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In recent years, neuroimaging evidence shows that the brains of Parkinson disease (PD)
with impulse control disorders (ICDs) patients have functional disconnection changes.
However, so far, it is still unclear whether the topological organization is damaged
in PD patients with ICD. In this study, we aimed to explore the functional brain
network in 18 patients with PD with ICDs (PD-ICD) and 18 patients with PD without
ICDs (PD-nICD) by using functional magnetic resonance imaging and graph theory
approach. We found that the PD-ICD patients had increased clustering coefficient
and characteristic path length, while decreased small-world index compared with PD-
nICD patients. Furthermore, we explored the hypothesis whether the abnormality of the
small-world network parameters of PD-ICD patients is accompanied by the change
of nodal centrality. As we hypothesized, the nodal centralities of the default mode
network, control network, and dorsal attention network were found to be significantly
damaged in the PD-ICD group compared with the PD-nICD group. Our study provides
more evidence for PD-ICD patients’ brain network abnormalities from the perspective
of information exchange, which may be the underlying pathophysiological basis of brain
abnormalities in PD-ICD patients.
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INTRODUCTION

Parkinson disease (PD) is a common neurodegenerative disease in middle-aged and elderly people.
Its main clinical manifestations are motor symptoms such as resting tremor, bradykinesia, muscle
rigidity, and abnormal posture, as well as non-motor symptoms such as impulse control disorders
(ICDs). ICD refers to a mental disorder in which patients are driven by a strong desire to adopt
improper behaviors to obtain self-satisfaction. Fifteen percent of PD patients have one or more
clinical symptoms of ICD (Vriend, 2018), which mainly include pathological gambling, compulsive
eating, hypersexuality, compulsive shopping, and so on (Vargas and Cardoso, 2018). Once PD
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patients suffer from ICD, clinical management and intervention
will become more difficult. Therefore, in the early stage of PD
with ICDs (PD-ICD), it is very important to understand the
corresponding specific changes of PD-ICD.

Many previous neuroimaging studies, involving brain
metabolism by using single-photon emission tomography
(SPECT) (Cilia et al., 2011) and positron emission tomography
(Thiel et al., 2003) and morphometric and functional imaging
by using magnetic resonance imaging (MRI) (Frosini et al.,
2010; Carriere et al., 2015; Tessitore et al., 2016), have made a
lot of contributions in exploring the abnormal changes related
to PD-ICD. They have consistently demonstrated dysfunction
in both cortical and subcortical areas, which are important
in the reward system, such as the striatum, anterior cingulate
cortex (ACC), and insula. For example, in the SPECT study,
PD patients with pathological gambling were found to be
associated with ACC–striatal disconnection, which may indicate
a specific abnormality of behavior control and explain why PD
gamblers used to persist in gambling despite the self-destructive
consequences (Cilia et al., 2011). A recent review of functional
studies revealed decreased activity in ACC and increased activity
in the ventral striatum and orbitofrontal cortex (Santangelo
et al., 2019). Evidence from one of the resting-state functional
MRI (rs-fMRI) studies showed that PD with ICD symptoms
was associated with the functional disconnection between the
left anterior putamen (an associative striatal area) and the left
inferior temporal gyrus and the left ACC (limbic cortical regions)
(Carriere et al., 2015). In addition, PD-ICD patients have been
shown through several diffusion tensor imaging tractography
to have widespread white matter tract damage (Yoo et al., 2015;
Canu et al., 2017; Zadeh et al., 2018), which further confirm the
impaired network connection in PD patients with ICD.

In recent years, as a new network analysis method, graph
theory analysis has been widely used in the research of many
neurological and psychiatric diseases including PD. This method
models the brain regions and the connections between regions
as nodes and edges, such that the brain is modeled as a
topological network composed of many points and edges, which
can be studied for network parameters and network efficiency.
However, so far, it is still unclear whether the topographic
organization is damaged in PD patients with ICD. Given the
disconnected brain in PD with ICD, as well as the disruption
of topological organization in PD, it is plausible that the whole-
brain topological network of PD-MCI may also be damaged
in a diseased state. Therefore, in the current study, we aimed
to explore whether the presence of ICD in PD patients may
determine abnormalities in the topological network by using
rs-fMRI and graph theory methods.

