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Abstract: Intestinal melatonin exerts diverse biological effects on the body. Our previous research
showed that the abundance of the butyrate-producing bacteria, Roseburia, is positively related to the
expression of colonic mucosal melatonin. However, the detailed relationship is unclear. Therefore,
we aimed to explore whether Roseburia regulates intestinal melatonin and its underlying mechanisms.
Male Sprague–Dawley germfree rats were orally administered with or without Roseburia hominis.
R. hominis treatment significantly increased the intestinal melatonin level. The concentrations of
propionate and butyrate in the intestinal contents were significantly elevated after gavage of R.
hominis. Propionate or butyrate treatment increased melatonin, 5-hydroxytryptamine (5-HT), ary-
lalkylamine N-acetyltransferase (AANAT), and phosphorylated cAMP-response element-binding
protein (p-CREB) levels. When pretreated with telotristat ethyl, the inhibitor of tryptophan hy-
droxylase (TPH), or siRNA of Aanat, or 666-15, i.e., an inhibitor of CREB, propionate, or butyrate,
could not promote melatonin production in the pheochromocytoma cell line BON-1. Metabolomics
analysis showed that propionate and butyrate stimulation regulated levels of some metabolites and
some metabolic pathways in BON-1 cell supernatants. In conclusion, propionate and butyrate, i.e.,
metabolites of R. hominis, can promote intestinal melatonin synthesis by increasing 5-HT levels and
promoting p-CREB-mediated Aanat transcription, thereby offering a potential target for ameliorating
intestinal diseases.
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1. Introduction

Melatonin is generally considered a pineal hormone that can maintain circadian
rhythms and regulate immune function. Melatonin is also distributed in the gastrointesti-
nal (GI) tract [1], fulfilling vital antioxidant and anti-inflammatory functions locally and
regulating gut motility. Melatonin supplementation alleviates the symptoms of digestive
disorders, such as irritable bowel syndrome (IBS) and ulcerative colitis [2]. However, aug-
mentation of the melatonin concentration in blood by oral administration may cause some
adverse effects, including sleepiness, nausea, dizziness, and headaches [3]. As melatonin is
a systemic hormone, it is desirable to find a way to locally induce melatonin synthesis to
avoid adverse effects or the risk of hormone disturbance, which occurs when it is used for
extended periods for the treatment of digestive disorders.

The intestinal microbiota contributes to colonic melatonin expression, as revealed in
our previous study [4]. Furthermore, the abundance of Roseburia, a butyrate-producing
genus, is positively related to colonic mucosal melatonin level [4]. Roseburia is Gram-
positive anaerobic bacteria, including five species: Roseburia intestinalis, R. hominis, R. inulin-
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ivorans, R. faecis, and R. cecicola. Short-chain fatty acids (SCFAs) are important metabolites
of Roseburia, derived from the bacterial fermentation of dietary fibers [5]. However, whether
Roseburia modulates intestinal melatonin expression and the underlying mechanisms re-
mains unclear. Gut melatonin is synthesized mainly by enterochromaffin cells (ECs) in
the GI tract, and its synthesis is influenced by its upstream product, 5-hydroxytryptamine
(5-HT). A recent study showed that indigenous spore-forming bacteria promote 5-HT
biosynthesis from colonic ECs. Furthermore, certain microbiota metabolites, such as propi-
onate and butyrate, could elevate 5-HT levels in chromaffin cell cultures [6]. These findings
imply that 5-HT plays an essential role in the effect of gut microbiota on melatonin. In addi-
tion, arylalkylamine N-acetyltransferase (AANAT) is a rate-limiting enzyme in melatonin
synthesis that notably regulates melatonin levels [7]. However, whether Roseburia could
regulate intestinal melatonin synthesis by elevating 5-HT production and/or promoting
Aanat transcription is ambiguous.

In this study, germfree rats and the EC model BON-1 were utilized to determine
the relationship between Roseburia and melatonin, as well as the specific mechanism
involving propionate, butyrate, 5-HT, and the phosphorylated cAMP-response element-
binding protein (p-CREB)-AANAT pathway. Investigating these aspects may provide a
new therapeutic strategy for IBS or inflammatory bowel syndrome.

