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Abstract: High centrifugal acceleration and throughput rates of tubular centrifuges enable the solid–
liquid size separation and fractionation of nanoparticles on a bench scale. Nowadays, advantageous
product properties are defined by precise specifications regarding particle size and material com-
position. Hence, there is a demand for innovative and efficient downstream processing of complex
particle suspensions. With this type of centrifuge working in a semi-continuous mode, an online ob-
servation of the separation quality is needed for optimization purposes. To analyze the composition
of fines downstream of the centrifuge, a UV/vis soft sensor is developed to monitor the sorting of
polymer and metal oxide nanoparticles by their size and density. By spectroscopic multi-component
analysis, a measured UV/vis signal is translated into a model based prediction of the relative solids
volume fraction of the fines. High signal stability and an adaptive but mandatory calibration routine
enable the presented setup to accurately predict the product’s composition at variable operating
conditions. It is outlined how this software-based UV/vis sensor can be utilized effectively for chal-
lenging real-time process analytics in multi-component suspension processing. The setup provides
insight into the underlying process dynamics and assists in optimizing the outcome of separation
tasks on the nanoscale.

Keywords: solid–liquid separation; multidimensional particle features; tubular centrifuge; process
monitoring; soft sensor; UV/vis; chemometrics

1. Introduction

Separation and sorting of submicron- and nanosized particulates have received a
lot of research attention in recent years. Elaborate synthesis [1–3] and mechanical formu-
lation strategies [4,5] in the liquid phase are able to produce well defined nanoparticles
(NPs) applicable in, for example, the field of biomedicine [6–9], catalysis [10,11] and elec-
tronics [12–14]. Other strategies even pursue their usage as building blocks for novel
materials [15–17].

Their advantageous properties are often tied to a specific size, shape or composition
with low tolerance concerning polydispersity [18–25]. Hence, manufacturing processes
commonly require subsequent purification steps like classification (sorting by size) or frac-
tionation (sorting by other parameters than size) either to adjust a key property distribution
or to isolate a specific fraction from by-products or pollutants. One of the most important
unit operations in colloidal science is centrifugation of NPs in a lower-density liquid. High
centrifugal forces accelerate the particles movement along a radial axis, which is, in turn,
dependent on the NP material, size and shape. Remarkable separation qualities have been
recorded in the literature as a result of using advanced methods such as density gradient
centrifugation [26–29]. Disadvantages of these single batch procedures, however, are limi-
tations in large scale application as well as the fact that they sacrifice high throughput and
cost efficiency for product purity in small batch sizes [30–32].
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The design of tubular centrifuges combines a semi-continuous operation with high
rotor speeds enabling purification and screening processes of submicron and nanosized par-
ticles on a bench scale [33–38]. Despite an enhanced suspension processing rate, continuous
sediment build-up inside the rotor leads to a decrease in separation efficiency and product
quality over time. Hence, purposeful process monitoring and control of the centrifuges
operating parameters is required. The study carried out by Konrath et al. [39] revealed
that a turbidity measurement is sufficient for the univariate concentration monitoring of
a single-component in nanoparticle classification resulting in the sought-out consistency
in cut size. The question arises whether this principle can be extended to more complex
fractionation tasks.

In general, separation monitoring in semi-continuous processes seeks to evaluate the
product properties and quality efficiently. Consequently, the mass of individual species
and their particle size distribution (PSD) are simultaneously considered as target variables,
helping to identify and guarantee a certain process outcome [40]. In a best case scenario,
this valuable information is derived in situ from process data during particle processing
as opposed to a costly and delayed laboratory analysis. Data-driven soft sensors offer a
sophisticated approach to target quantity monitoring using historical process data and
regression algorithms. Their real-time processing of plant data (temperature, pressure,
turbidity, etc.) allows them to be tailored reliably towards a given process condition [41,42].
However, regarding the above-mentioned analysis principles based on light scattering in a
turbidity measurement, it is difficult to assign process data to single constituents sharing
the same properties on a chemical level or the nanoscale. In other words, implementation
of a multivariate approach is needed to ensure constant separation quality. Ample evidence
exists to support the hypothesis that multi-wavelength UV/vis spectroscopy is suitable
for particle concentration monitoring in solid–liquid dispersion both ex situ [43–46] and in
situ [47–51]. Previous research in the field of semi-continuous separation did not emphasize
the importance of an elaborate technique to monitor the suspension composition but rather
focused on the total amount of solids (TAS) in the apparatus downstream [39,52].

In light of this, the aim of this study is twofold. The first is to address the issue of con-
tinuous composition monitoring in tubular centrifuges by establishing a working UV/vis
soft sensor located downstream. Here, wet dispersions of polydisperse products and their
mixtures function as model systems. The second is to provide detailed information on the
inferential model structure combining spectroscopic data preparation, feature selection,
training and validation procedures in order to perform accurate predictions on suspension
composition based on multi-wavelength extinction data measured in real-time during
classification or fractionation.

This paper is structured into several parts. Section 2 first outlines the theoretical
background of both separation in tubular centrifuges and spectroscopic multi-component
analysis. Afterward, Section 3 provides detailed information on the process layout, the
model particle systems and the underlying software structure of the sensor. In Section 4,
calibration data set generation and a quality assessment of the incorporated regression
model is presented. Finally, the prediction algorithm is applied in single-component
classification and multi-component fractionation monitoring. The study shows that with
a carefully supervised soft sensor design, continuous and quantitative analysis of the
product’s material composition in the centrifuge overflow is feasible.

2. Theory
2.1. Fractionation of Nanoparticles in Tubular Centrifuges

A smooth, dispersed solid matter in creeping motion inside a tubular centrifuge
experiences mass and frictional forces as it settles along the radial and axial coordinates
inside a fluid reservoir. The suspension is fed into the centrifuge rotor with a constant
volumetric flow rate V̇f. By assuming plug flow, a particles residence time

tres =
V
V̇f

=
π ·

(
r2

b − r2
w
)
· l

V̇f
(1)
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traveling a distance l inside the centrifuge is altered by the liquid throughput V̇f and
the available surface area A = π ·

(
r2

b − r2
w
)

of the formed liquid pool. A graphical
representation of this cross section and two exemplary settling paths are shown on the
left hand side in Figure 1. The tubes length L, wall rb and weir radius rw constitute the
geometric boundaries during separation.

