-activity rhythms [18], and the 
relationship between physical activity, sedentary behavior, 
and sleep [19, 20].

To evaluate multiple domains in a unified way, biometric 
signals must be captured from different sensor types (multi-
modal) embedded in one or more devices, often worn on dif-
ferent body segments (multi-nodal). Combining signals from 
different modes and nodes can also reduce uncertainty associ-
ated with quantifying free-living data, by leveraging comple-
mentary sources of information to characterize behavior. This 
is especially useful when target measures cannot be captured 
directly (e.g., sleep quality, social engagement). A multi-sensor 
approach must address the burden that accompanies multiple 
modes and nodes by optimizing user experience and reduc-
ing the number of sensors needed to the minimum necessary 
for the measures of interest; a balance that has been referred 
to as the benefit-to-burden ratio [17]. Importantly, this does 
not mean that a single-device solution (e.g., one wrist worn 
device) is the best option, since this approach can compromise 
data quality and clinical utility. For example, in the assessment 
of walking, a single device is limited in its ability to accurately 
detect gait parameters used to describe left–right asymmetry, 
compared to devices worn bilaterally at the ankle [21]. In Par-
kinson’s disease, recent evidence supports the use of multiple 
sensors for motor symptom detection outside of highly con-
trolled settings, such as the occurrence of freezing of gait [4, 
22]. Also, in both the activity and sleep domains, adding heart 
rate and/or skin temperature to accelerometry has been shown 
to improve the accuracy of outcomes [23, 24].

Despite significant advances in wearable sensor technol-
ogy, there remains a relative lack of studies formally exam-
ining the feasibility of continuous monitoring of free-living 
behavior in persons with physical or cognitive limitations that 
could uniquely impact acceptance and adherence (i.e. willing-
ness to wear and commitment to prescribed wear schedule) 
[25, 26]. The literature tends to focus on issues of technical 
efficacy such as precision and reliability [27] and while war-
ranted, there remains need to understand user acceptance and 
adherence to device-wearing in daily life. Among studies 
that have evaluated feasibility from this perspective in those 
with impaired function or cognition, acceptability is gener-
ally high [26, 28–30], with reduced adherence linked to high 
user engagement requirements [31], multi-day wear [26], and 
specific cohorts such as those living with dementia [32]. Most 
studies, however, have focused on a single device and daytime 
wear [27, 32], with specific gaps surrounding the feasibility of 
extended duration, multi-sensor wear paradigms.

The goal of this study was to examine the feasibility of 
a multi-sensor approach used to capture activity, mobility, 
sleep, and cardiovascular function continuously over seven 
days in persons living with CVD or a range of NDDs. Spe-
cifically, the study investigated the following: (1) adherence 
to device-wearing based on sensor location, (2) adherence to 
multi-sensor device wearing based on time of day and wear 
duration, and (3) participant and study partner acceptance 
of continuous multi-sensor wear for a week-long period. 
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Adherence was evaluated by examining volume and pattern 
of device removal, which were derived from sensor data, 
while acceptance was examined through de-brief interviews 
with participants and study partners. Study partners were 
included given the important role that care partners play 
in the daily life of the patient and their potential involve-
ment in technology implementation [33]. We hypothesized 
that adherence to and acceptance of a multi-sensor set-up 
would be high, as demonstrated by low device non-wear 
time and positive participant and study partner reports of 
their experience. We also hypothesized that differences in 
adherence would emerge based on disease cohort, sensor 
type or wear location, time of day, and wear duration.

Methods

Participants

The ONDRI Remote Monitoring in Neurodegenerative 
Disease (ReMiNDD) study aimed to recruit 50 participants 
(minimum 5 per cohort from CVD, Alzheimer’s disease/
amnestic mild cognitive impairment (AD/MCI), frontotem-
poral dementia (FTD), Parkinson’s disease (PD), and amyo-
trophic lateral sclerosis (ALS)) from tertiary care clinics at 
Sunnybrook Health Sciences Centre in Toronto, Canada. In 
addition to meeting standard clinical diagnostic criteria, as 
confirmed by a neurologist and detailed previously in Farhan 
et al. [34], inclusion criteria included the following: (1) a 
self-reported level of proficiency in speaking and under-
standing English as determined by the Language Experi-
ence and Proficiency Questionnaire (LEAP-Q) [35] and (2) 
having a study partner known to the participant for at least 
2 years, who could respond to care partner questionnaires 
and attend both a baseline and discharge visit. Participants 
were not eligible if they experienced contraindications as 
outlined by device manufacturers or an allergy/sensitivity 
to the materials used to mount the devices. Following pre-
screening by a clinical study coordinator, physicians veri-
fied eligibility and either introduced the study to patients 
during a clinic visit or via telephone or gave permission to a 
ReMiNDD research coordinator to do the same. At the time 
of consent, participants were informed they would receive 
a personalized feedback report based on their sensor data. 
This study was approved by the Sunnybrook Health Sciences 
Centre research ethics board and all participants provided 
written informed consent prior to data collection.

