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A B S T R A C T

Identifying functional significance using physiological indexes is a standard approach in decision-making for treatment strategies in patients with coronary
artery disease. Recently, coronary computed tomography angiography-based physiological assessments, such as computed tomography perfusion and
fractional flow reserve derived from coronary computed tomography angiography (FFR-CT), have emerged. These methods have provided incremental
diagnostic values for ischemia-causing lesions over anatomical stenosis defined solely by coronary computed tomography angiography. Clinical data have
demonstrated their prognostic value in the prediction of adverse cardiovascular events. Several randomized controlled studies have shown that clinical use of
FFR-CT can reduce unnecessary invasive procedures compared to usual care. Recent studies have also expanded the role of FFR-CT in defining target
lesions for revascularization by acquiring noninvasive lesion-specific hemodynamic indexes like ΔFFR-CT. This review encompasses the current evidence of
the diagnostic and prognostic performance of computed tomography-based physiological assessment in defining ischemia-causing lesions and adverse
cardiac events, its clinical impact on treatment decision-making, and implications for revascularization.
Introduction

The physiological indexes, such as fractional flow reserve (FFR) or
nonhyperemic pressure ratio, are currently used to determine the
functional significance of coronary lesions and guide treatment
decision-making in the catheterization laboratory.1,2 Meanwhile, coro-
nary computed tomography angiography (CCTA) has emerged as a
primary noninvasive modality with its high-negative predictive value
(NPV) for the presence of anatomical stenosis.3 With technological
advancement, noninvasive physiological assessments have currently
become feasible using CCTA. It has expanded the scope of physio-
logical assessment, enabling physicians to define myocardial ischemia,
stratify risk for clinical outcomes, and select target lesions for revascu-
larization before referring patients to the catheterization laboratory.4

Therefore, understanding the clinical and prognostic implications of
CCTA-based physiological assessment and its application in clinical
practice is crucial for the improved management of patients with cor-
onary artery disease (CAD). In this review, we aimed to explore the
clinical implications of noninvasive physiological assessments on CCTA
in identifying functional significance and predicting clinical outcomes
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and its impact on treatment decision-making and percutaneous coro-
nary intervention (PCI) strategy from an interventionist’s perspective
(Central Illustration).
Physiological assessment of CAD

Role of coronary physiology in the catheterization laboratory

In patients with stable CAD, the presence of myocardial ischemia,
which is an impaired coronary blood flow relative to myocardial oxygen
demand, serves as a significant prognostic determinant and a surrogate
of benefits from revascularization.5,6 Anatomical stenosis measurement
on invasive coronary angiography (ICA) is the gold standard method for
evaluating the severity of CAD, with >70% stenosis indicating a
reduction in hyperemic flow.7 However, the limitations of angiographic
luminal narrowing to detect ischemia-causing lesions have also been
well-acknowledged, as mismatches between anatomical and physio-
logical severities occur in approximately 30%-40% of cases.8 In the
catheterization laboratory, the functional significance of coronary
giography; CTP, computed tomography perfusion; FFR, fractional flow reserve; FFR-CT,
ive coronary angiography; MACE, major adverse cardiac events; MBF, myocardial blood
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Central Illustration.
Clinical implications of coronary computed tomography angiography (CCTA)-based physiological assessment. CCTA-based physiological assessments, including computed
tomography perfusion (CTP) and fractional flow reserve derived from coronary computed tomography angiography (FFR-CT), offer enhanced predictive values for functional
significance than CCTA alone. They hold independent prognostic values for predicting clinical outcomes and can contribute to reducing unnecessary invasive procedures.
Noninvasive lesion-specific physiology such as ΔFFR-CT, may further assist in identifying lesions that may benefit from PCI. FFR, fractional flow reserve; PCI, percutaneous
coronary intervention.
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stenosis can be evaluated using FFR, the ratio of the poststenotic cor-
onary pressure to the aortic pressure during maximal hyperemia.9 In the
assessment of intermediate coronary stenosis, ICA complemented by
FFR is currently recommended for physiological assessment.10,11 Mul-
tiple studies have shown that lesions with an FFR >0.80 can be safely
deferred, whereas revascularization on top of medical therapy for those
with FFR �0.80 is associated with a lower risk of adverse clinical events
compared with medical treatment alone.12,13 Nonhyperemic pressure
ratio measured during a certain period of cardiac cycles without hy-
peremic agents can also be used for physiological assessment.14

Despite substantial evidence and recommendations for pressure
wire-based physiological assessments, their use remains low, reported
at <20% in patients with intermediate stenosis, and highly variable
depending on the sites and countries.15 This is attributed to concerns
about the additional use of pressure wire, cost, time, and labor required
to measure physiological indexes.
CT-based noninvasive physiological assessment