ω

Suspension

L

rb

rw

Inlet

Sediment
settling path

Overflow

Material 1 Material 2

l
Figure 1. Schematic view of a tubular centrifuge rotor illustrating the separation zone with its length L, exemplary settling
paths of two suspended materials (left) and an axial cross section (right).

A second process parameter denoted as the centrifugal number C = ω2·r
g indicates

the amplified gravitational field strength and is calculated with the angular velocity of the
rotor ω, a reference radius r and the gravitational constant g. In the following, the wall
radius rb is used to calculate C. For uncharged, spherical colloids in an infinitely diluted
suspension with no solid–liquid or solid–solid interactions, the state of force equilibrium
between drag, buoyancy, and centrifugal force yields

uP =
x2

P · (ρP − ρf) · C · g
18 · ηf

, (2)

an expression for the sedimentation velocity along the radial axis valid at sufficiently low
Reynolds numbers (ReP � 1). Particles with small diameters xP and a low solid density ρP
traverse a fluid with viscosity ηf slower, whereas larger or heavier particles can reach the
rotor wall faster. Integrating the Stokes settling velocity (Equation (2)) over the liquid pond
depth results in an expression for the settling time tsed of a particle. Substituting tres with
tsed in Equation (1) leads to an approximated settling distance

l =
rb · ln

(
rb
rw

)
· 18ηf · V̇f

π
(
r2

b − r2
w
)
· x2

P · (ρP − ρf) · C · g
(3)

for each particle in a collective where density and size might be distributed over a certain
range. Therefore, fractions with sufficiently low settling rates are transported beyond the
rotor weir since l = f (xP, ρP, . . . ) ≥ L. Note that Equation (3) depicts the process in a
streamlined manner because it is, in addition to the previous mentioned assumptions,
based on the simplification that every particle is introduced at the inlets liquid surface.
Moreover, the fluid is considered pre-accelerated in the inlet zone and radial turbulent
back mixing is also neglected. Nonetheless, Equation (3) clarifies important influencing
parameters of nanoparticle fractionation on the basis of which the results of this paper
are discussed.

2.2. Spectroscopic Multi-Component Analysis

Originated in the field of analytical chemistry, spectroscopic model approaches are
used to correlate an optical signal with either chemical or physical properties of a sample.
In UV/vis spectroscopy, the true numerical output of a hardware sensor, analyzing a
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suspension where n dispersed components are embedded in a nonabsorbing medium, is
the extinction

Eλ = log
(

I0

I

)
λ

=
d

ln(10)
·∑

n
αn,λ. (4)

It is defined by the measurable ratio of light intensity before (I0) and after the sample
(I) considering that monochromatic light in the wavelength range of 200 nm ≤ λ ≤ 800 nm
passes through a layer with thickness d containing homogeneously distributed particles [53].
Each suspended material with its respective volume fraction φn and PSD contributes to the
attenuation by absorption and scattering phenomena. In a generalized approximation, an
effective extinction cross section per unit volume CV,n,λ captures the physical and chemical
properties of the bulk resulting in a unique attenuation coefficient

αn,λ = φn · CV,n,λ (5)

for every nth component [54]. Substituting αn,λ in Equation (4) expresses the linear change
in extinction

Eλ = ∑
n

(
φn

d · CV,n,λ

ln(10)

)
= ∑

n
(φn kn) (6)

with increasing or decreasing φn, assuming otherwise constant optical properties of the bulk
suspension. Expanding Equation (6) to p analytic wavelengths enables the determination
of n concentrations in multi-component systems with one spectrum. However, this requires
knowledge of a corresponding set of extinction coefficients kλ,n, which are not directly
specifiable for arbitrary suspensions. Hence, multivariate regression models are used in a
practical environment to estimate these proportionality factors by conducting a calibration
procedure. The theoretical background of practical spectroscopic multi-component analysis
summarized below is covered in detail in the literature [55,56]. Here, an inverse calibration
is proposed in which the concentrations are calibrated to the extinction at several wave-
lengths. In this approach, the spectroscopic information Eλ in the evaluated λ-range lose
their theoretical background, but the statistics remain present. This enables the practical
construction of regression models, which describe the relationship between the targeted
concentration of a sample and its unique UV/vis spectrum.

The general concept is as follows: spectroscopic extinction data of m calibration standards
at p wavelengths containing n different solids are structured in a (m× p + 1)-dimensional
matrix X. To complete the system of linear equations, the (p + 1×m)-dimensional coeffi-
cient matrix β is multiplied with X to receive an expression for the (m× n)-dimensional
target matrix

Y = Xβ (7)

here shown in matrix notation. Note that a nonzero intercept fit requires the addition
of vector u = [1, 1, . . . , 1] with size (1× p) to the extinction matrix and an extra column
of regression parameters in β. During calibration, each individual extinction spectrum
X =

[
E1m, . . . , Epm

]T is labeled with the known target concentrations Y = [φm1, . . . , φmn]
T .

Using the generalized least squares (OLS) approach, the best possible solution for β in
overdetermined systems (p > n) is given by

β =
(

XTX
)−1

XTY (8)

with XT being the pseudo-inverse of extinction matrix X. A quantitative prediction of the
concentration vector Ŷ =

[
φ̂1, . . . , φ̂n

]T of a single new sample is performed by the matrix

multiplication of the corresponding spectrum X̂ =
[
Ê1, . . . , Êp

]T and the converged values
in β:

Ŷ = X̂β. (9)
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3. Materials and Methods
3.1. Experimental Setup

The following section describes the experimental setup. Both single-component and
mixed suspensions of a light and heavy particle system were processed in a tubular
centrifuge in order to investigate the soft sensors efficiency by determining the particle
concentration at the overflow weir. First, we present all substances including their physical
properties and the preparation. Then the process layout and experimental procedure will
be explained in detail. The last subsection will elaborate on specific quantification methods
used to evaluate the separation process.