2. Materials and Methods
2.1. Animals and Experimental Design

Male germfree Sprague–Dawley rats (7 weeks old) were obtained from the Depart-
ment of Laboratory Animal Science at Peking University Health Science Center, Beijing,
China. Germfree rats were housed in sterilized isolators and maintained under a 12-h
light/dark cycle (6 A.M. to 6 P.M.) at a constant temperature (23 ± 2 ◦C) and humidity
(63 ± 2%). Food and water were provided ad libitum. All animals were acclimatized to the
facility for 7 days before the experiment began. In the first experiment, germfree rats were
orally administered with Roseburia hominis (2× 109 CFU/day) or phosphate-buffered saline
(PBS) for 5 days (n = 6/group). R. hominis was prepared as previously described [8]. After
colonization for 14 days, the visceral sensitivity was assessed using abdominal withdrawal
reflex (AWR) score to colorectal distension as previously described [8]: 0, no behavioral
response; 1, brief head movement followed by immobility; 2, contraction of abdominal
muscles; 3, lifting of abdomen; and 4, body arching and lifting of pelvic structures. Then,
the rats were anesthetized and sacrificed by intraperitoneal injection of 1% pentobarbi-
tal sodium. The intestinal contents were collected for short-chain fatty acids (SCFAs)
analysis. The intestinal tissue was fixed in 10% buffered formalin for immunohistochem-
istry (IHC) staining. Serum was collected for melatonin measurements. In the second
experiment, germfree rats were orally administered sodium propionate (#P1880, Sigma-
Aldrich, St. Louis, MO, USA, 300 mg/kg/day, Group GP), sodium butyrate (#303410,
Sigma-Aldrich, 300 mg/kg/day, Group GB), or PBS (Group GF) of the same volume for
7 days (n = 6/group). Rats were anesthetized and sacrificed by intraperitoneal injection
of 1% pentobarbital sodium after gavage. Intestinal tissue was collected for IHC, Western
blotting, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain
reaction (qPCR). Serum was collected for melatonin measurements. All the animals fasted
overnight and were sacrificed from 9 A.M. to 12 P.M. All protocols were approved by the
Laboratory Animal Welfare Ethics branch of the Biomedical Ethics Committee of Peking
University (Approval No. LA2020509).

2.2. Targeted SCFAs Measurements

The SCFAs were extracted from the intestinal contents, according to the manufacturer’s
instructions (Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China), and assayed
using an 8890B-5977B gas chromatography-mass spectrometry detection system (Agilent
Technologies, Santa Clara, CA, USA) as previously described [9].
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2.3. Immunohistochemistry (IHC)

Distal ileum and colon tissues were embedded in paraffin and cut into 5-µm-thick
sections. After deparaffinization and rehydration, endogenous peroxidase was removed
with 3% hydrogen peroxide for 10 min. The sections were then incubated with primary
melatonin (1:200, #abx100179, Abbexa, Cambridge, UK) or 5-HT (1:100, #PAA808Ge01,
Cloud Clone, Wuhan, China) antibodies. The sections were washed with PBS and incubated
with a horseradish peroxidase (HRP)-conjugated secondary antibody (#PV6001, ZSGB-BIO,
Beijing, China). Images were captured using a NanoZoomer-SQ Digital Pathology scanner
(Hamamatsu Photonics, Hamamatsu City, Japan) and exported using NDP.view software
(version 2.6.8, Hamamatsu Photonics, Hamamatsu City, Japan). For the quantification
of melatonin and 5-HT levels, five fields were randomly selected from each slide at a
magnification of 400×. The number of immunoreactive cells was counted in every field,
and the density of immunoreactive cells was expressed as the average number of cells per
square millimeter of the mucosal epithelium.

2.4. Cell Culture

BON-1 cells were purchased from Shanghai Shun Ran Biotechnology Co., Ltd. (Shang-
hai, China), and cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12
(DMEM/F12) (HyClone, Logan, UT, USA) containing 10% fetal bovine serum (FBS, Gibco,
Grand Island, NY, USA) and 1% penicillin/streptomycin (Gibco) at 37 ◦C in a humidified
atmosphere of 5% CO2 [10]. BON-1 cells were seeded in six-well plates (1 × 106 cells/well)
and cultured without serum for 12 h before treatment. BON-1 cells were treated with
bacterial medium, R. hominis supernatant, PBS, sodium propionate (#P1880, Sigma Aldrich),
or sodium butyrate (#303410, Sigma Aldrich) for 24 h. The total protein and RNA and
supernatant were extracted for further analysis.

BON-1 cells were pretreated with telotristat ethyl (inhibitor of tryptophan hydroxylase,
#HY-13055A, MedChemExpress, Monmouth Junction, NJ, USA) and 666-15 (CREB inhibitor,
#HY-101120, MedChemExpress, Monmouth Junction, NJ, USA), followed by treatment
with sodium propionate and sodium butyrate [11]. BON-1 cells were transfected with
Aanat small interfering RNA (siRNA, #sc-61928, Santa Cruz, CA, USA) using a transfection
reagent (#301704, Qiagen, Hilden, Germany), according to the manufacturer’s instructions.
The cells were then treated with sodium propionate or sodium butyrate for another 24 h.
The total protein and supernatant were extracted for further detection.