Procedures

The study was completed between May 2019 and March 
2020. Data collection consisted of a baseline clinic visit, a 
7-day free-living sensor wear period, and a discharge visit 

either in clinic or at home, as preferred by the participant. 
During the baseline visit, participants and study partners 
completed a detailed health history and several clinical 
assessments. Participants were also instrumented with five 
wearable devices that they were oriented to with informa-
tion about what they measured and instructions for donning/
doffing. Participants were asked to wear limb devices bilater-
ally on wrists and ankles, as well as a chest device, 24 h per 
day, except for bathing or swimming. All devices were data 
logging. Device instruction cards and paper logs to record 
notable events (e.g., device removal, bed/wake times) were 
provided as part of a study kit. Logs were used by the study 
team, when necessary, to cross reference against sensor 
data. Participants were encouraged to go about their usual 
activities during the free-living wear period. Approximately 
2 days after the baseline visit, a member of the study team 
completed a telephone check in with participants to answer 
any questions regarding sensor wear. During the discharge 
visit, devices were returned and a study de-brief interview 
was conducted separately with participants and study part-
ners (where possible).

Data collection

Demographic and clinical measures

Demographic and health history information, as well as the 
following clinical assessments, were collected either by self-
report or by a trained member of the study team as part 
of the ONDRI ReMiNDD study: Pittsburgh Sleep Quality 
Index (PSQI) [36], General Anxiety Disorder-7 (GAD-7) 
[37], Quick Inventory of Depressive Symptomology-Self-
Report (QIDS-SR) [38], Montreal Cognitive Assessment 
(MoCA) [39] and the modified Rankin Scale (mRS) [40]. 
This information was collected and stored using REDCap 
electronic case report forms (www.​proje​ct-​redcap.​org) and 
hosted on Brain-CODE (www.​brain​code.​ca) [41, 42]. The 
broader ReMiNDD study also included additional clinical 
scales, a detailed neuropsychological assessment, blood 
work, one night of pulse oximetry, and an optional clinical 
MRI.

Wearables data collection

Limb-worn devices were GENEActiv Originals (43 mm 
× 40 mm × 13 mm) (ActivInsights, UK), each with a tri-
axial accelerometer as well as a temperature and light sensor 
(Fig. 1a). These were fastened using rubber watch straps 
(wrists) or Fabrifoam (Fabrifoam, PA) medical-grade wraps 
(ankles). The ankle devices were positioned just above the 
medial or lateral malleolus, based on participant prefer-
ence (Fig. 1b). Accelerometer and temperature data were 
collected at a sampling frequency of 75 Hz and 0.25 Hz, 

http://www.project-redcap.org
http://www.braincode.ca
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respectively. The chest-worn device was a Bittium Faros 
180 (48 mm × 29 mm × 12 mm) (Bittium, Finland), which 
included electrocardiography (ECG) and a tri-axial acceler-
ometer. The chest device was limited to collecting data for 
the first 4 days of the study period, due to battery life. The 
decision to restrict collection to a single charge for the chest 
device was motivated by a desire to minimize participant 
burden associated with transferring data and device charg-
ing. The chest device was mounted using a 2-lead FastFix 
electrode adhesive as per the manufacturer’s recommenda-
tion (Fig. 1b). Participants with chest hair were asked to 
shave the area prior to sensor attachment. ECG data were 
sampled at 250 Hz, with the built-in accelerometer sampling 
at 25 Hz. The electrode adhesive was waterproof and could 
be left on during bathing or swimming. Participants were 
given additional adhesives to use as necessary during the 
study period.

Sensor data were purposefully oversampled with five 
devices to address the study team’s work to develop guide-
lines for a minimal sensor set in NDD, which considers the 
need to characterize disease-specific features and subtle 
changes in symptoms or behavior. Specifically, the interest in 
capturing data bilaterally and across upper and lower limbs 
was driven by an understanding that persons living with 
CVD and NDD experience asymmetric and body segment-
specific presentation of symptoms and impairment (e.g., 
gait in PD, upper versus lower motor neuron degeneration 
in ALS) [43, 44]. The decision to include a chest-mounted 

device with both ECG and accelerometry capabilities was 
guided by evidence to suggest that continuous ECG outper-
forms proxy measures obtained via photoplethysmography 
(PPG) [45]. There was also an interest in examining auto-
nomic function and other relevant measures derived from a 
sensor located on the chest, such as speech or respiration, 
which are known to be affected in persons with CVD and 
NDD [46–48].