3.1.1. Particle Systems

Two materials were considered for the continuous evaluation of separation efficiency
in multi-component density fractionation. The first experimental product is zinc oxide
(ZnO) (Merck KGaA, Darmstadt, Germany), dispersed in demineralized water. The solids’
density is 5610 kg/m³. It crystallizes in the wurtzite structure and small particles appear
white due to refraction of the incident light. With its unique optical and electrical proper-
ties, the semiconductor ZnO is used in the fabrication process of solar cells, gas sensors
and other photo-electronic or acousto-optic devices [57–59]. A listing of further known
applications, for example, its use as a thermal-conductive filler in the rubber industry
or as a UV-radiation absorbent added in pharmaceutical and cosmetic products, can be
found in this overview [60]. Prepared in its initial suspension, the primary particles have a
diameter of roughly 40 nm, are unstable and tend to form aggregates and agglomerates.
Breakage of the agglomerates was achieved with a Sonifier 450D, manufactured by Branson
Ultrasonics Corporation. After dilution with demineralized water, a two liter suspension
batch was pumped through a cross flow cell. The setup enabled continuous sonification
of the ZnO clusters. After two passes, the concentrated suspension was stabilized with
0.1 mM sodium hexametaphosphate (Na6P6O18) (Sigma-Aldrich, St. Louis, MO, USA) to
inhibit re-agglomeration. The concentration of stabilizing agent was kept constant during
consecutive dilutions in the feed preparation process. The second material is polymethyl-
methacrylate (PMMA) with a density of 1193 kg/m³. The spherical acrylic glass particles
were harvested as a side product in the PLEXIGLAS® production (Evonik Industries AG,
Hanau, Germany) and dispersed in demineralized water with a high solids content up
to 10 v%. Due to their low density and spherical shape, these nanoparticles are a suitable
model system for biological materials such as cells, viruses and small bacteria [33]. As
with the ZnO suspensions, PMMA feed and mixtures were prepared with 0.1 mM sodium
hexametaphosphate. The morphology of both particle systems is further elucidated by
scanning electron microscopy (SEM) analysis given as supplementary information (SI).
Moreover, suspension stability is also addressed and listed as SI (Supplementary Materials).

The volume weighted PSD of both materials shows Figure 2. Particle size was mea-
sured by a CPS 24,000 disk centrifuge (CPS Instruments Inc., Prairieville, LA, USA).

After pre-calculation of the equivalent Stokes diameter xP, the analytical centrifuge
software translates a measured extinction at λ = 470 nm into a relative weight of individual
size fractions µ(xP) using Mie’s theory [61]. The sample is injected into a density gradient
inside a rotating disk. This gradient stabilizes the sedimentation as different particle
fractions travel at their respective settling speeds. Near the disks bottom, the laser measures
a temporal change in attenuation and subsequently calculates the particle concentration.
A resulting distribution of relative weight µ(xP) per particle size class is then used to
approximate the sample’s PSD. Key assumptions, however, include that all particles are
spheres and have a uniform, constant density and a defined refractive index. Reviewing
the distribution of both feed materials shows that the mean particle diameter is nearly
identical. In direct comparison, the ZnO particles have a broader distribution with higher
proportions of both fine and coarser particles. This can be explained with the above-
mentioned, initiatory de-agglomeration where agglomerates are broken down into primary
particles and small aggregates of different size. The distribution of PMMA is narrow and
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particles do not tend to form agglomerates. The preliminary suspension treatment served
the purpose of ensuring that both the light and heavy material are in a similar size range.

Figure 2. Particle size distribution of single-component suspensions measured with an analytical
disk centrifuge.

3.1.2. Process Layout

The experimental setup (Figure 3) includes a Z11-type tubular centrifuge manufac-
tured by Carl Padberg Zentrifugenbau GmbH (CEPA) (Lahr, Germany). The rotor is
operable up to a centrifugal number of C = 70,000, which corresponds to a maximum rotor
speed of 53,400 min−1. The filling volume of the liquid pond is about 250 mL. Particle
separation proceeds according to the principle shown in Figure 1. During operation, an ec-
centric screw conveyor (NETZSCH Pumpen and Systeme GmbH, Waldkraiburg, Germany)
pumps the feed suspension with a constant volumetric flow rate of 100 mL min−1 into the
separation zone. A stirred tank contained up to 30 L of pretreated suspension.

Feed suspension

Soft sensor

Centrifuge

Bubble trap

Sampling
Separation
monitoring

t
P

Model UV/vis

Waste

Figure 3. Schematic flow sheet of the monitored separation process.

The separated fine fraction passes over the overflow weir into a collection tray and is
ejected irregularly into the process downstream. A bubble trap separates the suspension–
air mixture into a product and waste stream. The fine material, freed from micron sized
bubbles, is fed into the UV/vis hardware sensor with a peristaltic pump and a volumetric
flow rate of 60 mL min−1. Sampling takes place at the sensor outlet with no dead time in
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relation to spectral data acquisition. The sensor hardware (Ocean Insight former Ocean
Optics, Orlando, FL, USA) used to enable high-speed multi-wavelength extinction mea-
surements consists of a Flame S-XR1 UV/vis spectrometer, a deuterium-halogen DH-2000
light source and a set of optical fibers, which guide the light to both a cross flow cell and
back to the detector.

Between two fused silica windows, monochromatic light passes a one millimeter thick
suspension layer and becomes attenuated by the excitation of molecules and scattering
phenomena induced by dispersed particles. The schematic structure of the sensor is shown
in (Figure 4b). Every 400 ms one spectrum is recorded and locally saved as a text file.
The extinction Eλ is measured in a wavelength range of 200 nm ≤ λ ≤ 800 nm. Each
measurement can be assigned to a process time outlining the change in extinction at several
wavelengths. Regarding sensor calibration with samples of known concentration, the
hardware setup is slightly altered, as outlined in Figure 4a. Here, dispersion is continuously
stirred and cycled through the cross flow cell. A pre-calculated and gradual dilution with
demineralized water or suspension in multiple steps allows a time efficient acquisition of
calibration data sets. This procedure is described more thoroughly in the supplementary
material of this paper.

from
overflow

D

step 1
step 2
⁞

step i
D

Sampling

peristaltic pump light source

D

detector bubble trap UV/vis cross flow cell

.txt
data

export .txt
data

export

(b)(a)

Figure 4. Illustration of the calibration setup (a) and the experimental setup (b) of the hardware sensor. Components are depicted and
named in the bottom legend.