2.5. ELISA

Intestinal tissue (100 mg) from rats was homogenized in ice-cold PBS (0.01 M, pH = 7.4).
The supernatant was collected after centrifugation at 3000 rpm for 20 min at 4 ◦C, and
the concentration of 5-HT was quantified using an ELISA kit (CEA808Ge, Cloud Clone,
Wuhan, China), according to the manufacturer’s recommendations. The 5-HT level in
BON-1 cell lysate was also detected using ELISA. The supernatant from BON-1 cells was
collected, and the concentration of melatonin was measured using an ELISA kit (E-EL-
H2016c, Elabscience, Wuhan, China). Absorbance was measured at 450 nm (Spark, Tecan,
Switzerland). All values were in the linear range, and readings were normalized to the
total protein content.

2.6. Serum Melatonin Measurements

Blood was withdrawn from the apex cordis of the rats after euthanasia. The super-
natant was collected after centrifugation at 3000 rpm for 10 min at 4 ◦C and stored at−80 ◦C
until analysis. High-performance liquid chromatography, coupled to tandem mass spec-
trometry (HPLC-MS/MS), was used to determine the melatonin concentrations according
to the manufacturer’s instructions.
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2.7. Western Blotting

Total protein was extracted from the intestinal tissue or BON-1 cells in radioimmuno-
precipitation assay (RIPA) extraction buffer mixed with a protease inhibitor cocktail, and
then centrifuged at 12,000 rpm at 4 ◦C for 10 min. Protein concentration was determined
using a bicinchoninic acid assay. Protein samples (60 µg) were separated using 12% sodium
dodecyl sulfate polyacrylamide gels and transferred onto nitrocellulose membranes. Mem-
branes were blocked with 5% (w/v) dried skim milk at 22 ◦C for 1 h, and then incubated
overnight at 4 ◦C with primary antibodies, including AANAT (1:1000, #ab3505, Abcam,
Cambridge, UK), CREB (1:1000, #9197, Cell Signaling Technology, Danvers, MA, USA),
phosphorylated CREB (p-CREB; Ser133, 1:1000, #9198, Cell Signaling Technology, Dan-
vers, MA, USA), and glyceraldehyde-3phosphate dehydrogenase (GAPDH, 1:1000, #5174,
Cell Signaling Technology, Danvers, MA, USA) antibodies. Subsequently, membranes
were incubated with the corresponding secondary HRP-conjugated antibodies for 1 h at
room temperature and then visualized using Immobilon Western Chemiluminescent HRP
Substrate (Millipore Corporation, Burlington, MA, USA). Blotting images were obtained
using a chemiluminescence detection system (Tanon, Shanghai, China) and quantified by
calculating the gray value of each band using ImageJ (version 1.52) software. The levels
were determined as the band intensity relative to that of GAPDH.

2.8. qPCR

Total RNA was extracted from the intestinal tissue or BON-1 cells using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. Comple-
mentary DNA was synthesized using a Reverse Transcription Kit (Tiangen, Beijing, China).
qPCR for Aanat and β-actin was performed using a Real-Time PCR Detection System
(QuantStudio5, Thermo Fisher Scientific, Waltham, MA, USA) using SYBR Green. Primer
sequences used for qPCR were as follows: forward Aanat, 5′-AAAGTACACTCAGGCACCA
ATGT-3′; reverse Aanat, 5′-GGGAACATAGCTGCTTTATTAGTGTCAG-3′; forward β-actin,
5′-GGGAAATCGTGCGTGACATT-3′; and reverse β-actin, 5′-GCGGCAGTGGCCATCTC-
3′. PCR amplifications were performed in a total volume of 20 µL containing Talent qPCR
PreMix (Tiangen, Beijing, China). The gene expression level was calculated using the
2−∆∆Ct method, and the relative Aanat mRNA level was normalized to that of β-actin.

2.9. Non-Target Metabolomics

BON-1 cell supernatant was acquired using an ultra-high-performance liquid
chromatography-mass spectrometry system following the manufacturer’s instructions.
Non-target metabolomics of the supernatant was performed as previously described [12].
The raw data were converted to the mzXML format using ProteoWizard, which was
developed using R and based on XCMS, for peak detection, extraction, alignment, and
integration. The Human Metabolome Database (HMDB) was then used for metabolite
annotation. The cutoff for annotation was set at 0.3.

2.10. Statistical Analysis

For parametric data, one-way analysis of variance (ANOVA) with Tukey’s post-hoc
test for two sides was performed when more than two groups were evaluated. An unpaired
Student’s t-test was used when there were two groups. For nonparametric data, a Kruskal–
Wallis ANOVA combined with post-hoc Dunn’s multiple comparison test for two sides was
performed when more than two groups were evaluated, and a Mann–Whitney test was
performed when there were two groups. Results are expressed as the mean ± standard
error of the mean (SEM). Differences between groups were considered significant at p < 0.05.
Statistical analyses were performed using GraphPad Prism software (version 8.0; GraphPad
Software Inc., San Diego, CA, USA).
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3. Results
3.1. R. Hominis Increased Melatonin Level in the Rat Intestine and BON-1 Cells