De‑brief interviews

A qualitative descriptive approach was used as a framework 
for the collection and analysis of data [49], as has been used 
previously when gathering perspectives on technology in 
clinical research [50]. Interviews were semi-structured and 
lasted approximately 10 min. Interviews were conducted 
by two research coordinators (ET, YD) who worked with 
the participants and study partners throughout the study. 
An interview guide consisting of open-ended questions and 
probes related to user experience with the sensors was used 
to conduct the interview. Interviewers explored specific 
issues raised by the participant or study partner in greater 
depth, where relevant. With permission, all interviews were 
digitally recorded for offline analysis.

Fig. 1   Multi-modal, multi-nodal device–sensor relationship and par-
ticipant set up. a Limb (GENEActiv) and chest (Bittium Faros 180) 
devices worn within this study, with the corresponding sensors and 
body location(s) and b Schematic representation of device location 

on body segments. The multi-modal, multi-nodal approach enables 
simultaneous assessment of multiple domains of health in persons 
living with cerebrovascular and neurodegenerative disease



2677Journal of Neurology (2022) 269:2673–2686	

1 3

Data processing and analysis

All data, except the de-brief interview recordings, were sub-
scribed to ONDRI’s data curation processes, which were 
developed to optimize quality assurance and quality control 
procedures for large, complex datasets [51].

Sensor non‑wear

At the end of the data collection period, devices were 
returned to the study team where raw data were offloaded 
from each device for processing. Data files were visually 
inspected to identify periods when the devices were not 
worn (i.e. non-wear). Visual inspection was used to achieve 
temporal resolution not currently afforded by published non-
wear algorithms, which typically focus on periods with a 
minimum threshold of 30–60 min [52]. Non-wear detec-
tion criteria included the absence of acceleration and a sus-
tained decrease in temperature for a minimum of 5 minutes. 
Non-wear was expressed as a proportion of a standardized 
amount of wear time, either four consecutive 24-h periods 
of wear (2 pm to 2 pm) to examine the effect of sensor loca-
tion (included all devices) or six consecutive 24-h periods 
of wear to examine the effect of time of day and number of 
days worn (included limb devices only).

Given the desire to understand acceptance and adherence 
to a multi-sensor, extended wear model, a subcomponent of 
the analysis focused on the six 24-h periods obtained from 
the limb-worn devices. Specifically, by identifying periods 
of time when a minimum of three limb-devices were worn, 
adherence was assessed for a sensor set that captures data 
bilaterally (i.e. both ankles or both wrists) and provides rep-
resentation from both the upper and lower body (i.e. mini-
mum of 1 wrist and 1 ankle). Instances when this multi-sen-
sor criterion were not met were then termed “multi-sensor 
non-wear”. Non-wear data were examined for both volume 
and pattern at the group and participant level over the course 
of the collection period. For participants who exhibited the 
greatest non-wear rates (outliers defined as participants with 
a proportion of non-wear greater than 1.5 times the inter-
quartile range from the third quartile), demographic and 
clinical data were inspected to explore whether adherence 
to the study protocol may have been impacted by clinical 
characteristics.

De‑brief interviews—user experience

Digital recordings of participant and study partner inter-
views were transcribed by a research team member (VT). 
A qualitative content analysis [49] was performed by two 
members of the research team (ET, VT) who read and open-
coded the transcripts before meeting to develop a coding 
framework, which they reviewed with the research team 

prior to organizing the data into themes. Throughout data 
analysis, ET, VT, FEG, and KVO discussed and refined the 
themes until agreement was reached. Thematic summaries 
considered all participants and were not divided by disease 
cohorts due to relatively small numbers within each group.

Statistical analyses

Demographic and clinical data were summarized using 
descriptive statistics. Non-wear data were non-normally dis-
tributed as determined using the Shapiro–Wilk test and as 
such, were analyzed using non-parametric tests. A Friedman 
test was used to compare average non-wear rates between 
wear locations. The Wilcoxon matched pairs signed rank 
test was used to compare multi-sensor non-wear rates for day 
(7:00am–11:00pm) versus night (11:00pm–7:00am). A non-
parametric longitudinal data analysis [53] was used to exam-
ine multi-sensor non-wear rates across the wear duration. 
Post-hoc tests were conducted using the Nemenyi test. Given 
the small number of participants within disease cohorts, the 
data were not statistically analyzed for between-cohort dif-
ferences. Statistical analyses were conducted in SPSS (IBM 
SPSS Statistics for Windows, Version 27.0. Armonk, NY: 
IBM Corp). Statistical significance was set at α < 0.05 and 
all data are presented as medians (range).

Results

Study overview

A total of 123 patients living with CVD, AD/MCI, FTD, PD, 
or ALS were contacted. Of these, 44 agreed to participate 
and another six agreed to review the study information letter. 
Due to the COVID-19 pandemic and the need to terminate 
recruitment efforts based on local restrictions, 39 partici-
pants completed the study. The primary reason for declining 
participation was general research study fatigue, which may 
have been related to the study site that afforded many, on-
going opportunities for study participation.