CCTA is one of the first-line modalities for evaluating the anatomical
severity of coronary stenosis in whole coronary trees.3 Its high specificity
for obstructive lesions has led the current guidelines to recommend
CCTA as the primary test in patients with a relatively low likelihood of
obstructive CAD.10,11 Beyond its ability to exclude significant coronary
stenosis, the advent of CT-derived noninvasive physiological assess-
ments has enhanced the diagnostic capacity of CCTA to identify
ischemic-causing lesions. Computed tomography perfusion (CTP) and
FFR derived from coronary computed tomography angiography
(FFR-CT) have been validated and offer additional diagnostic value in
detecting myocardial ischemia over CCTA alone.16 CTP can be used to
determine perfusion defects similar to single photon emission
computed tomography (SPECT) or positron emission tomography. Two
distinct methodologies are employed inmyocardial CTP imaging. Static
CTP captures a single image of the heart at peak contrast enhancement,
and dynamic CTP involves a sequence of CT images to track contrast
agent movement through the myocardium.17-19 FFR-CT is calculated
using several techniques that stimulate invasive FFR.20-28 Although
CT-based physiological assessment has prognostic value for clinical
outcomes in patients with relatively low-risk populations,29 several data
have shown its effectiveness in risk stratification across various severity
of CAD, including multivessel disease.30-32 According to the current
standard CCTA reporting criteria, CAD-RADS 2.0, CTP, or FFR-CT are
recommended equally for indicating the presence of myocardial
ischemia, especially in those with moderate-to-severe anatomical ste-
nosis.16 The National Institute for Health and Care Excellence (NICE)
guidelines suggest using FFR-CT for evaluating lesion-specific physi-
ology in patients with CAD.33,34 Similarly, the 2021 AHA/ACC chest
pain guideline recommends CCTA or FFR-CT for identifying
vessel-specific ischemia as class 2A in intermediate-risk patients with
40% to 90% stenosis in proximal or middle segments.35
Diagnostic performance of CTP and FFR-CT in predicting low FFR

Static and dynamic CTP and functional significance

The diagnostic performance of CTP and FFR-CT in prediction of
FFR �0.80, a standard physiological indication for revascularization,



Table 1. Prospective studies comparing diagnostic performance of CTP and FFR-CT with CCTA-defined stenosis in prediction of FFR �0.80.

Reference, year Study population Modalities Predictors Sensitivity Specificity PPV NPV Accuracy

Ko et al,36 2012 Symptomatic patients with CAD referred
for ICA (40 patients/118 vessels)

Static CTP CCTA stenosis �50% 0.95 0.78 0.68 0.97 0.83
CCTA stenosis �50% þ
visual perfusion defect

0.87 0.95 0.89 0.94 0.92

Bettencourt et
al,37 2013

Symptomatic patients with CAD and
intermediate/high pretest probability (101
patients/303 vessels)

Static CTP CCTA stenosis �50% 0.95 0.67 0.48 0.97 0.74
CCTA stenosis �50% þ
visual perfusion defect

0.71 0.90 0.68 0.91 0.85

Pontone et al,38

2018
Symptomatic patients with CAD and
referred for ICA (88 patients/106 vessels)

Static CTP CCTA stenosis �50% 0.99 0.75 0.61 0.99 0.82
CCTA stenosis �50% þ
visual perfusion defect

0.92 0.92 0.82 0.97 0.92

Greif et al,39 2013 Patients with typical or atypical chest pain
(65 patients/195 vessels)

Dynamic CTP CCTA stenosis �50% 0.98 0.54 0.37 0.99 0.63
MBF <75 mL/100 mL/min 0.95 0.74 0.49 0.98 0.78

Li et al,40 2019 Patients with suspected or known CAD
referred for ICA (86 patients/157 vessels)

Dynamic CTP CCTA stenosis �71.2% 0.81 0.63 0.67 0.79 0.72
MBF �99 mL/100 mL/min 0.96 0.93 0.92 0.96 0.94

Pontone et al,41

2019
Symptomatic patients referred for ICA (85
patients/255 vessels)

Dynamic CTP and
FFR-CT

CCTA stenosis >50% 0.83 0.66 0.54 0.89 0.71
CCTA stenosis >50% þ
visual perfusion defect

0.73 0.86 0.72 0.87 0.82

CCTA stenosis >50% þ
FFR-CT <0.80

0.86 0.75 0.60 0.93 0.78

Li et al,42 2021 Symptomatic patients with intermediate/
high pretest probability (62 patients/95
vessels)

Dynamic CTP CCTA stenosis >62.5% 0.88 0.55 0.69 0.80 0.73
Visual perfusion defect 0.63 0.98 0.97 0.69 0.79
MBF <89.5 mL/100 mL/min 0.84 0.98 0.98 0.84 0.91