3.1.3. Separation Efficiency Evaluation

When sorting by size and density, two factors are decisive for separation characteriza-
tion. First, material composition in feed and overflow must be determined efficiently in
order to monitor the selectivity in material separation during semi-continuous centrifu-
gation. Given a mixed nanoparticle dispersion containing n different solids, the specific
product loss

Pn =
φn,weir

φn,feed
(10)

of the nth substance is defined as the portion of their respective content in the weir and feed
stream. If no deposition of solids occurs at fixed process conditions

(
C, V̇f

)
, the specific

product loss is unity. Depending on the materials density and size, its value decreases
if the considered fractions are separated to a larger extend. In the context of this work,
the solids volume fraction of individual components was extracted by either a sampling
procedure followed by an invasive offline analysis or with the presented online technique
involving a non-invasive UV/vis soft sensor trained with calibration data. In the case
of one-component systems (n = 1), a fixed volume of multiple suspension samples are
dried and weighted in order to determine the solids volume fraction. This can be done for
both PMMA and ZnO after sampling at different process times. Note that the weighted
dry matter was corrected for the amount of stabilizer that remains in the dried sample.
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Regarding mixtures of both solids (n = 2), only the total solid mass – removed – can be
evaluated with this technique. In order to infer the proportional mass of both PMMA
and ZnO after separation, an inductively coupled plasma optical emission spectrometry
(ICP-OES) analysis was carried out. The analytical technique measured the content of
pure zinc in each sample, which allowed a stoichiometric approximation of the zinc oxide
concentration. Since the total amount of solids (TAS) mTAS is composed of zinc oxide and
PMMA under exclusion of the stabilizing agents mass, the nanoplastic content can be
quantified with the closing condition as follows:

mPMMA = mTAS −mZnO. (11)

ICP-OES data used for the practical estimation of zinc oxide mass are available as SI
(Supplementary Materials).

Besides the holistic contemplation of material separation, the grade efficiency

Tn(xP) = 1− µn,weir(xP)

µn,feed(xP)
(12)

of component n is the second quantity to help evaluate the density fractionation experi-
ments. The separation probability is calculated by the ratio of material specific relative mass
µn per particle size xP in weir and feed samples. In regard to the described measurement
principles of the CPS disk centrifuge it was not possible to measure the relative mass of
both dispersed materials at the same time. In a preliminary experiment it was observed
that ZnO can be successfully stabilized by sodium hexametaphosphate. Moreover, the
preliminary examination revealed that a further increase in the stabilizer concentration
to 4.5 mM resulted in the complete dissolution of the ZnO particles. Consequently, the
samples turbidity vanished and the corresponding extinction spectrum was congruent
with the measured background of demineralized water. Crucially, the PMMA NPs are
not affected by the increased concentration of the stabilizing agent. Therefore, sodium
hexametaphosphate was added to a mixed suspension before analyzing it in the CPS disk
centrifuge. The resulting dissolution of ZnO NPs enables an interference-free measurement
of the PSD and, therefore, the grade efficiency of the suspended polymer.

3.2. Soft Sensor Setup

Key methodologies and guidelines regarding the construction, diagnostic and main-
tenance of soft sensors that perform regression tasks are listed in two review articles of
Kadlec et al. [41] and Souza et al. [42]. Drawing from their given overview and examples,
this section will elaborate on the structure of the developed OLS-based soft sensor written
in the Python 3 programming language. The software consists of three main parts: data
pre-processing, model diagnostic and application. A detailed sequence of performed op-
erations and their description is explained in the following. For basic data manipulation
and mathematical operations on vectors and matrices, the array programming package
NumPy [62] was used. Subroutines regarding calibration data analysis and regression
tasks are implemented by the application programming interface (API) of the machine
learning library scikit-learn [63].

3.2.1. Data Pre-Processing

The first input of the model design pipeline is a calibration data set recorded in the
setup shown in Figure 4a. It consists of a so-called design matrix X with the dimensions
m× p containing only raw extinction data. As described in Section 2.2, there are m calibra-
tion samples and p wavelength dependent extinction values in one spectrum. Additionally,
a corresponding variable matrix Y with size m× n is filled with the concentration informa-
tion φn of n samples. The strategy behind this pre-processing step was to reduce the size of
data matrix X while decreasing the model’s prediction error on independent data at the
same time. In literature, this process is referred to as feature selection and seeks to find the
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most relevant variables in X with the help of a filter method. For this study, a univariate
mutual information (MI) statistic was chosen and implemented via the scikit-learn API. It
computes the relatedness between each individual signal Xp =

[
Ep1, Ep2, . . . , Epm

]T and
response Yn = [φn1, φn2, . . . , φnm]T column-wise with a nearest neighbor method [64]. The
algorithm thus points to those wavelengths that are most likely to increase the correlation
between the measured data and the target variable, quantifying it with a dimensionless MI
index. In light of this, data reduction is performed manually by discarding wavelengths
with low MI values, generating an adjusted matrix X with size m× d. To justify this selec-
tion, the model is then evaluated based on an intrinsic cross validation method described
in the following section.