Participant characteristics

Participants were sampled from the five cohorts as follows: 
10 CVD, 8 AD/MCI, 5 FTD, 11 PD, and 5 ALS. The median 
age was 68 (45–83) years and 14 (36%) participants were 
females. Table 1 summarizes demographic and clinical char-
acteristics of participants, presented overall and for each of 
the five disease cohorts. The study partner for most par-
ticipants (n = 36, 92%) was a spouse or partner, while three 
participants were enrolled with a friend or sibling (median 
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age was 65 (41–80) years and 27 (69%) study partners were 
females). Previous work within ONDRI showed similar 
group composition when a study partner was required [54]. 
All participants completed the baseline clinic visit, at-home 
monitoring period, and discharge visit; however, not all 

participant/study partner pairs completed all clinical scales 
or the de-brief interviews.

Non‑wear by location

The full device set was worn for the first 4 days, after 
which time the chest device battery was deplete and the 
device was removed. All four limb devices continued to be 
worn for the remaining 2 days. Given our interest in poten-
tial differences in adherence between the limb and chest 
devices, the effect of wear location was examined for this 
4-day period. Median non-wear rates ranged from 1.2 to 
1.5% per day (17–22 min/day) across all wear locations 
(Fig. 2). Non-wear rate was significantly different depend-
ent upon wear location ( �2

(4)
 = 14.355, p = 0.006) Post-hoc 

testing revealed a significant difference between the chest 
compared to the left wrist (p = 0.03) and right wrist 
(p = 0.02), with greater non-wear rates occurring for both 
wrists versus the chest. Four participants had non-wear 
rates that were classified as outliers (exceeded the upper 
quartile by 1.5 times the interquartile range) for more than 
one wear location (e.g., both ankles), but only one partici-
pant had non-wear rates classified as outliers for all wear 
locations. Data from one participant were omitted due to 
a device issue and another due to an unrelated ankle issue 
that prevented the device from being worn. Analysis was 
based on data from 37 participants.

Table 1   Participant characteristics

MoCA Montreal Cognitive Assessment, mRS Modified Rankin Scale, PSQI Pittsburgh Sleep Quality Index, GAD-7 General Anxiety Disorder-7, 
QIDS-SR Quick Inventory of Depressive Symptomology-Self-Report
Data are presented as median (range) unless otherwise noted
a Higher score indicates greater functioning
b Lower score indicates greater functioning
c Total score for QIDS-SR adjusted to 26 (question 12 was not collected as a part of the ReMiNDD study)
Missing data for: done participant; eTwo participants
‡ For subgroups of less than four participants (3 or fewer scores), cohort level summaries are not reported
¶ Missing MoCA scores were attributed to participants who were unable to complete the assessment due to cognitive impairment

Overall CVD (n = 10) AD/MCI (n = 8) FTD (n = 5) PD (n = 11) ALS (n = 5)

Age (years) 68 (45–83) 72 (55–76) 73 (62–82) 57 (48–83) 65 (59–76) 65 (45–73)
Sex (n, % Female) 14 (36%) 3 (30%) 2 (25%) 2 (40%) 5 (45%) 2 (40%)
Education (n, % with post-

secondary education)
35 (90%) 9 (90%) 8 (100%) 5 (100%) 10 (91%) 3 (60%)

MoCA (0–30)a [n = 32] 25 (16–30) 27 (16–30) 24 (22–27)e ‡¶ 27 (17–28)d 24 (22–25)d

mRS (0–5)b [n = 33] 2 (0–4) 1 (0–3)d 2 (0–3) 3 (3–4)d 2 (1–3)e ‡
PSQI (0–21)b [n = 33] 6 (0–14) 5 (0–9)e 4 (1–7)d 11 (5–12)d 5 (2–14)e 8 (4–13)
GAD-7 (0–21)b [n = 38] 2 (0–16) 1 (0–12) 1 (0–4) 2 (0–7)d 4 (0–9) 5 (0–16)
QIDS-SR (0–26)bc [n = 37] 5 (1–12) 3 (2–10) 3 (1–8)d 4 (2–12)d 8 (3–12) 9 (6–12)

Fig. 2   Participants’ average non-wear rate by wear location (n = 37). 
The data collection window was defined as 2:00 pm on the day of the 
baseline visit to 2:00 pm on Day 4, resulting in four consecutive 24-h 
periods. Grey symbols denote individual participants. Black symbols 
denote the four participants deemed to be outliers across two or more 
wear locations. White symbols denote participant outliers for a single 
wear location. Non-wear rate was significantly different dependent 
upon wear location (p = 0.006) and post-hoc testing revealed a signifi-
cant difference between the chest compared to the left wrist (p = 0.03) 
and right wrist (p = 0.02). Note: symbols appearing across figures do 
not denote the same participant
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Multi‑sensor non‑wear

As noted, evaluation of non-wear based on time of day, 
wear duration, and between individual study participants 
considered multi-sensor non-wear to be any time when 
less than three limb devices were worn (i.e. two or more 
limb devices were removed). Multi-sensor non-wear analy-
ses were based on data from 37 participants (as described 
above).