MATERIALS AND METHODS

Study Population
All MRI and experimental data used in this study were obtained
from the Parkinson’s Progression Markers Initiative,1 which is

1http://www.ppmi-info.org

a large-scale, comprehensive observational, multicenter project
of PD progression biomarkers (Marek et al., 2011). A total
of 52 participants were analyzed, including 18 participants in
the PD-ICD group, 18 in the PD without ICDs (PD-nICD)
group, and 16 age- and sex-matched health control (HC) group
(Table 1). All PD patients were diagnosed according to the
criteria of the United Kingdom Brain Bank (Hughes et al.,
1992). The study was approved by the Institutional Review
Boards/Independent Ethics Committees. Written informed
consent was obtained from all subjects. For more details on the
study, see http://www.ppmi-info.org/wp-content/uploads/2013/
02/PPMI-Protocol-AM5-Final-27Nov2012v6-2.pdf.

MRI Parameters
The imaging data were acquired on the Siemens 3-T MRI
scanner. T1-weighted gradient-echo 3D MPRAGE sequence
was used [repetition time (TR) = 2,300 ms, time to echo
(TE) = 2.98 ms, fractional anisotropy (FA) = 9◦, 1-mm3 isotropic
voxel] to obtain high-resolution structural images. rs-fMRI scan
is obtained by echo plane sequence (TR = 2,400 ms, TE = 25 ms,
FA = 80, voxel size = 3.3 mm3, total 210 volumes, 40 axial slices).
It is recommended that the subjects open their eyes and relax
quietly to perform a functional scan of the resting state and try
not to fall asleep.

Data Preprocessing and Statistical
Analysis
Results included in this manuscript come from preprocessing
performed using fMRIPrep 1.4.1 (Esteban et al., 2019), which is
based on Nipype 1.2.0 (Gorgolewski et al., 2011). More method
details are shown in the Supplementary Material.

RESULTS

The Small-World Topology in PD-ICD,
PD-nICD, and HC Patients
The topological brain networks at all three groups had the
characteristics of “small-world” networks. For example, over an
entire range of density thresholds, the small-world indexes of
these three groups were larger than one (σ > 1) (Figure 1C).

PD-ICD Group Versus PD-nICD Group
Compared to the PD-nICD group, the PD-ICD group showed
significantly increased clustering coefficient Cp (density
thresholds: 36–38, 40, 42–50%, p< 0.05, two-tailed) (Figure 1A),
characteristic path length Lp (density thresholds: 25–39%,
p < 0.05, two-tailed) (Figure 1B), and significantly decreased
small-world index σ (density thresholds: 10, 23, 26–27%,
p < 0.05, two-tailed) (Figure 1C). Furthermore, we explored the
hypothesis whether the abnormality of the small-world network
parameters of PD-ICD patients is accompanied by the change of
nodal centrality. Compared with the PD-nICD group, the brain
regions with significantly increased node centrality in PD-ICD
patients are located in default mode network (DMN), control
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TABLE 1 | Demographic and clinical features of HC, PD-nICD, and PD-ICD.

HC (n = 16) PD-nICD (n = 18) PD-ICD (n = 18) p-Value

Age (years) 64.75 ± 9.28 59.69 ± 11.64 62.13 ± 12.53 0.44

Gender (male:female) 13:3 12:6 12:6 0.56

Disease duration (years) – 1.90 ± 0.81 2.62 ± 1.33 0.06

UPDRS-III – 19.67 ± 8.22 22.39 ± 10.72 0.40

Hoehn and Yahr stage – 1.78 ± 0.43 1.83 ± 0.51 0.73

Montreal cognitive assessment 27.75 ± 1.25 27.44 ± 2.25 25.67 ± 4.39 0.10

Education (years) 16.88 ± 2.66 15.56 ± 2.91 15.78 ± 2.96 0.37

Depression (Geriatric Depression Scale 15) 2.19 ± 2.95 2.06 ± 1.92 3.11 ± 2.61 0.40