To determine the effect of R. hominis on intestinal melatonin, germfree rats were treated
with R. hominis or PBS. Oral administration of R. hominis at 2 × 109 CFU/day for 5 days
significantly increased the number of melatonin-positive cells in both the ileal and colonic
mucosa compared to that in the control group (p < 0.05, Figure 1B). When treated with 20%
and 50% proportions of R. hominis supernatant for 24 h, the concentration of melatonin in
BON-1 cell supernatant was significantly elevated compared to that in the control group, as
detected using ELISA (p < 0.05, Figure 1C). In addition, R. hominis administration increased
the concentrations of propionate and butyrate both in the cecum and colon contents, as
detected using targeted metabolomics (p < 0.05, Figure 1D). Meanwhile, other kinds of
SCFAs, including acetate, isobutyrate, and isovalerate, did not show significant variation
(Supplementary Figure S1).
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Figure 1. Roseburia hominis increased melatonin both in vivo and in vitro. (A) Schematic of the animal
experiments. (B) Representative images (left, 400×) and quantification of immunohistochemistry
(IHC) staining (right) for melatonin-positive cells in the ileal and colonic mucosa after R. hominis
(R.h) was administered to germfree rats (n = 6; scale bars: 50 µm). Arrows indicate melatonin-
positive cells according to the Mann–Whitney test. (C) Effects of different proportions (10%, 20%,
and 50%) of R.h culture supernatant on the melatonin concentration in BON-1 cell supernatant
detected using ELISA. Analysis was performed using one-way ANOVA with Tukey’s post-hoc test
(n = 6). (D) Concentrations of propionate and butyrate in intestinal contents detected using gas
chromatography–mass spectrometry detection system after gavage of R.h. Analysis was performed
using unpaired Student’s t-test (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. Propionate and Butyrate Increased Melatonin Level in the Rat Intestine and BON-1 Cells

To clarify the effects of propionate and butyrate produced by R. hominis on melatonin
levels, germfree rats and BON-1 cells were treated with propionate or butyrate. Oral ad-
ministration of sodium propionate (300 mg/kg/day) or sodium butyrate (300 mg/kg/day)
for 7 consecutive days significantly increased the density of melatonin-positive cells in
the ileal and colonic mucosa compared to that in the control group (p < 0.05, Figure 2B).
Propionate and butyrate treatment also improved the visceral hypersensitivity of germfree
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rats, and there is significant negative correlation between visceral sensitivity and intestinal
melatonin level (Supplementary Figure S2). Treatment of BON-1 cells with sodium propi-
onate (10 mM) or sodium butyrate (10 mM) increased the melatonin concentration in the
supernatant (p < 0.05, Figure 2C).
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Figure 2. Propionate and butyrate increased melatonin levels both in vivo and in vitro. (A) Schematic
of the animal experiments. (B) Representative images (left, 400×) and quantification of immunohis-
tochemistry (IHC) staining (right) for melatonin-positive cells in the ileal and colonic mucosa after
sodium propionate or sodium butyrate were administered to germfree rats (n = 6; scale bars: 50 µm).
Arrows indicate melatonin-positive cells. Analysis was performed using Kruskal–Wallis test with
Dunn’s multiple comparison post-hoc test. (C) Effects of sodium propionate (10 mM) or sodium
butyrate (10 mM) on the concentration of melatonin in BON-1 cell supernatant detected using ELISA.
Analysis was performed using one-way ANOVA with Tukey’s post-hoc test (n = 6). GF, germfree rats
receiving PBS gavage; GP, germfree rats receiving propionate gavage; GB, germfree rats receiving
butyrate gavage. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Propionate and Butyrate Increased Melatonin Level by Promoting 5-HT Production

To determine the mechanism by which propionate and butyrate increased intesti-
nal melatonin level, 5-HT levels were measured after treatment with propionate or bu-
tyrate. Oral administration of sodium propionate (300 mg/kg/day) or sodium butyrate
(300 mg/kg/day) for 7 days increased the number of 5-HT-positive cells in the ileal and
colonic mucosa, as detected using IHC staining (p < 0.05, Figure 3A). The same results
were obtained using ELISA (Figure 3B). When treated with sodium propionate (10 mM)
or sodium butyrate (10 mM) for 24 h, the 5-HT concentration in the BON-1 cell lysate
was significantly elevated compared with that in the control group, as detected using
ELISA (p < 0.05, Figure 3C). Telotristat ethyl is an inhibitor of tryptophan hydroxylase
(TPH), which is the rate-limiting enzyme in 5-HT biosynthesis [13]. Pretreatment with
telotristat ethyl (1 µM) for 2 h prevented the increase in 5-HT level caused by propionate or
butyrate administration (Figure 3C). Telotristat ethyl treatment also inhibited the increase
in melatonin levels (Figure 3D).
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(IHC) staining (right) for 5-HT-positive cells in the ileal and colonic mucosa after sodium propionate or
sodium butyrate were administered to germfree rats (n = 6; scale bars: 50 µm). Arrows indicate 5-HT-
positive cells. Analysis was performed using Kruskal–Wallis test with Dunn’s multiple comparison
post-hoc test. (B) Intestinal 5-HT concentrations detected using ELISA. Analysis was performed using
one-way ANOVA with Tukey’s post-hoc test (n = 6). (C) 5-HT concentration in BON-1 cell lysates
detected using ELISA. Analysis was performed using one-way ANOVA with Tukey’s post-hoc test
(n = 6). (D) Melatonin concentration in BON-1 cell supernatant after sodium propionate/sodium
butyrate (10 mM) treatment for 24 h with or without telotristat ethyl (TE, 1 µM) pretreatment for 2 h,
as detected using ELISA. Analysis was performed using one-way ANOVA with Tukey’s post-hoc test
(n = 6). GF, germfree rats receiving PBS gavage; GP, germfree rats receiving propionate gavage; GB,
germfree rats receiving butyrate gavage. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Propionate and Butyrate Increased Melatonin Level through the p-CREB-AANAT Pathway