Group level non‑wear

Multi-sensor non-wear, as defined, ranged from 0 to 30.3% 
of the study period. Within each cohort, multi-sensor non-
wear occurred for a median (range) of 2.3% of time in 
AD/MCI (0–11.4%) and CVD (0.3–8.1%), 2.0% of time in 
FTD (0–2.2%), 1.5% of time in PD (0–30.3%), and 0.9% 
of time in ALS (0.5–18.6%). Overall, participants wore a 
minimum of three devices for a median of 5 days and 21 h 
(98.2%) of the six 24-h periods included in the analysis.

Multi-sensor non-wear was significantly different based 
on time of day (Z = − 3.394, p < 0.001), with non-wear 
occurring more often during the day (median = 2.4%, 
range = 0–28.9%) than at  night  (median = 0%, 
range = 0–32.9%) (Fig. 3a). Multi-sensor non-wear rates 
increased over the course of the wear period (T = 1.769, 
p = 0.04) (Fig. 3b; median non-wear rates of 0, 22, 12, 15, 
16, and 24 min from first to sixth day).

Individual level non‑wear

Each participant’s non-wear volume and pattern are illus-
trated in Fig. 4. Thirty-one participants (84%) adhered to 
multi-sensor wear for more than 95% of the study period. 
According to self-reported device removal logs (n = 29), 
bathing was the most common reason for device removal 
(as instructed) and only two participants noted the removal 
of devices due to discomfort. The five participants with the 
greatest non-wear rates were identified for further examina-
tion based on the outlier criterion (equated to total non-wear 
greater than 5%). One of these participants (ALS5) presented 
with moderately severe disability (mRS score of 4), chose 
not to complete the cognitive assessment (MoCA), and noted 
concern about wearing the devices in public, specifically 
due to challenges with communication and a desire to avoid 
having to explain the sensor wearing to others. Among the 
remaining four participants whose non-wear was identi-
fied as an outlier, MoCA scores ranged from 24 to 28, mRS 
scores were between 0 and 2, PSQI scores ranged from 0 to 
7, GAD-7 scores ranged from 2 to 5, and QIDS-SR scores 
ranged from 2 to 8. As seen in Fig. 4, these four participants 
accumulated non-wear predominantly in a single, long bout 

(one early in collection period, three later in the collection 
period), whereas the participant who presented with a more 
distinct clinical profile (ALS5) accrued non-wear in several 
bouts of a moderate length. Reasons for higher non-wear 
values noted in these participants’ logs included longer 
periods of time spent bathing, unintended extended removal 
(e.g., forgot to put back on) and life interruptions. There 
was no explanation provided for the extended removal in 
the participant presenting with the highest amount (~ 30%) 
of multi-sensor non-wear (PD6).

De‑brief interviews

De-brief interviews were conducted with 35 participants 
and 27 study partners. Twenty-five of these interviews were 
participant/study partner pairs with interviews conducted 
separately. Two participant/study partner pairs declined an 
interview (one participant with communication difficulties, 

Fig. 3   Non-wear rate based on time of day  (a) and day of collec-
tion (b) (n = 37). Data represent periods of time when less than three 
devices were worn (multi-sensor non-wear). The data collection 
window in these analyses was defined as 2:00 pm on the day of the 
baseline visit to 2:00 pm on Day 6, resulting in six consecutive 24-h 
periods. Black symbols denote the participants deemed to be outli-
ers across two or more data points. White symbols denote participant 
outliers for a single data point. Non-wear rate was significantly dif-
ferent based on time of day (p < 0.001) and increased across the wear 
period (p = 0.04)
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one participant with study fatigue), ten interviews were 
conducted with participants only, and two interviews were 
conducted with study partners only. In the cases where one 
in the pair did not interview, the reason was either that they 
were unavailable (one study partner) or they agreed with 
responses provided by their partner (nine study partners, 
two participants).

Participant perspectives

Overall, participants reported no considerable problems 
wearing multiple devices for the study duration. Qualitative 
analysis of the de-brief interviews resulted in four themes 
related to user experience with the sensors and acceptability 
of the device wearing protocol: comfort, ease of use, the 
degree of interference with activities of daily living (ADLs), 

and appearance. For a summary of findings with representa-
tive quotes, see Table 2.