ICD (Questionnaire for Impulsive–Compulsive Disorders in Parkinson Disease–Current Short) 0 ± 0 0 ± 0 1.22 ± 0.55 <0.00001

FIGURE 1 | Cluster coefficient (Cp), characteristic path length (Lp), and small-world index (σ) in PD-nICD, PD-ICD, and HC. (A) The Cp from three groups. Black
triangle means significant differences between PD-nICD and PD-ICD (36–38, 40, 42–50%, p < 0.05). Black diamond means significant differences between HC and
PD-nICD (density thresholds: 32–50%, p < 0.05). (B) The Lp from three groups. Black triangle means significant differences between PD-nICD and PD-ICD (density
thresholds: 25–39%, p < 0.05). Black square means significant differences between HC and PD-ICD (density thresholds: 36–37, 49–50% p < 0.05). (C) The σ from
three groups. Black triangle means significant differences between PD-nICD and PD-ICD (density thresholds: 10, 23, 26–27%, p < 0.05).

network (CN), and dorsal attention network (DAN), and the
significantly reduced regions are located in DAN (Table 2).

PD-nICD Group Versus HC Group
Compared to the HC group, the PD-nICD group showed
a significantly decreased clustering coefficient Cp (density
thresholds: 32–50%, p < 0.05, two-tailed) (Figure 1A).

PD-ICD Group Versus HC Group
Compared to the HC group, the PD-ICD group showed
significantly increased characteristic path length Lp (density
thresholds: 36–37, 49–50% p < 0.05, two-tailed) (Figure 1B).

DISCUSSION

As far as we know, this is the first time to explore the changes
of the brains from the perspective of topological networks in
PD patients with ICD by using fMRI and graph theory analysis.
We found that the PD-ICD patients had increased clustering
coefficient and characteristic path length, while decreased small-
world index compared with PD-nICD patients. Furthermore, we
explored the hypothesis whether the abnormality of the small-
world network parameters of PD-ICD patients is accompanied
by the change of nodal centrality. As we hypothesized, the nodal
centralities of DMN, CN, and DAN were found to be significantly
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TABLE 2 | Nodal centrality differences between PD-ICD and PD-nICD.

ROI label ROI name ROI network p-Value

PD-ICD larger than PD-nICD 36 7Networks_LH_Cont_pCun_1 CN 0.001

49 7Networks_LH_Default_pCunPCC_1 DMN 0.004

67 7Networks_RH_DorsAttn_Post_1 DAN 0.037

PD-ICD smaller than PD-nICD 71 7Networks_RH_DorsAttn_Post_5 DAN 0.049

damaged in the PD-ICD group compared with the PD-nICD
group. As the pathogenesis of PD-ICD is not yet fully understood,
we will further discuss our findings from the perspective of
the topological network and the underlying pathophysiological
basis that may arise.

Our results showed that whether it is NC group’s, PD-nICD
group’s, or PD-ICD group’s brain functional network, they are
all in line with the characteristics of small-world networks. This
is similar to the studies of topological networks in other brain
diseases, such as Alzheimer disease, schizophrenia, and so on (Liu
et al., 2008; Zhao et al., 2012; Seo et al., 2013). Especially in the
recent related research of topological networks in PD patients,
the small-world network characteristics of the PD brain are also
consistently presented (Luo et al., 2014; Berman et al., 2016;
Chen et al., 2020). A small-world network is a relatively high-
efficiency network model, with a high clustering coefficient and
low characteristic shortest path length (Bullmore and Sporns,
2009). The brains of PD-ICD patients also have the characteristics
of a small-world network, indicating that even in a disease state,
the brain network is still a relatively efficient network model,
which may be necessary for their daily activities, such as recalling,
thinking, or decision making.