Oral administration of sodium propionate (300 mg/kg/day) or sodium butyrate
(300 mg/kg/day) for 7 days significantly increased AANAT levels in rat intestinal tis-
sue, as detected using Western blotting (p < 0.05, Figure 4A). Consistently, treatment of
BON-1 cells with sodium propionate (10 mM) or sodium butyrate (10 mM) for 24 h sig-
nificantly increased the AANAT level following Western blotting and ELISA (p < 0.05,
Figure 4B,C). Besides, the promoting effect of propionate and butyrate on AANAT level is
in a time-dependent manner (Supplementary Figure S3). Pretreatment with small interfer-
ing RNA (siRNA) of Aanat reduced AANAT and melatonin levels in BON-1 cells (p < 0.05,
Figure 4B,C). Moreover, the Aanat mRNA level was notably elevated when treated with
propionate and butyrate, both in vivo and in vitro (p < 0.05, Figure 4D,E).
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Figure 4. Propionate and butyrate increased intestinal AANAT level in rats. (A) Representative
images (left) and quantification of intestinal AANAT level (right) detected using Western blotting
after administration of sodium propionate or sodium butyrate to germfree rats. Analysis was
performed using Brown–Forsythe and Welch ANOVA test with Tamhane’s T2 post-hoc test (n = 6).
(B) Representative images (above) and quantification of AANAT level (below) in BON-1 cells after
propionate/butyrate (10 mM) treatment for 24 h with or without Aanat siRNA treatment for 32 h.
Results were obtained using Western blotting and analyzed using one-way ANOVA with Tukey’s
post-hoc test. n = 6. (C) Melatonin concentration in BON-1 cell supernatant after propionate/butyrate
(10 mM) treatment for 24 h with or without Aanat siRNA treatment for 32 h. Results were detected
using ELISA and analyzed using one-way ANOVA with Tukey’s post-hoc test (n = 6). (D) Intestinal
Aanat mRNA expression normalized to β-actin expression after administration of sodium propionate
or sodium butyrate to germfree rats. Results were obtained using qPCR and analyzed using one-way
ANOVA with Tukey’s post-hoc test (n = 6). (E) Aanat mRNA expression normalized to β-actin
expression in BON-1 cells after treatment with propionate/butyrate (10 mM) for 24 h. Analysis was
performed using one-way ANOVA with Tukey’s post-hoc test (n = 6). GF, germfree rats receiving
PBS gavage; GP, germfree rats receiving propionate gavage; GB, germfree rats receiving butyrate
gavage. * p < 0.05, ** p < 0.01, *** p < 0.001.

Transcriptional activation of the Aanat gene is an important mechanism for the induc-
tion of melatonin biosynthesis. To identify candidates that regulate Aanat transcription, we
retrieved the potential transcription factors that could bind to the promoter region of the
Aanat gene from the TRANSFAC (version 7.0) database [14]. A list of transcription factors
was screened, as shown in Supplementary Table S1. In addition, related studies have
suggested that melatonin synthesis involves protein kinase A-dependent phosphorylation
of the transcription factor CREB and binding of p-CREB in the promoter region of the Aanat
gene [15]. The results showed that the germfree rats receiving propionate gavage (GP)
and germfree rats receiving butyrate gavage (GB) had higher p-CREB levels in the ileum
and colon tissues than the GF group (p < 0.05), while the CREB level remained relatively
unchanged (Figure 5A). When pretreated with the CREB inhibitor 666-15, AANAT level
showed no significant elevation after treatment with propionate or butyrate (Figure 5B).
Moreover, 666-15 also prevented the significant augmentation of melatonin resulting from
propionate and butyrate treatment (Figure 5C).
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Figure 5. Propionate and butyrate increased AANAT and melatonin levels mediated by p-CREB.
(A) Representative images (left) and quantification of intestinal p-CREB and CREB (right) levels
detected using Western blotting after administration of sodium propionate or sodium butyrate to
germfree rats (n = 6). (B) Representative images (left) and quantification of AANAT and p-CREB
(right) levels in BON-1 cells detected using Western blotting after propionate/butyrate (10 mM) treat-
ment for 24 h with or without 666-15 pretreatment (1µM) for 2 h (n = 6). (C) Melatonin concentration
in BON-1 cell supernatant detected using ELISA after propionate/butyrate (10 mM) treatment for
24 h with or without 666-15 pretreatment (1µM) for 2 h (n = 6). GF, germfree rats receiving PBS
gavage; GP, germfree rats receiving propionate gavage; GB, germfree rats receiving butyrate gavage;
Pro, propionate; But, butyrate. * p < 0.05, ** p < 0.01, *** p < 0.001, according to one-way ANOVA with
Tukey’s post-hoc test.