Most participants identified comfort as the key considera-
tion related to device acceptance. Several participants dis-
tinguished between the materials that were used to affix the 
wrist versus ankle devices, with some noting a preference for 
the feeling of the medical-grade wrap that was used on the 
ankles. Some participants commented that the ECG adhesive 
was itchy or that they experienced discomfort, particularly 
upon removal. Comments related to ease of use were also 
common. Several participants noted that the devices would 
“move around”, with a few expressing that they were uncer-
tain about the appropriate level of tightness for the ankle 
strapping and therefore, that the easily adjustable wrist strap 
was ideal. Conversely, one participant with significant atro-
phy of the forearm (ALS cohort) found that the watch strap 
could not be tightened enough and noted an interest in using 

Fig. 4   Pattern and total rate of non-wear across and within individual 
study participants (n = 37). Data represent periods of time when less 
than three devices were worn (multi-sensor non-wear). a Total non-
wear rates for each participant, sorted from least (top) to most (bot-

tom) and b Non-wear periods for each day of data collection. Width 
of the bar denotes bout duration. Shaded grey sections denote night-
time periods (11:00 pm to 7:00am)
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the ankle wrap for the wrist. Two participants, who had dif-
ficulties with upper limb motor control, required assistance 
to attach and remove the devices and commented on the 
importance of a design that would enable independent use.

Although most participants did not suggest that the 
device set impeded their ability to perform ADLs, a few 
noted devices catching on clothing during dressing or on the 
bed sheets during sleep. Based on the instruction to remove 
devices for bathing or swimming, some were concerned 
about the sensors contacting water during ADLs such as 
washing dishes. Many participants commented on device 
size or appearance and a few mentioned that they avoided 
certain situations while wearing the devices (e.g., avoided 
wearing shorts even though it was hot) or attempted to con-
ceal them on at least one occasion (e.g., wedding). Four 
participants used the word “bulky” to describe the devices 
and most participants who commented on size also explic-
itly stated a desire for smaller and slimmer devices. Despite 

these comments, most participants reported that the sensor 
set was not obtrusive, with two participants stating they “did 
not mind” if others saw that they were wearing devices as 
part of a study.

Beyond the four central themes related to user experi-
ence that emerged from the interviews, participants also 
made broader comments about the remote monitoring 
approach. A few participants expressed reluctance to wear 
the devices for markedly longer periods of time than the 
one-week study period (e.g., 6 months). Two participants 
explicitly stated that their willingness to wear the devices 
for a week stemmed from a belief that they would be able 
to provide valuable information to their clinician that 
could benefit their health and the health of people living 
with their disease.

Table 2   Summary of findings from qualitative thematic analysis of de-brief interviews with participants and study partners

Summary Representative quotes

Comfort was deemed the most critical factor for participants, inclusive 
of material softness and suitability for sensitive skin

PD3: Comfort is key, especially because I wore it in such hot weather
AD/MCI3: The material for the ankle wrappings was actually quite 

good. I think it was a comfortable material…So I liked that material 
of the softer [ankle] one better than the harder [wrist] one…

PD8: Just the sticky part [of the chest device] can become a little bit, 
sort of, aggravated like on your skin… I wouldn't like to keep it [on] 
any longer than I did because it makes your skin feel a little bit like 
itchy

Participants expressed the need for sensors to be easy to use, with con-
cern about devices moving around and a need for a design permis-
sive of independent use

CVD10: Comfort [and] ease of taking off and putting on [are impor-
tant]. The look of the thing is not tremendously important to me

AD/MCI8: The heart sensor, that fell off the first time. I had to push 
down with force to make sure it stays put

PD5: [The wrist device] wasn't too tight, not too loose. It was adjust-
able…The ankle sensors… sometimes they got too tight, sometimes 
they felt too loose

AD/MCI3: I was a little worried. It moved a lot. If I put it too tight, then 
it really bothered me

ALS2: I didn’t do it myself [taking off and putting on devices]. My 
hands don’t work therefore somebody else has to take them off. That's 
why I think the elastics would be better [for the wrist devices]

Participants noted that devices interfered with certain activities of 
daily living, with some participants expressing concern about getting 
the sensors wet

AD/MCI1: I have no issues. Other than if you're putting clothes on, it 
may be more difficult. But it's a minor issue

CVD6: The ankle sensors got tangled in the sheets when I moved my 
ankles…they were a nuisance when that occurred

FTD4: The ones for the wrist, I found that I was getting concerned 
about the amount of water I might be [exposing the sensors to when] 
washing my hands

Participants would have preferred smaller, slimmer devices that 
looked more appealing but found the devices acceptable in this study 
context

Study Partner: I wish it was thinner though. Thinner and it was some-
thing that almost stuck to the body. Almost like a little tape thing

FTD1: The ankle ones were a little bulky. I think on the wrist, try to 
make it as light and small as possible

AD/MCI3: I did not mind that people see it. I just told them I was doing 
a study…

CVD4: The only thing they saw were my wrists and they just thought 
it was a wrist watch or something. Well for the ankle monitors I wore 
pants because I didn’t want people to ask
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Study partner perspectives

Generally, study partners expressed that they did not have 
any concerns with devices used in this study. Several study 
partners commented on the practical aspects of device-
wearing, including a desire for devices to be thinner to 
make them more manageable in daily life (Table 2). Some 
study partners also commented on the potential utility of 
receiving real-time feedback or summary results from 
the sensor data, with three explicitly stating an interest 
in learning more about disease-related outcomes such as 
medication impact or fall risk and health-related behaviors 
such as sleep quality.