3.2.2. Model Diagnostic and Application

The theoretical background given in Section 2.2 established a linear dependence of the
measured extinction and the solids volume fraction, which supports the implementation of
a straightforward multiple linear regression (MLR) model, solved by the OLS algorithm.
Prior to its application in a separation monitoring scenario, an error-estimation technique
is needed to determine the intrinsic model quality. In this study, a simple leave-one-out
(LOO) cross validation method was pursued. Calibration samples with even index numbers
i = 0, 2, . . . , z construct the training matrices Ẋ and Ẏ estimating a best fit coefficient matrix
β̇ according to Equation (8). Extinction values of the other odd numbered samples with
index j = 1, 3, . . . , q fill up validation matrix Ẍ used in conjunction with β̇ to calculate one
response vector ˆ̈Yn =

[
φn1, . . . , φnq

]T for each component n based on Equation (9). The
goodness of fit can be quantified by the coefficient of determination

R2
n = 1−

∑
q
j=1

(
φ̈n,j − ˆ̈φn,j

)2

∑
q
j=1

(
φ̈n,j − ¯̈φn

)2 (13)

for each individual component comparing the solids volume fractions φ̈n,j with the corre-
sponding model prediction ˆ̈φn,j. Here, ¯̈φn denotes the mean of each column in Ÿ. Values
of R2

n close to unity suggest a high prediction strength of the regression model [65]. If the
correlation is not satisfactory, X can be adjusted manually in further iterations of the cali-
bration pipeline, as outlined in Figure 5. Lastly, a chosen adjusted calibration set calculates
the coefficient matrix β substituted in Equation (9) to quantify the composition Ŷ(t) of in
situ acquired process samples.

MLR model

Raw calibration set Ajusted set Train/validation set

m

p n

m

d n

n n

d d

yes
no

MI filterX Y

R2
n ≥ 0.98

X

nd

z Ẋ Ẏ

nd

q ŸẌ d

n

β̇

β

ˆ̈Y

Y

Ÿ

n

d

!
=

ˆ̈Y = Ẍβ̇
Raw overflow signal

p
X̂(t)

Ŷ(t)=X̂(t)β
n

Ŷ(t)

1

Figure 5. Graphical representation of the sensor software setup described in Sections 3.2.1 and 3.2.2. Matrices are denoted as
brackets with their dimensions drawn on the top and left. The inner loop (solid arrows) highlights the calibration procedure
including supervised feature selection with an MI filter, model training and diagnostic measures. The outer loop (dashed
arrows) visualizes the translation of raw UV/vis process data Ŷ(t) into a prediction of the suspension composition X̂(t).
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4. Results

This chapter elaborates on a documented field test of the developed soft sensor used
in real-time suspension analysis at the overflow of a tubular centrifuge. The experimental
endeavor includes the processing of PMMA in single-component suspension (expC-1) and
the fractionation of both PMMA and ZnO in a mixture (expF). A short-time experiment
(expC-2), in which a ZnO suspension is processed at C = 10,000, is used for comparative
purposes only to analyze the grade efficiency in the CPS disc centrifuge.

An overview of the initial solids volume fractions in the product feeds as well as the
corresponding operating parameters is shown in Table 1. Low initial particle concentrations
ensure an inferior influence of the sediment build-up on the overflow monitoring. During
classification (expC-1) at a constant centrifugation number, signal stability and separation
efficiency is observed. In fractionation (expF) on the other hand, a ramp up in rotor
speed is set to monitor changes in multivariate suspension composition under varying
process conditions. The soft sensor is set to predict the solids volume fraction φ̂n in an
effort to quantify the specific product loss (Equation (10)) in real-time. Unless otherwise
stated, separation proceedings were carried out two-fold. Consequently, the predictive
sensor output is based on two unique extinction signals per unit of time in the centrifuge
overflow. Similarly, lab scale reference measurements on suspension composition are
repeated at least three times to obtain a mean and standard deviation. The first part
highlights the sensor calibration procedure and model framework used to monitor the
separation process, whereas the second part focuses on the soft sensor application and
separation outcome evaluation.

Table 1. Listed information on feed suspensions and operating conditions.

Operating Parameters
Experiment Feed Concentration Volumetric Flow Rate Centrifugal Number Process Time

φPMMA/- φZnO/- V̇f/mL · min−1 C1/- C2/- C3/- t/min

expC-1 1.359× 10−3 0 100 30,000 - - 60
expC-2 0 9.264× 10−5 100 10,000 - - 15
expF 1.631× 10−3 7.181× 10−5 100 10,000 30,000 50,000 35

4.1. Sensor Calibration

All feed suspensions and calibration mixtures are prepared using the same initial
configuration of the particle system PMMA and ZnO. Figure 6 is a graphic summary of
the two raw extinction data sets {X, Y}caC and {X, Y}caF acquired in the hardware sensors
calibration setup (Figure 4a). A detailed description of the dilution procedure and tabulated
concentration data for each spectrum is presented as SI (Supplementary Materials). Note
that all spectra of the three lower plots in Figure 6 are combined to form the data set named
caF used in continuous fractionation monitoring.

The general picture emerging from the spectral analysis is that samples containing
dispersed ZnO colloids can be identified based on their unique interactions with the
incident light. Studies on the optical properties of ZnO support the hypothesis that an
observable extinction peak at λ ≈ 370 nm corresponds to the optical absorption edge of the
material [66,67]. Suspensions containing solely PMMA nanoparticles show comparable
attenuation in the UV range but interact less in the visible light range without any additional
characteristic peak. In an ideal case, the information of an analyte is isolated at specific
wavelengths with no interference. In applied UV/vis monitoring, however, both scattering
phenomena and absorbance spectra of other suspended components limit the selectivity of
a given analytical model due to cross-sensitivities and spectral overlap [55]. In an effort to
reduce these interferences computationally, the raw calibration spectra are processed based
on the principle shown in Figure 5.
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Figure 6. Overview of collected calibration spectra for classification (caC) and fractionation (caF).

Preliminary results on calibration data pre-processing are documented in Figure 7,
outlining the applied univariate MI computation at every wavelength in the bottom left
diagram. The solid line indicates the MI score analyzing data set caC, whereas the two
dashed and dotted lines correspond to the information gain at λ = p in data set caF with
regard to both dispersed material concentrations separately. For both sets, significant
fluctuations in the MI index at higher wavelengths are observable. As illustrated in
Figure 7a by the averaged spectra of calibration set caC and caF, this can be explained by
a decreasing signal-to-noise ratio in the high λ-range. For n = 1 the MI statistic shows a
good relatedness between the solids volume fraction φPMMA and the measured extinction
in the range 225 nm ≤ λ ≤ 600 nm. This observation is plausible for single-component
suspension since only one material contributes to the measured extinction spectra. The
mixed suspensions on the other hand show a different MI pattern, hinting at possible
cross-sensitivities in bands where single-component extinction spectra overlap and add
up to the recorded data. An intriguing fact is that a peak in the MI between φZnO and
the extinction is present around λ ≈ 370 nm, which underlines the characteristic ZnO
absorption edge once again. Based on this, it is advisable to include these wavelengths
to the multivariate regression model in order to predict φZnO with the best possible error
reduction. In the case of data set caC, however, the MI statistic implies that all wavelengths
share a similar amount of valuable information.