3.5. Propionate and Butyrate Modulated the Metabolites and Related Metabolic Pathways

All the metabolites detected in positive and negative ion modes were merged and
analyzed using SIMCA16.0.2 software. Principal component analysis (PCA) score plots
indicated that butyrate treatment significantly influenced the metabolic profiling compared
to the control group [R2X(cum) = 0.693], while the propionate group did not effectively
separate from the control group [R2X(cum) = 0.73] (Figure 6A). Orthogonal projections to
latent structure-discriminant analysis (OPLS-DA) with a better discriminative power than
that of PCA was performed to characterize the metabolic profiles based on class information.
OPLS-DA score plots showed clear clustering between the propionate group and control
group [R2X(cum) = 0.512, R2Y(cum) = 0.951, Q2(cum) = 0.252], as well as between the
butyrate group and control group [R2X(cum) = 0.477, R2Y(cum) = 0.944, Q2(cum) = 0.628]
(Figure 6B).
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group (left) and between the butyrate group and the control group (right). (B) Score plots of the
orthogonal projections to latent structure-discriminant analysis (OPLS-DA) model between the
propionate group and the control group (left) and between the butyrate group and the control group
(right). (C) Bubble plots of pathway analysis between the propionate group and the control group
(left) and between the butyrate group and the control group (right). (D) Correlation analysis between
levels of different metabolites and those of melatonin, AANAT, p-CREB, and 5-HT in the supernatant
of BON-1 cells. *, p < 0.05 and r ≥ 0.5; #, p < 0.05 and r < 0.5 (n = 6).

The differentially expressed metabolites were screened according to variable im-
portance in the projection (VIP) of the OPLS-DA model > 1 and p < 0.05. There were
43 compound IDs in the propionate group that were significantly different from those of
the control group. Thirty-one compound IDs in the propionate group were upregulated,
including hypoxanthine, pyruvic acid, D-alanine, and indole (Supplementary Table S2).
There were 40 compound IDs in the butyrate group that were significantly different from
those of the control group, and 10 compound IDs in the butyrate group were upregulated,
such as pyruvic acid, hypoxanthine, and inosine (Supplementary Table S3). Then, pathway
enrichment and topological analyses were performed based on differential metabolites in
the BON-1 cell supernatant. Compared to control group, the following pathways were
enriched in the propionate group, including amino acid metabolism pathways, such as
“valine, leucine, and isoleucine biosynthesis”, “glycine, serine, and threonine metabolism”,
and “tryptophan metabolism”; carbohydrate metabolism pathways, such as “citrate cycle”,
“pyruvate metabolism”, and “butanoate metabolism”; nucleotide metabolism pathways,
such as “purine metabolism”; and metabolism of other amino acids, such as “taurine
and hypotaurine metabolism” (Figure 6C and Supplementary Table S4). The following
pathways were enriched in the butyrate group: amino acid metabolism pathways, such as
“glycine, serine, and threonine metabolism” and “valine, leucine, and isoleucine biosynthe-
sis”; carbohydrate metabolism pathways, such as “butanoate metabolism” and “pyruvate
metabolism”; and metabolism of other amino acids, such as “taurine and hypotaurine
metabolism” (Figure 6C and Supplementary Table S5).

The relationships between metabolite levels and melatonin, AANAT, p-CREB, and
5-HT levels in the supernatant of BON-1 cells were analyzed. Correlation analysis demon-
strated that the levels of various metabolites were significantly correlated with the levels
of melatonin, AANAT, p-CREB, and 5-HT. Specifically, pyruvic acid was positively corre-
lated with melatonin, AANAT, p-CREB, and 5-HT; inosine was positively correlated with
melatonin, AANAT, and p-CREB; hypoxanthine and acetylcholine were positively corre-
lated with melatonin and AANAT; and indole was positively correlated with melatonin,
suggesting that these metabolites might promote melatonin synthesis (Figure 6D).

