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Abstract: This study evaluated the in vivo behavior and accumulation of silica particles in the form
of wires, which were actively studied as drug carriers along with spheres, using positron emission
tomography (PET). Wire-shaped silicon dioxide (SiO2) was synthesized at micro-size, using anodic
aluminum oxide (AAO), a template, and folic acid (FA), which specifically binds folate receptors
(FR) which are overexpressed in many cancers, and which was bound to the wire’s surface to
confirm its possible use as a cancer diagnostic agent. In addition, for evaluation using PET, the
positron-emitting nuclide 89Zr (t1/2 = 3.3 days) was directly bonded to the hydroxyl group (-OH)
on the particle surface. The diameter and shape of the synthesized silica microwires (SMWs) were
confirmed using SEM and TEM, the chemical bonding of FA was confirmed through FT–IR and
NMR, and the labeling of 89Zr was measured by means of radio-thin-layer chromatography (TLC)
measurement. Folic acid-conjugated SMWs (FA-SMWs) were found to have a low receptor-mediated
uptake in cell internalization evaluation, but in PET studies, FA-SMWs stayed longer at the tumor
site. In conclusion, we successfully synthesized a homogeneous silica microwire for drug delivery,
we confirmed that the FA-conjugated sample remains at the tumor site for a relatively longer time,
and we have reported the characteristic in vivo behavior of 89Zr-FA-SMWs.
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1. Introduction

The field of micro/nanomaterial drug delivery research is growing rapidly and uses
artificial synthetic materials of several micrometers and several nanometers in length [1].
This scale is similar to the size of proteins and biological polymers in the body [2,3]. This
technology is used as a research tool in various fields as it can design complex characteris-
tics, and it is being studied for its ability to overcome biological barriers, especially in the
delivery of drugs and the development of various disease and disability treatments [4–6].
Physiologically active molecules, target sequences, fluorescent or radioactive isotopes,
and biocompatible coatings can be introduced to improve the function of carriers [6–8].
Research on the size and shape of carriers contributes to the understanding of in vivo
behavior and tumor accumulation [9–11]. Micro/nano-sized particles show a high ac-
cumulation in tumor tissues through slack capillary vessels close to the tumor and can
be used to accrete concentrations of drugs in cancer cells, while avoiding toxicity to nor-
mal tissues by conjugating molecules with tumor affinity [12–15]. Furthermore, when
nanoparticles are combined with certain receptors and then enter the cells, they are usually
endocrine-resistant through receptor-mediated endocrine distribution, bypassing detection
by the P-glycoprotein, one of the main drug-resistant mechanisms [16,17]. Despite offering
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many advantages as a drug carrier system, nanoparticles still have many limitations that
need to be addressed, such as poor oral bioavailability, unstable circulation, insufficient
tissue distribution, and toxicity [1,18–20]. Along with size, particle shapes can affect the
behavior of circulating drug carriers as well as in cell–particle interactions. Particle size
is reported to influence opsonization based on the relationship between particle size and
curvature, which, in turn, is an important characteristic that influences almost all particle
functions such as degradation, flow properties, clearance, and absorption mechanisms in
the body [21]. In general, most micro-drug transporters reported in research and clinical
applications are mostly spherical because the researcher adopted an ‘upward’ method
of production. A typical upward method in the field of drug delivery systems is the
sol-gel method. This method is achieved by hydrolysis and condensation reactions of
inorganic materials to form a three-dimensional network structure, including the formation
of an inorganic colloidal suspension (sol) and gelation of the sol in a continuous liquid
phase (gel). Most synthetic particles form spherical or near-spherical shapes, but drug
carriers using particles such as ellipsoids, rods, wires, and disks other than spheroids
are also being studied and exhibit different behaviors in the body. Despite use of the
sol-gel method, it is possible to synthesize wire-shaped particles by introducing a specific
template (AAO) [22]. Recent non-invasive imaging techniques including positron emission
tomography (PET) [23], have made great advances in dating and perform a consequential
role in the personalized medical field, providing practical solutions to various incurable
diseases such as cancer [24]. There is increasing attention being given to using newly rising
radioactive isotopes (RIs) including 89Zr (t1/2 = 78.4 h) [25], 64Cu (t1/2 = 12.7 h) [26], 86Y
(t1/2 = 14.7 h) [27], and 68Ga (t1/2 = 67.6 m) [28] for PET [6]. These RIs have been extensively
studied, of which 89Zr is a promising RI for long-term tumor diagnostics study and in vivo
distribution research, indicating the ease of relatively long-term production, favorable
nuclear decay characteristics, and appropriate chemical binding properties [25,29,30]. In
this work, we synthesized a folate-receptor-friendly drug carrier that combines folic acid
with silica microwire. 89Zr was labeled on a folic acid-conjugated silica microwire for
in vivo behavior evaluation using PET, and separately from the tail intravenous injection.
We examined the behavior of the silica microwire injected on the tumor side to evaluate its
in vivo behavior after its accumulation in the tumor.