To validate this statement, three different evaluation ranges are applied, reducing the
available size of the data matrices X. The resulting ranges are illustrated in Figure 7a,b.
The first feature range (FR1) is the smallest but centers on two areas with a high MI index.
Likewise, the second range (FR2) targets the same extinction bands but extends the included
wavelengths, constructing a larger design matrix. Lastly, the third feature range (FR3) has
the exact same size as FR2 but the area is shifted towards lower energy frequencies where
the information gain in regard to ZnO equals zero and the signal to noise ratio is reduced.
Hence, for this λ-range, the target φZnO is independent from the estimator variable.

Nevertheless, all ranges were used separately for both calibration data sets in the inner
validation loop outlined in Figure 5 to diagnose the model’s suitability. Error estimation
is visualized by plotting the predicted versus known concentrations in Figure 7c and
displaying the coefficient of determination calculated with Equation (13) for both databases
and components. For improved readability of the diagnostic, volume fractions are nor-
malized to the highest φn of the respective column in Ÿ. Univariate MLR results (circles)
validate the expected high prediction strength. However, as anticipated, the reduced signal
quality of FR3 causes a slight deterioration in model accuracy. The error for multivariate
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composition estimation (φ̈PMMA, φ̈ZnO) is visualized by squares and triangles, respectively.
After revision of the corresponding datapoints in Figure 7c, a prominent distinction in
model suitability can be made. Model construction at higher wavelengths (FR3) as well
as a reduced size of the wavelength range (FR1) with R2 ≤ 0.96 seem to have a negative
effect on intrinsic model quality in comparison to evaluation range FR2 (R2 ≥ 0.99). In
light of this, continuous overflow monitoring is based on MLR models that used a data
pretreatment according to FR2. For comparison purposes, the two additional domains are
fully analyzed as well, but the respective evaluation plots are removed from the visual
representation in the following sections and given as SI (Supplementary Materials).

(a)

(b)

(c)

Figure 7. Outcome of applied data pre-processing and model diagnostic. On the left in the background, three selected
data segmentation zones are displayed: feature range FR1 (blue, hatched sideways from top to bottom), FR2 (red, hatched
sideways from bottom to top) and FR3 (green, cross hatched). (a) Mean extinction of calibration data set caC and caF drawn
over the wavelength range of interest. (b) Mutual information for components PMMA and ZnO at every wavelength.
(c) Visual inspection of model suitability plotting predicted ˆ̈φn,m against known φ̈n,m concentrations. Data points are
normalized to the highest volume fraction in each column of matrix Ÿ. For every component, the coefficient of determination
R2

n is displayed.

4.2. Separation Outcome

Continuing with the second part of the experimental evaluation, Figure 8 high-
lights the measured raw extinction data during classification (expC-1) and fractiona-
tion (expF). Signal data are laid out in a three-dimensional space, plotting raw extinc-
tion against the elapsed process time t. Signal stability in the desired evaluation range
225 nm ≤ λ ≤ 600 nm is high, as bubbles are effectively removed from the sensor inlet by
the bubble trap. Initially, demineralized water is displaced by the suspension lowering the
transmittance until a steady state is reached. Furthermore, the listed operating parameters
in Table 1 are correctly mapped by the recorded course of extinction. Regarding classifica-
tion of PMMA, the acquired spectra in Figure 8a indicate constant optical properties in the
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overflow. In comparison, Figure 8b highlights the rotor speed ramp up with three distinct
plateaus of constant light attenuation during fractionation. A detailed view of speed level
settings against the process time is shown in Figure 9c.

(a) (b)

expC-1

Feed

expF

C=30000 Feed C=10000 C=30000 C=50000

(c)

Figure 8. Raw extinction data of experimental series expC-1 (a) and expF(b) measured with the experimental setup (Figure 4b)
of the UV/vis hardware sensor. Arrows and dash dotted lines mark sampling times. (c) Collected overflow samples at
constant C-values and plateaus of extinction. Feed samples visualized for comparison between transmittance before and
after centrifugation.

Sampling of roughly 200 mL of fines takes place in a period of two minutes at the
sensor outlet. Each individual time of extraction is marked with small arrows and red dash
dotted lines. A reference is only taken when the system is in a steady state indicated by a
constant UV/vis signal. Four of these samples and their corresponding feed dispersions
are shown in the lower half of Figure 8. Qualitative inspection with the human eye shows
a stronger turbidity in mixed suspension, caused by the dispersed ZnO particles and their
high refractive index. Overall, the transmittance increases with rotor speed due to more
solids being deposited at the rotor wall.
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(a)

(b)

(c)

Figure 9. Comparison of sensor output (solid symbols) and laboratory analysis (half-filled symbols) of the product loss in
fractionation (a) and classification (b) monitoring over the elapsed process time. The set centrifugation number is drawn on
shared abscissa (c). The soft sensor output is based on the corresponding calibration data set of feature range FR2.

4.2.1. Evaluation of Size Fractionation

After analyzing the weir and feed samples in the CPS disc centrifuge, Equation (12)
provides the necessary data to reveal the separation efficiency of the apparatus in Figure 10.
Diamonds indicate the partition curves of PMMA in fractionation for the set C-value ramp
whereas circles mark the grade efficiency of PMMA after classification (expC). At this point
the reader is reminded that the described procedure of analytical centrifugation is only
applicable in single-component systems, as a material specific adjustment to the device is
needed beforehand. In light of this, samples taken from expF are pretreated with additional
stabilizing agent until ZnO nanoparticles are completely dissolved. Accordingly, only the
separation curves of the polymer particles are shown for fractionation experiment analysis.
The evaluated partition curves of expC-1 and expF are congruent, which confirms two
things. First, by dissolving ZnO before the particle size analysis, a valid and reproducible
approximation for the grade efficiency of PMMA NPs is feasible. Second, ZnO NPs at
such low concentrations do not affect the sedimentation of lighter polymer particles during
centrifugation in a tubular centrifuge.
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Figure 10. Summary of grade efficiency plots for PMMA after fractionation at three C-values (diamonds) and classification
at a constant rotor speed (circles). An additional classification run of a pure ZnO suspension at C = 10,000 yields the leftmost
partition curve (triangles).