Although the brain network of PD-ICD patients presented
a small-world characteristic, the network parameters were
significantly different from those of the PD-nICD group.
In our study, the clustering coefficient and characteristic
shortest path length of the functional network in PD-ICD
were significantly higher than in PD-nICD. In a topological
network, the clustering coefficient reflects the efficiency of
information transfer between local areas, and the higher
the clustering coefficient, the more efficient the integration
of information in the local area. The characteristic shortest
path length reflects the overall information transmission, and
the shorter the characteristic shortest path, the higher the
efficiency of information transmission between long-distance
areas (Bullmore and Sporns, 2009). Therefore, the increase in
the clustering coefficient of the functional network of PD-
ICD patients may indicate that the communication between
the local brain regions related to impulsive behaviors is
enhanced, leading to the occurrence of impulsive behaviors.
The increase in the patient’s characteristic path length may
indicate that the information exchange in the remote brain
regions that inhibit impulsive behavior has also become slower,
making it more difficult for patients to control and stop these
impulsive behaviors.

We also explored the hypothesis whether the abnormality
of clustering coefficient and characteristic shortest path length
in PD-ICD patients is accompanied by the change of nodal

centrality. Our results show that, compared with PD-nICD, the
brain regions with significantly increased node centrality in PD-
ICD patients are located in DMN, CN, and DAN, and the
significantly reduced regions are located in DAN.

Default mode network, CN, and DAN are three networks
that play an important role in cognition, behavior, and attention,
which are inseparable from the brain’s information exchange
and processing (Petrides, 2005; Fox et al., 2006; Koechlin and
Summerfield, 2007; Buckner et al., 2008; Spreng et al., 2009).
The DMN is considered to be related to ruminations, mind-
wandering, and cognitive processing (Buckner et al., 2008; Spreng
et al., 2009). The CEN is involved in the process of external
stimuli, decision-making, and executive behaviors (Petrides,
2005; Koechlin and Summerfield, 2007). DAN is one of the
sensory orientation systems in the human brain. It involves
voluntary top-down orientation and indicates when, where, or in
what direction the subject should perform behavioral activities
(Fox et al., 2006). When it comes to PD with ICD symptoms,
there are a few previous articles about these networks. As far as
we know, there are currently only two related articles. One of
them found that PD-ICD was related to increased connectivity
within the salience network (SN) and DMN, as well as with
a decreased connectivity within CN (Tessitore et al., 2017b).
The other found decreased connectivity in DMN and CN, and
increased connectivity in SN in PD-ICD when compared with
PD-nICD patients (Tessitore et al., 2017a). Similar to previous
studies, the current article also found that the DMN and
CN network in the brain of PD-ICD patients are significantly
abnormal compared with PD-nICD. The difference is that our
research did not find significant changes in the SN network
but found that the DAN network was damaged. This may
be because our research method used a large-scale topological
network, the information flow related to the centrality of the
node needs to calculate the flow of information in the whole
brain, rather than the functional connection between several
brain regions. However, it is worth noting that our research also
found DMN and CN in the brains of PD-ICD patients from
the perspective of the topological network. This may indicate
that DMN and CN network abnormalities are related to the
pathogenesis and development of ICD symptoms in PD, and
whether there are related abnormalities in DAN network still
needs more research to confirm.

This study still has some limitations. The most important
aspect is that the sample size is relatively small. Although our
research found significant topological network differences
between PD-ICD and PD-nICD, the small sample size
prevented us from obtaining multiple comparisons corrected
results. Second, we control the influence of confusion factors
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(such as age, gender, and so on) between groups on the
topological network, but we cannot control the influence of these
factors within the group. Third, the neural network mechanisms
of different subtypes of ICD may be different. This study also
did not distinguish the impact of ICD subtypes on topological
networks. We hope that sufficient samples can be obtained in
future studies for further research.

CONCLUSION

In summary, by using the topological network analysis method,
we found that the clustering coefficient and characteristic path
length of the brain function network of PD-ICD patients
increased, accompanied by damage to the DMN, CN, and DAN
network nodes. This may be the underlying pathophysiological
basis of brain abnormalities in PD-ICD patients. At the same
time, the current study also provides more evidence for PD-ICD
patients’ brain network abnormalities from the perspective of
information exchange.
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