2. Materials and Methods
2.1. Materials

A tetraethyl orthosilicate (TEOS), (3-aminopropyl) triethoxysilane (APTES), folic acid (FA),
triethylamine (TEA), N-hydroxy succinimide (NHS), 1-ethyl-3-(3-dimaethylaminopropyl), car-
bodiimide (EDC), dimethylformamide (DMF), and anodic aluminum oxide (AAO) template
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s
medium (DMEM), phosphate buffered saline (PBS), HEPES buffer solution, human serum
(HS), and fetal bovine serum (FBS) were purchased from Gibco BRL Life Technologies
(Waltham, MA, USA). CT-26 and MDA-MB-231 cells were procured from the Korean cell
line bank (Seoul, Korea). Balb/c mice (20 ± 1.5 g, female) were purchased from Orient Bio
(Seongnam, Korea). 89Zr was procured from the Korea Atomic Energy Research Institute
(KAERI, Jeongeup, Korea) and produced using RFT-30 (30 MeV cyclotron). Radioactivity
was measured using a CRC-15R ionizing chamber (Capintec, Florham Park, NJ, USA).
Radiochemical yield was assessed using an AR-2000 radio-TLC imaging scanner (Bioscan,
Santa Barbara, CA, USA). The in vitro stability of the radiolabeled sample was measured
with a Wizard-1470 automatic gamma counter (Perkin Elmer, Waltham, MA, USA). Small
animal PET imaging was carried out using a Genesis 4 (Sofie Biosciences, Culver City,
CA, USA) machine. Dynamic light scattering analysis was measured using a Zeta-sizer
(Malvern, UK) and MN401 (Microtrac, York, PA, USA).



Materials 2021, 14, 3226 3 of 12

2.2. Synthesis of Silica Macro-Wires (SMWs)

SMWs were prepared using a sol-gel process. TEOS and ethyl alcohol were mixed at a
molar ratio of 1:1 for 1 h and hydrochloric acid was added as a catalyst to the solutions. The
AAO template was infiltrated for 8 h in the solution for the silica sol impregnation of AAO
templates. After the sol-gel process, the AAO-template-filled synthesized SMWs were
dried via the evaporation of the residual solvent for 2 h. After drying, the AAO template
was dissolved and removed in a 3 M NaOH solution to collect the macrowires. The SMWs
were purified using centrifugation at 15,000 rpm for 10 min. The collected SMWs were
rinsed in ethyl alcohol and then dried in an oven.

2.3. Synthesis of Folic Acid-Conjugated SMWs (FA-SMWs)

After dispersing 100 mg SMWs in 4 mL ethyl alcohol, 1.2 mmol ATPES was subjected
to nitrogen purging for 12 h. APTES can easily modify the surface of SMWs with primary
amine groups (-NH2). The collected product was rinsed in ethyl alcohol and then dried in
oven. After dispersion of the primary amine modified SMWs in 100 mL DMF, they reacted
with EDC 1.5 eq, NHS 1.5 eq, TEA 2.0 eq, FA 1.5 eq for 12 h, resulting in a carbodiimide
reaction. The FA conjugated SMWs were separated by centrifugation at 15,000 rpm for
10 min.

2.4. Zr-89 Labeling and In Vitro Stability Test

One mg of SMWs were placed in 5 mL vials and were dispersed in 100 µL of HEPES.
Then, 37 MBq of 89Zr(ox)2 was added to the vial and allowed to react at 95 ◦C for 1 h. After
the reaction, the product and the solvent were separated by centrifugation, and free 89Zr
was removed by washing with 50 mM DTPA solution, and then washed two times with
PBS. Centrifugation was carried out at 10,000 rpm for 5 min. FA-SMWs and Dox-FA-SMWs
were also labeled in the same process. The 89Zr-labeled SMWs were dispersed in 100 µL of
PBS for stability testing. 100 µL of 89Zr-labeled SMWs (37 MBq/mL) was added to 1 mL of
HS and FBS. Tubes were stirred for seven days at 37 ◦C. At the selected time points (1, 2, 4,
and 8 h and 1, 3, and 7 days), the in vitro stability of the 89Zr-labeled SMWs was evaluated
using a Radio-TLC scanner. DTPA (50 mM) was used as the mobile phase and i-TLC-SG
(1.0 × 10 cm2) was used as the stationary phase.