As expected according to fundamentals, an increase in rotor speed leads to a noticeable
shift of the partition curves to smaller particle sizes. At C = 10,000, the median cut size
xT,50% is 180 nm, whereas at C = 50,000, the same cut size equals 90 nm for PMMA NPs.
Furthermore, the comparative result of expC-2 shows that higher particle density leads to
smaller cut sizes at constant operating conditions. More specifically, ZnO nanoparticles
with a diameter larger than 150 nm are completely retained in the centrifuge rotor, whereas
the separation efficiency for same size polymer particles at C = 10,000 is only around
T(150 nm) = 30%.

In summary, analytical centrifugation supports the hypothesis that tubular centrifuges
can simultaneously sort particles according to their size and material density. Up to this
point, however, the separation degree of the metal oxide is only validated by the additional
classification expC-2. Unfortunately, the same analytic technique cannot be applied to
mixtures of ZnO and PMMA in the CPS disc centrifuge. Hence, a supportive methodology
is needed to quantify the separation efficiency of heavier particles in multi-component sus-
pension processing. For this purpose and for continuous overflow monitoring, suspension
composition is predicted by the constructed soft sensor.

4.2.2. Continuous Monitoring of Fine Fraction Composition

Referring to the outlined principle of sensor training and overflow monitoring in
Figure 5, every 400 ms, a raw extinction spectrum X̂(t) is reduced to an adjusted vector X̂(t)
and multiplied by the corresponding predictor β. Using Equation (9) the overflow composition

Ŷ(t) =
[
φ̂PMMA(t), φ̂ZnO(t)

]T
= X̂(t)β

is evaluated in real-time with low computational effort. Note that each calibration data set
provides a unique coefficient matrix β tailored to the online monitoring of either expC-1 or
expF. Knowing the feeds’ relative concentration, a specific product loss P̂n is then calculated
with Equation (10) for every component. In Figure 9, an overview of the predicted product
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loss (small symbols) is given for both classification and fractionation experiments on the
y-axis. Here, raw extinction data were reduced according to feature range FR2. Prediction
results of domains FR1 and FR3 are visualized in two similar plots in the SI (Supplementary
Materials). The abscissa is shared between the subfigures and shows the elapsed process
time. For de-cluttering purposes, every 15th datapoint is shown. Furthermore, each
individual marker is displaced 1.42 minutes to the left due to the observed dead time
between the centrifuge outlet and sensor inlet. Superposed large symbols represent the
offline reference P̃n. Further details on the laboratory analysis performed to determine the
relative solids volume fraction in each sample, and thus the corresponding true product
loss, can be found in Section 3.1.3. Horizontal error bars symbolize the time it took to
gather the samples.

In the following, P̂n and P̃n of each component are discussed individually based on the
introduced theory of nanoparticle separation written in Section 2.1. Contemporaneously,
the sensor performance is specified by the mean prediction error (MPE):

MPEn =

∣∣φ̃n − φ̂n
∣∣

φ̃n
× 100% (14)

and summarized for each individual feature range and material in Table 2.
In Figure 9b, the sensor translates unseen extinction spectra (Figure 8a) into the

corresponding product loss of PMMA during classification. Centrifugation at a C-value of
30,000 results in a constant product loss of around 60%. Predictive and reference measures
prove that no significant rise of product loss takes place during classification. This can be
explained by the consciously chosen, low feed concentrations. The sediment formed in the
rotor does not affect the deposition of the polymer since its volume does not shorten the
particles residence time, resulting in a constant separation efficiency.

The determined product loss of all samples taken during this time period coincides
with the values generated by the MLR predictor with an MPE of just 5.913%. The other fea-
ture ranges perform slightly worse, although the inclusion of wavelengths where extinction
shows a lower signal-to-noise ratio seems counter-intuitive. Rather, it is more reasonable to
evaluate spectral data at wavelengths where most of the chemical information is located in
interference-free signals. This is the case for FR2 incorporating multiple wavelengths with
high MI indices.

Assuming that random errors in the recording of the spectra during processing or
analysis errors of the reference measurements are negligible, a systematic error can be
observed. With few exceptions, the soft sensor output tends to underestimate the true
product loss in the centrifuge overflow. These deviations can be explained by the attenua-
tion coefficient expressed in Equation (5). Therein, both absorption and scattering cross
sections define CV,n,λ as an optical constant of the analyzed suspension. As highlighted in
Figure 10, PSDs of both materials are adjusted during separation, emphasizing a possible
change in the effective extinction cross section of the bulk suspension. Strictly speaking,
the linear relationship defined in Equation (6), therefore, no longer applies to the in situ
extinction analysis of the fine fraction samples. According to fundamentals, the wavelength
dependent scattering intensity is altered by the materials refractive index and scales with
particle size to the power of six [68]. Hence, the induced separation of the coarser fraction
in classification and fractionation affects the shape of a measured extinction spectrum.
Yet, the MPE regarding the online monitoring of PMMA classification is low although the
systems PSD is altered. One explanation is that differences in the mean volume weighted
diameter of the feed (103 nm ± 1 nm) and the overflow samples (89 nm ± 0.5 nm) are
very small. This leads towards the assumption that the scattered light intensity does not
change significantly enough to hurt the suitability of the established linear soft sensor
model. Similar observations were made during studies establishing a continuous overflow
monitoring based on measurements of scattered light [39]. Here, calibration data sets were
also recorded from dilutions of the product feed, which failed to sensitize the underlying
model with respect to the changes in the materials PSD.
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Table 2. Prediction error for the solids volume fraction φ specified for each material (PMMA, ZnO)
as well as the combined amount of suspended solids (TAS) excluding the mass of stabilizing agent
Na6P6O18. The row related to the chosen feature range FR2 has the lowest MPE.