4. Discussion

In this study, we found that propionate and butyrate-producing bacteria, R. hominis,
induced melatonin synthesis both in the intestinal mucosa and BON-1 cells. The underlying
mechanisms involved promoting the 5-HT production and activating the p-CREB-AANAT
pathway through propionate and butyrate.

Gut melatonin has multiple effects on the GI tract. Melatonin is a scavenger of free
radicals and has antioxidant, immunomodulatory, and anti-inflammatory properties [16].
It can also regulate gastrointestinal motility and moderate visceral hypersensitivity [17].
When used in IBS treatment, melatonin shows the ability to improve abdominal pain and
patient quality of life [18]. Moreover, melatonin adjuvant treatment reduced the severity
of ulcerative colitis compared to a non-melatonin treatment group through exerting anti-
inflammatory effects [19]. In a sleep-deprived mouse model with colonic mucosal injury
and gut dysbiosis, melatonin supplementation improved mucosal injury and dysbiosis
of the microbiota in the colon [20]. Our previous research revealed that melatonin cell
density was positively correlated with the sensation thresholds of the urge to defecate and
maximize tolerable distension in IBS-D patients, suggesting that increased melatonin levels
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may be a countermeasure for the development of IBS [4]. However, exogenous melatonin
treatment for an extended period might cause adverse effects such as headache, rash, and
nightmares [18]. Furthermore, previous studies have paid little attention to the effect of
gut-derived melatonin on digestive diseases.

Melatonin and gut microbiota interact closely with each other. A study showed that
melatonin levels significantly decreased in the sleep disorder group among children with
autism spectrum disorder and was positively associated with the abundance of butyrate-
producing bacteria, Faecalibacterium and Agathobacter. These previous findings imply that
the reduction in gut melatonin levels might be elicited by a decrease in butyrate levels,
which then potentially aggravates sleep problems and core autism symptoms in children
with autism [21]. Therefore, finding a way to increase gut melatonin level might effectively
improve sleep problems and some mental symptoms.

Gut melatonin levels can be influenced by food intake [7,22]. After consuming
melatonin-rich foods, dietary melatonin may contribute to serum melatonin concentra-
tion [7]. In this study, germfree rats received the same kind of feed; thus, the influence of
dietary factors on gut melatonin or microbiota could be excluded. In addition, no microor-
ganisms were colonized in the germfree rats, which could eliminate the interference of
other factors to the greatest extent possible. Therefore, germfree animals are ideal models
for research on the relationship between the microbiota and the host. Our previous study
illustrated that intestinal microbiota plays a pivotal role in colonic melatonin expression,
and Roseburia abundance is positively related to the level of colonic mucosal melatonin [4].
In this study, we further confirmed that oral administration of R. hominis significantly
increased intestinal melatonin levels, but not serum melatonin levels, in germfree rats
(Figure 1 and Supplementary Figure S4). This finding suggests that treating germfree rats
with a single strain, R. hominis, was insufficient to affect systemic melatonin levels.

R. hominis is a representative Roseburia species. Modification in Roseburia abundance
may affect various metabolic pathways and is associated with several diseases, including
IBS, ulcerative colitis, obesity, type 2 diabetes, nervous system disorders, and allergies [5,23].
Diets that are high in fermentable carbohydrates increase the relative abundance of Rose-
buria, which are capable of degrading polysaccharides, oligosaccharides, and sugars [24],
indicating that fermentable carbohydrates might elevate the intestinal melatonin through
increasing the abundance of Roseburia. Roseburia is characterized by SCFAs production,
which can affect the intestinal epithelial barrier and regulate the function of innate immune
cells through anti-inflammatory properties [25]. Our previous study suggested that gav-
age of R. hominis prevented stressed rats from developing visceral hypersensitivity and
increased the propionate and butyrate levels in cecal contents [8]. In this study, SCFAs
levels were measured in the intestinal contents after R. hominis treatment; thus, we found
that propionate and butyrate levels significantly increased in both the cecum and colon
(Figure 1). Some studies have demonstrated the promotional effects of SCFAs on intestinal
hormone production such as 5-HT synthesized by ECs [6] and glucagon-like peptide-1
synthesized by L cells [26]. The above studies suggest that SCFAs might be key factors in
the interactions between Roseburia and gut melatonin.

We further confirmed that both propionate and butyrate increased intestinal melatonin
levels in germfree rats (Figure 2). Although propionate is less frequently studied compared
to butyrate, it has some distinct health-promoting properties, such as lowering lipogenesis
and serum cholesterol levels as well as anticarcinogenic effects [27]. Additionally, both
propionate and butyrate can serve as inhibitors of histone deacetylases and can modulate
gene expression through epigenetic regulation [28]. In this study, the distinction between
the effects of propionate and butyrate on melatonin was not significant, indicating that
propionate and butyrate might play a similar role in promoting melatonin synthesis.