Discussion

The findings of this study demonstrate feasibility of a 
continuous multi-sensor approach to remote monitoring 
for persons living with CVD and NDD, with high adher-
ence during both day and nighttime wear across the study 
period. Specifically, 84% of participants wore at least three 
limb devices for more than 95% of the study period. Fur-
ther, participants described their experience to be gen-
erally positive with respect to comfort, ease of use, and 
integration of the wearables into daily life. Support for 
the deployment of a multi-sensor approach within CVD 
and multiple NDD cohorts has important implications for 
advancing the use of remote health monitoring in persons 
living with complex health conditions. In such cases, 
there may be value in examining multiple symptoms and 
behaviors to understand health status and to support self-
management and clinical care.

Previous work examining acceptance and adherence 
to device wearing in daily life in NDD populations has 
occurred most commonly in PD [26, 30, 31] or AD [32], 
with a paucity of studies incorporating other NDD cohorts 
[28]. Furthermore, few studies have evaluated acceptability 
and adherence to multiple sensors worn on various body 
segments [28, 30, 55], with some studies using the term 
“multi-sensor” to describe a single sensor plus smartphone 
for participant data entry [29, 31, 56]. Adams et al. [28] 
did examine a multi-modal, multi-nodal wear model by sur-
veying persons with PD, Huntington’s disease (HD), and 
prodromal HD. Most participants (86%) reported that they 
were “willing or very willing” to wear the sensor set again; 
however, wear time was relatively short at 2 days [28]. The 
high wear time across all cohorts within the present study 
supports the general feasibility of a multi-sensor approach 
over an extended period and provides specific evidence from 
cohorts that have been understudied to date, including ALS 
and FTD. Additionally, high wear rates across the five wear 
locations (median non-wear 17–22 min/day) demonstrate the 

potential for system “flexibility”, such that different combi-
nations and placements of sensors may be used, with compa-
rable acceptance and adherence, to optimize data capture for 
a specific purpose, including the detection of subtle changes 
in symptoms or behavior over time.

Overall, multi-sensor adherence was high throughout the 
study period, with total non-wear time largely influenced 
by a few participants who removed devices for hours at a 
time (e.g., PD6). Group level analyses revealed that multi-
sensor non-wear rates were higher in the day versus night 
(median non-wear 2.4 versus 0%), although this can be at 
least partially accounted for by the need to remove devices 
when bathing/swimming as instructed. A high nighttime 
adherence rate adds to previous literature that did not assess 
nighttime wear [26, 55, 56] and contrasts reports of poorer 
nighttime compliance or refusal to wear a wrist-based sen-
sor at night, particularly in people with dementia [32]. The 
difference in findings related to nighttime adherence may be 
attributed to the fact that some previous work has focused 
on participants who report regular sleep disturbances and 
involved protocols requiring daily donning and doffing [57], 
which may make overnight wear less achievable. High 24-h 
wear rates across a 6-day window is notable in the context 
of the minimum number of hours needed to report on daily 
behaviors (e.g., 10-h wake time per day for activity) [58] and 
evidence that a week-long wear period, inclusive of sleep, is 
important for understanding patterns of daily behavior [32, 
59, 60]. It is worth acknowledging however, the benefit of 
further extending the wear period to investigate adherence 
within or across NDD cohorts when the wear duration is 
lengthened. Extended wear could increase the likelihood of 
capturing infrequent events or changes in behavior that occur 
over a longer term (e.g., seasonal effects, medication titra-
tion) and minimize the impact of modifications in behavior 
that could occur when participants are initially instrumented 
with sensors. In the current study, increases in non-wear for 
a few participants later in the study period may suggest that 
such extended wear could be problematic for some individu-
als. A study by Silva de Lima et al. [31] evaluated long-term 
adherence to a wearables protocol in a cohort of persons 
living with PD. When assessed across a 13-week period, 
investigators reported an attrition rate of 23% and a lower 
median compliance rate (68%) than what was found in the 
present study (98% sensor wear), with low ratings of system 
usability differentiating participants who were most from 
least compliant [31]. As such, future work should focus on 
optimizing extended multi-sensor wear by reducing barriers 
where possible.