2.5. Cell Internalization

Twenty-four hours before evaluation, murine colorectal cancer cell, CT-26, and human
breast cancer cell, MDA-MB-231, (both FR positive), were incubated in 24-well plates
(37 ◦C, 5% CO2). After 24 h, 89Zr-SMW and 89Zr-FA-SMW (0.18 MBq/400 µL), dispersed
in DMEM containing 10% FBS, were added and then incubated for 1, 4, 6, 24 and 48 h in an
incubator (37 ◦C, 5% CO2). The supernatant was collected separately in tubes at each time
point. Cells were carefully washed 3 times with cold PBS. Thereafter, 0.1 M sodium citrate
was added and left for 5 min to remove non-internalized particles remaining on the cell
membrane. A gamma-ray counter was used to measure the number of particles in the cell
(n = 3).

2.6. PET Studies

PET studies were conducted in accordance with the animal testing guidelines and
ethics approved by Dongguk University (IACUC-2021-01). PET images were measured to
assess biodistribution and in vivo behavior of 89Zr-SMWs. For modeling tumor-bearing
mice, CT-26 cells (5 × 106 cells) were dispersed in 100 µL of saline and injected subcuta-
neously into the thighs of Balb/c mice. After allowing the injected cells to stably grow
into 120 mm diameter tumors, each mouse was injected intravenously with 89Zr-SMWs
(3.7 MBq/100 µL per mouse). The mice were under respiratory anesthesia using isoflurane
and evaluated using PET for 6 days. 89Zr-FA-SMWs were evaluated via the same process
as 89Zr-FA-SMWs and were injected into the tumor site to confirm the in vivo behavior of
the drug carrier.
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3. Results and Discussion
3.1. Characterization
3.1.1. Fourier Transform–Infrared Spectroscopy (FT–IR)

The SMWs synthesis and FA binding studies were analyzed using FT–IR. The SMWs
showed a strong bond between silicon and oxygen at 1080 cm−1 (Figure 1a, black). As a re-
sult of the FT–IR measurement of SMWs-APTES, the C-H (2950 cm−1) and N-H (1650 cm−1)
bonds, which are characteristic of APTES, were confirmed, and it was verified that APTES
was bonded to the SMWs surface. As a result of comparing the FT–IR spectra of SMWs-FA
(Figure 1b, red) and FA (Figure 1b, orange), the C=C bond (1580 cm−1) and N-O bond
(1500 cm−1) of FA appear in SMWs-FA.

Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

MBq/100 µL per mouse). The mice were under respiratory anesthesia using isoflurane and 
evaluated using PET for 6 days. 89Zr-FA-SMWs were evaluated via the same process as 
89Zr-FA-SMWs and were injected into the tumor site to confirm the in vivo behavior of the 
drug carrier. 

3. Results and Discussion 
3.1. Characterization 
3.1.1. Fourier Transform–Infrared Spectroscopy (FT–IR) 

The SMWs synthesis and FA binding studies were analyzed using FT–IR. The SMWs 
showed a strong bond between silicon and oxygen at 1080 cm−1 (Figure 1a, black). As a 
result of the FT–IR measurement of SMWs-APTES, the C-H (2950 cm−1) and N-H (1650 
cm−1) bonds, which are characteristic of APTES, were confirmed, and it was verified that 
APTES was bonded to the SMWs surface. As a result of comparing the FT–IR spectra of 
SMWs-FA (Figure 1b, red) and FA (Figure 1b, orange), the C=C bond (1580 cm−1) and N-
O bond (1500 cm−1) of FA appear in SMWs-FA. 

  
(a) (b) 

Figure 1. (a) FT–IR spectrum of APETS conjugated silica microwires (SMWs); (b) folic acid (orange) 
and folic acid conjugated SMWs (red). All samples were pelleted using KBr, and the mass ratio of 
the sample and KBr was 1:100. 

3.1.2. Solid-State (13C) Nuclear Magnetic Resonance (ssNMR) 
The FA-SMWs were measured using ssNMR to confirm the conjugation of the SMW 

surface with FA. The results showed the aliphatic hydrocarbon of FA (10–57 ppm), aro-
matic hydrocarbon (114.02–149.08 ppm), aromatic carbonyl carbon (155.29 ppm), amide 
carbon (164.23 ppm), and carboxyl carbon (177.68 ppm), as shown in Figure 2. Based on 
the results of ssNMR and FTIR, we confirmed that FA was successfully conjugated on the 
surface of the SMWs. 