An important upstream product in melatonin synthesis is 5-HT. A recent study showed
that 5-HT levels decreased in germfree mice compared to those in SPF controls. The 5-
HT level is elevated after exposure to bacterial metabolites, such as propionate and bu-
tyrate [6,29]. Melatonin and 5-HT are mainly synthesized by ECs. We confirmed that
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propionate and butyrate significantly increased the intestinal 5-HT and melatonin lev-
els. Moreover, in cell experiments, pretreatment with the TPH inhibitor significantly
reduced the promotional effect of propionate and butyrate on melatonin levels, sug-
gesting that propionate and butyrate regulate melatonin synthesis by elevating 5-HT
levels (Figure 3). Metabolomics analysis showed that propionate increased the indole
level in BON-1 cell supernatant, and indole level was positively related to melatonin
levels (Figure 6). Both 5-HT and melatonin are derivatives of indole; they are involved in
the tryptophan metabolism pathway, which was enriched in the propionate group. There-
fore, propionate might increase melatonin synthesis by activating tryptophan metabolism,
which requires further verification.

Some researchers have reported the relationship between butyrate and melatonin
synthesis. Baumann et al. [30] found that supplementation with sodium butyrate improved
gut melatonin synthesis by elevating hydroxyindole-O-methyltransferase (an enzyme of
melatonin synthesis) levels in a nonalcoholic steatohepatitis mouse model. Another study
found that treatment with sodium butyrate increased the melatonin level in duodenal
tissue and Caco-2 cells in a dose- and time-dependent manner [31]. AANAT is a vital rate-
limiting enzyme in melatonin biosynthesis. Therefore, we screened a list of transcription
factors for Aanat. In addition, related studies have suggested that CREB is an important
transcription factor and that its phosphorylation could regulate Aanat expression, leading
to the activation of melatonin synthesis [17]. A study showed that colonization of gut
microbiota in germfree mice caused the level of CREB to increase and that of p-CREB to
decrease in the hippocampus, suggesting an important role of microbiota in modulating
CREB expression and relevant signaling [32]. The novel probiotic Bifidobacterium longum
subsp. infantis strain CCFM687 significantly upregulated CREB gene expression in the
prefrontal cortex of the brain in a chronic stress-induced depression mouse model [33].
According to our results, propionate and butyrate treatment significantly increased the
levels of AANAT and p-CREB both in vivo and in vitro (Figures 4 and 5). Furthermore,
pretreatment of BON-1 cells with Aanat siRNA or p-CREB inhibitor before treatment with
propionate or butyrate led to a significant reduction in the concentration of melatonin
in the cell supernatant. This finding demonstrates that propionate and butyrate regulate
melatonin synthesis by activating the p-CREB-AANAT pathway. Metabolomics analysis
demonstrated that pyruvic acid levels were significantly elevated after treatment with
propionate or butyrate in BON-1 cells. Furthermore, pyruvic acid levels were positively
related to melatonin, AANAT, p-CREB, and 5-HT levels. Pyruvic acid participates in taurine
metabolism, which was enriched in both propionate and butyrate groups (Figure 6). A
previous study found that taurine supplementation significantly increased the p-CREB level
in the hippocampus and improved the depressive behaviors of rats [34], suggesting that
propionate and butyrate might activate p-CREB-AANAT signaling and promote melatonin
synthesis by enhancing taurine metabolism. In addition, butyrate treatment significantly
increased the inosine level in the BON-1 cell supernatant. Animal experiments have
reported that inosine injection significantly increases p-CREB levels in the hippocampus and
prefrontal cortex of rats [35]. The correlation analysis demonstrated a positive relationship
between inosine level and melatonin, AANAT, and p-CREB levels, suggesting that inosine
might promote melatonin synthesis by increasing p-CREB and AANAT levels, which
requires further investigation (Figure 7). Other studies have reported potential mechanisms
between butyrate and CREB. Butyrate was found to upregulate phosphatidylinositol 3-
kinase (PI3K) expression, which in turn enhanced the phosphorylation of its downstream
effector, CREB, in BV-2 cells (a murine microglial cell line) owing to the role of histone
modification of butyrate [36]. In another study, butyrate increased cAMP levels and
PKA activity and induced CREB phosphorylation in Caco-2 cells through increased ATP
production, suggesting that butyrate might promote AANAT and melatonin synthesis by
activating cAMP-PKA-CREB signaling, which requires further research [37].
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Figure 7. Potential mechanisms of Roseburia hominis in intestinal melatonin synthesis.

5. Couclusions

In conclusion, R. hominis increased intestinal melatonin synthesis through its metabo-
lites, propionate and butyrate. The underlying mechanism was that propionate and bu-
tyrate promoted 5-HT synthesis and activated the p-CREB-AANAT pathway. Our study
provides novel evidence that microbiota intervention could be a potential therapeutic strat-
egy for some intestinal diseases, such as IBS and inflammatory bowel disease, by increasing
intestinal melatonin levels.
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