Examining patterns and differences in device removal at 
the individual level is distinct from previous work that has 
largely focused on group-level metrics of adherence [26, 
30]. Despite a considerable range in level of disability (as 
screened by mRS) and cognitive functioning (as screened 
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by MoCA), multi-sensor wear time was high across all par-
ticipants. For four of the five participants with the lowest 
adherence rates (ranging from 8 to 30% non-wear), gross 
measures of cognitive and physical status did not differenti-
ate these participants from others in the group. This find-
ing aligns with other studies that assessed the feasibility of 
wearable sensors and reported that clinical characteristics, 
such as disease severity, loss of independence, or cognitive 
impairment, did not significantly influence compliance at 
the group level [31, 56]. In addition to total non-wear time, 
examining the duration and frequency of non-wear bouts at 
the individual level provided novel insights into the daily 
pattern of device removal within and between participants. 
Specifically, extended periods of removal (i.e. greater than 
5 h) were infrequent and not confined to a particular cohort. 
In fact, these extended periods occurred only in the five par-
ticipants with the highest amounts of non-wear, and these 
participants represented four of the five study cohorts. For 
the remaining participants, non-wear occurred in short bouts 
and often at consistent times across days, suggesting that 
participants did not experience issues that made them “aban-
don” the wear protocol for lengthy periods of time.

Feedback during the de-brief interviews with participants 
and study partners was positive overall, with comfort, ease 
of use, appearance, and ability to perform ADLs without 
interference emerging as important factors related to the 
usability and acceptability of the approach. Some partici-
pants and study partners also noted a desire to receive sen-
sor-derived feedback that may provide insight into disease 
or health-related behaviors. The generally positive response 
suggests that this model could be implemented with minimal 
interruption to usual behavior. However, some participants 
and study partners did identify barriers and concerns related 
to the set up and although these views did not translate into 
poor adherence, there is an important need to address this 
feedback to optimize the approach. Specifically, participant 
comments about skin redness or itchiness and/or mild dis-
comfort related to the ECG adhesive highlight the need to 
consider age or disease-related changes to skin integrity and 
suggest that a wear schedule inclusive of breaks may be war-
ranted (e.g., three days on, one day off). Decisions regarding 
wear schedule must also consider the timescale needed to 
capture measures of interest (e.g., duration of continuous 
wear needed to capture day-night reversals). For partici-
pants who identified challenges with donning the devices 
independently or expressed concerns about device attach-
ment, consideration should be given to providing a range 
of attachment methods that cater to participant preference, 
specific devices, and wear location [33]. Although the cur-
rent study adopted the use of medical-grade wrap to allow 
for comfortable long-term wear of ankle devices, concern 
about having to remove devices for water-based ADLs may 
be addressed by using waterproof technology or coverings. 

Last, the preference expressed by both participants and study 
partners for thinner, smaller devices that may be less notice-
able supports the need to continue to evaluate new tech-
nology options and form factors that emerge with potential 
promise for CVD and NDD applications. As it relates to this 
matter of wearability, advances in technology should strive 
to accommodate different wear locations with a view to 
optimize data capture for the physiological systems, behav-
iors, or symptoms of disease that the devices are intended to 
measure. Practically, the suggestions provided in this study 
to address barriers to device wear may help to balance par-
ticipant preference for wear location with the location that 
provides the most meaningful data. Overall, the concerns 
identified by participants and study partners highlight the 
importance of engaging end users in the development of 
extended wear protocols to optimize acceptability and adher-
ence to device wearing in free-living contexts [61].

Importantly, it is possible the high acceptance and 
adherence reported within this study was influenced by the 
intentional strategies built into the protocol to achieve the 
following: (1) limit participant engagement with devices 
(the devices required no interaction beyond attachment and 
removal), and (2) offset device-related challenges experi-
enced by participants by including a study partner and pro-
viding access to a research coordinator. Previous studies 
have reported that adherence depended on the complexity 
of the technology being used [62] and the degree of user 
engagement required [27, 56]. No participants required 
research coordinator support to engage with the devices; 
however, one study partner did receive additional support 
from the study team when a participant became agitated 
by the devices. This instance reinforces the importance of 
embedding support mechanisms [31] and the need to con-
sider the role of the care partner, as well as the potential 
impact of caregiver burden, in a remote monitoring model 
[33, 56]. Such supports must be considered for their scal-
ability in the context of large clinical trials. Further, other 
study- or participant-specific features such as physician-
driven recruitment, the inclusion of personalized feedback, 
and participants’ education level may have motivated partici-
pation and positively impacted acceptance and adherence.

In conclusion, this work has shown that a continuous, 
multi-sensor remote health monitoring approach is feasi-
ble and well tolerated by a cohort of persons living with 
CVD, AD/MCI, FTD, PD, or ALS. Ongoing work contin-
ues to focus on establishing the essential subset of sensors 
(type and wear location) and supporting data analytics to 
effectively describe behavioral, physiological and clinical 
characteristics relevant to persons with CVD or NDD, their 
care partner, and their clinicians [6, 63]. Remote monitoring 
technologies must also support the wearability and toler-
ance for use of more than a single device and provide access 
to unprocessed raw data, which will enable development 
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of new analytics to optimize outputs from a multi-sensor 
approach. The results of the present study provide impor-
tant consideration for the launch of larger remote monitoring 
studies across or within these populations, with future impli-
cations for clinical care and the ability to capture meaningful 
health outcomes in more ecologically valid settings.
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