 

Figure 1. (a) FT–IR spectrum of APETS conjugated silica microwires (SMWs); (b) folic acid (orange)
and folic acid conjugated SMWs (red). All samples were pelleted using KBr, and the mass ratio of the
sample and KBr was 1:100.

3.1.2. Solid-State (13C) Nuclear Magnetic Resonance (ssNMR)

The FA-SMWs were measured using ssNMR to confirm the conjugation of the SMW
surface with FA. The results showed the aliphatic hydrocarbon of FA (10–57 ppm), aromatic
hydrocarbon (114.02–149.08 ppm), aromatic carbonyl carbon (155.29 ppm), amide carbon
(164.23 ppm), and carboxyl carbon (177.68 ppm), as shown in Figure 2. Based on the results
of ssNMR and FTIR, we confirmed that FA was successfully conjugated on the surface of
the SMWs.
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3.1.3. Electron Microscopy and Dynamic Light Scattering (DLS) Analysis

The AAO template was used to synthesize the uniform form of silica microwires in
this study. The SMWs obtained by removing the template after synthesis were uniformly
shaped, as shown in the SEM results depicted in Figure 3a. The SMWs were about 2.33 µm
in length and about 200 nm in diameter, as shown in the image of Figure 3a,b. In addition,
the analysis using TEM (Figure 3c,d) showed that SMWs were synthesized in wire form
and that the distribution of even silicon dioxides was generally confirmed. To confirm the
element distribution of SMWs, element mass ratio and mapping analysis were performed
using the energy dispersive spectrum (EDS). The elemental distribution of SMWs was
confirmed to be mainly composed of 49% oxygen and 24% silicon, and 10% carbon was
detected in the fixation reagent used to fix the sample (Figure 4). In Figure 5, DLS results
of SMWs dispersed in distilled water confirmed that they have two (453 and 2665 nm)
hydrodynamic sizes, which verifies that the synthesized SMWs exist in the form of wires
in the dispersion.
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3.2. Radio Labeling and Biological studies

3.2.1. 89Zr Labeling

In this reaction, when labeling 89Zr, a method of directly coordinating 89Zr to hydroxyl
groups (-OH) on the silica surface without a chelator was used. This method is possible
because Zr is an oxygen-affinity metal [31]. After the 89Zr labeling reaction, the labeling
yield of 89Zr-SMWs was evaluated using a radio-TLC scanner. As shown in Figure 6, the
labeling yield of 89Zr-SMWs was 40.96% (Rf = 0.15). This is low when compared with the
labeling method using a chelator. However, in this study, to prevent the introduction of
compounds other than FA on the surface of our drug carrier, the chelator-free labeling
method was chosen, and sufficient efficiency was achieved for the biological evaluation
to proceed.
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Figure 6. The labeling yield of 89Zr-FA-SMWs was confirmed using radio-TLC. 89Zr labeled FA-
SMWs (40.96%) and free 89Zr (47.67%) were displayed using i-TLC-SG (1.0 × 10 cm2) as the solid
phase and the 50 mM of DTPA as the mobile phase.

3.2.2. In Vitro Stability Test

For seven days after the 89Zr-SMWs were labeled, the in vitro stability was evaluated
for HS and FBS, and measurements were made using a gamma counter. As shown in
Figure 7, the 89Zr-SMWs showed a high stability of more than 95% for 7 days in human
serum. This means that 89Zr was firmly positioned in the silanol group on the surface of
SMWs, and is thus expected to be suitable for in vivo behavior studies of drug carriers
using 89Zr-SMWs. The stability test conducted on FBS showed lower values than HS, but
still showed around 95% stability over 7 days, demonstrating meaningful in vitro stability.
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Figure 7. Biological stability evaluation conducted using human serum (black line) and fetal bovine
serum (red line). Measured for 7 days using an automatic gamma counter (n = 3).