Mean Prediction Error MPEn /%

expC-1 expF
Feature Range PMMA PMMA ZnO TAS

FR1 10.86 12.42 26.76 11.98
FR2 5.913 4.698 8.499 4.740
FR3 9.06 33.23 800.9 9.059

The second experiment to assess is the density fractionation of both PMMA and ZnO
in mixture highlighted in Figure 8a. The overall product loss analyzed by gravimetric
offline measurements is depicted by half filled, blue diamonds. Note that the TAS here
refers to the corrected mass of both PMMA and ZnO in the dried sample excluding the
weight of Na6P6O18 crystals. It is clearly shown that the ramp up in rotor speed leads
to a better separation of the suspended solids. The sensor can therefore identify changes
in the operating parameters with little delay. With Equation (11), this information was
used in conjunction with the ICP-OES analysis to compute the true relative solids volume
fraction of both materials. In direct comparison, ZnO is separated more effectively at
each of the three C-values due to its higher density and faster radial movement in the
centrifuge rotor according to Equation (2). Consequently at C = 30,000, 6.0% of the heavy
material remains in the product stream. At C = 50,000, mere traces of ZnO are measurable
exclusively by the conducted ICP-OES analysis, verifying a product loss of 3.4%. Online
monitoring as well as lab scale reference measurements outline reproducible magnitudes
of product loss at the three distinct plateaus with constant rotor speed. When reviewing
the MSE, a moderate prediction error of 4.698% in the case of the light polymer can be
observed, which is comparable to the prediction quality in classification. Regarding the
heavy metal oxide ZnO, however, predictions for P̂ZnO underestimate the true solids
volume fraction in the overflow by 8.5%. Error discussion jet involves basic theory of
light scattering by an ensemble of particles. In the case of ZnO, the feed distribution is
broader and therefore the particles effective extinction cross section is accompanied by a
more pronounced scattering part. It is likely that the removal of coarse particle fractions
during centrifugation results in a considerable alteration of the bulks’ optical properties.
Because the sensor software is only capable of modeling linear dependence of extinction
and concentration at constant PSD, this effect could explain the more inaccurate predictions
of the sensor in regard to the product loss of ZnO. Several studies [69,70] list the impact of
changing PSDs as a confounding factor in quantitative spectroscopic analysis of particle-
loaded fluids. Possible adjustments to the model may include an empirically determined
correction factor that adjusts the sensor output in accordance to the change in scattering
properties of the sample. It is also conceivable that a more diverse calibration data set could
be recorded based on collected overflow samples at variable operating parameters. The
results of a preliminary study highlight the potential benefit in prediction accuracy when
incorporating classified samples in the calibration procedure regarding spectroscopic multi-
component analysis [43]. The disadvantage here, however, is the increased effort required
to calibrate the UV/vis sensor. In light of this, multiple regression at several carefully
chosen wavelengths marks a supportive approach presented in this paper. In the future, it
is imaginable to evaluate the extinction spectra of samples with known concentrations and
PSD to be able to perform more precise estimations of the fine fractions composition.

Taken altogether, the data presented here provide strong evidence that the developed
soft sensor is able to monitor the solids volume fraction in the overflow of a tubular
centrifuge. Despite error prone predictions regarding the material ZnO, the product
loss is monitored qualitatively and plausibly according to induced changes in operating
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parameters. In the case of PMMA NPs separation, accurate predictions are achievable
when following the suggested method (Figure 5) of sensor calibration.

5. Conclusions

The demand for polydisperse particle systems in the nanometer range, which have
defined properties in regard to their PSD and material composition, is steadily increasing.
Tubular centrifuges offer an approach for bench scale classification and fractionation of
these particles. Due to their semi-continuous operation mode, however, process monitoring
is needed to assist further optimization endeavors. For this reason, the presented study
involves a UV/vis soft-sensor, which was installed in the tubular centrifuges overflow. Its
hardware part continuously acquired an extinction spectrum of processed fines containing
either polymer NPs (PMMA), suspended metal oxide particles (ZnO) or a mixture of
both. Furthermore, a multivariate regression model scheme was developed and connected
to the raw extinction data processing. For this purpose, a sensor calibration procedure
with feed samples of known concentration and material composition was mandatory.
Extinction values measured at wavelengths that contributed to the regression model
quality were identified and manually separated from statistically insignificant inputs.
This enabled parallel, real-time model-based predictions of the solids volume fraction of
both processed materials in the centrifuge overflow. When compared to offline sampling
and costly laboratory analysis, the model has a low prediction error with respect to the
approximation of the solids volume fraction of PMMA. In the case of ZnO, a significantly
greater degree of material separation at increasing rotor speeds is observed. Accompanied
by a more drastic shift in the PSD, the precise computation of the solids volume fraction
of metal oxide NPs was complicated. This was explained by fundamental theory of light
scattering by small particles and the influence of the changing extinction cross section
due to induced separation of coarser fractions. Continuing studies may include the same
soft-sensor setup but follow a different routine in calibration data acquisition. This could
successfully improve the model based on a correction factor if inconsistent scattering
properties of the analyzed fines are expected. Nonetheless, the presented setup enables the
efficient online monitoring of both classification and material sorting in tubular centrifuges
at low particle concentrations. Because a fast response to changes in operating parameters
was achieved, the soft sensor setup leads to an improved understanding of the separation
process and its underlying mechanics. Finally, its integration opens up new perspectives
regarding real-time process control for product quality maintenance.
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analysis, Table S2: Reference concentration data (Zn, ZnO), Table S3: Reference concentration data
(TAS, PMMA), Figure S5: Sensor output evaluation (FR1), Figure S6: Sensor output evaluation (FR3).
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Abbreviations
The following abbreviations are used in this manuscript:

API application programming interface
ICP-OES inductively coupled plasma optical emission spectrometry
MI mutual information
MLR multiple linear regression
Na6P6O18 sodium hexametaphosphate
NPs nanoparticles
OLS ordinary or generalized least squares
PSD particle size distribution
PMMA polymethylmethacrylate
SEM scanning electron microscope
SI supplementary information
TAS total amount of solids
UV/vis ultraviolet-visible
ZnO zinc oxide
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