3.2.3. Cell Internalization Assay

Cell internalization of SMWs was evaluated depending on the time taken to confirm
cell uptake. Two samples (89Zr-SMWs and 89Zr-FA-SMWs) were prepared for the compari-
son of uptake according to FA binding. Cancer cell lines were evaluated using CT-26 and
MDA-MB-231, and both are FR-positive cancer cell lines. As shown in Figure 8, all subjects
show a rapidly high uptake, and among them, 89Zr-SMWs without FA, were found to
be particularly high in both cancer cell lines. In addition, 89Zr-SMWs showed sustained
internalization for 48 h and over 17.08% (green line) was measured on the MDA-MB-231,
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while the uptake of 89Zr-FA-SMW decreased after 24 h. In this way, in the evaluation of cell
internalization, the fact that the FA-conjugated sample showed low levels in both cancer
cell lines is not consistent with the PET study results. These results can be interpreted
as the dependence of cell internalization on particle size and surface chemistry. In the
case of particles with a hydrodynamic size of about 2.66 µm, such as SMWs, internaliza-
tion by macropinocytosis is considered as the main mechanism and receptor-mediated
endocytosis (RME) is the most active in particles with a diameter of from 100 to 200 nm.
Although the mechanism of SMWs endocytosis should be studied in the future, the RME
of 89Zr-FA-SMW is considered inefficient [32].
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Figure 8. Cell internalization assay of 89Zr-Fa-SMWs and 89Zr-SMWs. Evaluation using folate
receptor positive CT-26 (murine colorectal cancer cell) and MDA-MB-231 (human breast cancer cell)
(n = 3).

3.2.4. PET Imaging

PET was carried out to evaluate the in vivo behavior and drug delivery effects of our
drug carrier. To compare the tumor affinity of FA in 89Zr-FA-SMWs, 89Zr-SMWs were
evaluated via the same process, and 89Zr-SMWs were also injected into the tumor site to
analyze the in vivo behavior of 89Zr-SMWs located on the tumor. As shown in Figure 9a,
15 min after the tail vein injection, SMWs showed a high accumulation in the liver and
spleen, regardless of the presence of FA. They accumulated in the tumor site from 6 h
and the highest accumulation was observed after 3 days. The 89Zr-FA-SMWs, conjugated
with FA, showed a high accumulation in the tumor site compared to 89Zr-SMWs and were
confirmed to last longer. As can be clearly seen from the maximum intensity projection
(MIP) image (Figure 9c), FA is positively involved in the tumor accumulation of drug
carriers and the persistence of diagnostic signals. High accumulation in the liver and
spleen is typically accumulated by reticuloendothelial system (RES) and unfortunately [8],
it was observed to last for 6 days. This suggests that the surface improvement in 89Zr-
FA-SMWs by means of biocompatibility polymers is necessary to improve drug delivery
effects. 89Zr is reported to show a high bone affinity [33], and signals from bones and
joints observed 2 days later were 89Zr-deviated from the drug carrier. In the case of 89Zr-
FA-SMWs injected on the tumor site (Figure 9b), they were not only able to accumulate
in the tumor, but also in the liver and spleen sequentially as they circulated through the
blood, and depending on time, it was observed that the accumulation amount in the tumor
decreased, and signals increased in the liver and spleen. Region of interest (ROI) results
from quantitative analysis of signal intensities of tumor and major organs support PET
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studies. In Figure 10a,b, 89Zr-FA-SMWs showed a lower accumulation in the liver and
spleen, particularly in the spleen, and that the accumulation increases for about a day after
injection. However, in the tumor, it was confirmed that FA-SMWs accumulated more in the
tumor from the initial time (Figure 10c). As a result of the tumor site injection in Figure 10d,
it was visibly released out of the tumor from 1 day after injection, and it was quantitatively
confirmed that the accumulation in the liver and spleen continued to increase. This shows
that drug carriers designed to exhibit less affinity with tumors are disadvantageous for
long-term blood circulation and can create difficulties in effective drug delivery, eventually
causing clearance by RES even after reaching the tumor.
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Figure 9. Positron emission tomography (PET) images of CT-26-bearing female Balb/c mice (5 weeks).
Mice were scanned using a 5 min static mode at time points after (a) intravenous injection of 89Zr-
FA-SMWs and 89Zr-SMWs, (b) tumor site injection of 89Zr-FA-SMWs and (c) maximum intensity
projection (MIP) images.
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4. Conclusions

In this study, we synthesized micro-silica wires as drug carriers and conjugated FA
to the surface to improve their tumor affinity. 89Zr, a radionuclide for PET, was labeled
to evaluate its in vivo behavior and drug delivery effects. Through a PET study using
89Zr-FA-SMWs, it was possible to confirm the in vivo behavior of wire-type microparticles
and to confirm their possible use as a drug carrier. The significance of their behavior after
the accumulation of tumors was presented by confirming that microwire injected into the
tumor site accumulated in the liver and spleen through blood circulation. In the evaluation
of cell internalization, it was confirmed that the micro-scale sample to which FA was bound
was not effective in cell internalization. However, apart from the evaluation of cellular
internalization, 89Zr-FA-SMWs remained in tumors for a longer period in PET studies.
Therefore, micro-scale silica wire can also be considered as a drug carrier targeting FR.
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