Nous et al,43 2022 Symptomatic patients with suspected
stable CAD and referred for ICA (114
patients/289 vessels)

Dynamic CTP CCTA stenosis >50.0% 0.96 0.72 0.54 0.98 0.78
CCTA stenosis >50.0% þ
CT-MPI

0.84 0.89 0.73 0.94 0.88

Koo et al. (2011)44 Stable patients with suspected or known
CAD (103 patients/159 vessels)

FFR-CT CCTA stenosis >50.0% 0.91 0.40 0.47 0.89 0.59
FFR-CT �0.80 0.88 0.82 0.74 0.92 0.84

Min et al,45 2012 Stable patients with suspected or known
CAD (252 patients/407 vessels)

FFR-CT CCTA stenosis >50.0% 0.84 0.42 0.61 0.72 0.64
FFR-CT �0.80 0.90 0.54 0.67 0.84 0.73

Nørgaard et al,46

2014
Patients with suspected CAD clinically
indicated ICA (251 patients/484 vessels)

FFR-CT CCTA stenosis >50.0% 0.83 0.60 0.33 0.92 0.65
FFR-CT �0.80 0.84 0.86 0.61 0.95 0.86

CAD, coronary artery disease; CCTA, coronary computed tomography angiography; CTP, computed tomography perfusion; FFR, fractional flow reserve; FFR-CT,
fractional flow reserve derived from coronary computed tomography angiography; ICA, invasive coronary angiography; MBF, myocardial blood flow; NPV, negative
predictive value; PPV, positive predictive value.
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is compared with CCTA-defined stenosis in Table 1.36-46 In the study
by Ko et al,36 the addition of visually assessed perfusion defect using
static CTP increased the positive predictive value (PPV) for FFR �0.80
from 0.68 to 0.89, while maintaining NPV from 0.97 to 0.94. Similar
results were reported in subsequent studies.37,38 Since static CTP
might not always capture myocardial images at the optimal timing of
peak enhancement, it could potentially lead to an underestimation of
perfusion defects. Dynamic CTP addresses this limitation by tracing
multiple phases of contrast enhancement over time, providing a
time-resolved assessment of myocardial blood flow (MBF).19 This
approach allows for the quantification of MBF and volume. In the
study by Li et al,42 impaired CT-derived MBF exhibited the highest
PPV and diagnostic accuracy for FFR �0.80, followed by visual
analysis of perfusion defects and CCTA-derived stenosis. Further
studies have shown that CT-derived MBF can detect functionally
significant lesions with better diagnostic performance than CCTA
alone.39-41,43,47 When its diagnostic ability for invasive FFR was
compared with other noninvasive modalities, the negative likelihood
ratios of CTP were comparable with those of stress imaging by
magnetic resonance imaging or positron emission tomography and
superior to SPECT in a pooled meta-analysis.48 The use of advanced
CT scanners and dual-source CT technology is expected to reduce
radiation doses and beam-hardening artifacts in dynamic CTP.49

These advancements could render the combined use of CTP and
CCTA a viable option for simultaneous noninvasive anatomical and
physiological assessment.50
Current status of FFR-CT

The DISCOVER-FLOW study was the first-in-human study, pro-
spectively demonstrating the diagnostic accuracy of FFR-CT
compared with invasive FFR. In 103 stable patients with CAD
enrolled in 4 centers across 3 countries, FFR-CT was shown to be
superior to CCTA-derived stenosis in identifying lesions with FFR
�0.80 (area under the curve [AUC] 0.90 vs 0.75), increasing PPV
from 0.47 to 0.74.44 This finding was further reinforced by subse-
quent prospective studies, such as DeFACTO and NXT trials
(Table 1). A subanalysis of the PACIFIC trial also demonstrated that
the diagnostic accuracy of FFR-CT was superior to that of CCTA or
SPECT.51

Following the clinical application of the FFR-CT prototype, various
types of CT-derived FFR havebeendeveloped. These usemodifiedCFD
and machine learning analyses provided by different manufacturers,
including uFFR-CT (United Imaging Healthcare),22 DEEPVESSEL-FFR
(Keya Medical),23 cFFR (Siemens AG Healthcare),24 FFR-CT from 1-D
CFD (Toshiba Medical Systems Corp),25 FFR-CT from IntelliSpace Por-
tal Version (Philips Healthcare),26 or FFR-CT from HeartMedi (AI
Medic),27,28 among others. The burgeoning variety of FFR-CT technol-
ogy has expanded its application in clinical practice.

Several studies have directly compared the diagnostic performance
of FFR-CT with that of CTP in assessing functional significance.
Although both FFR-CT and CTP significantly enhance the diagnostic
yield of CCTA, their diagnostic accuracies were found to be comparable
(FFR-CT vs CT-MPI, AUC 0.78 vs 0.78).52 This finding was also observed
in other populations (CCTA þ FFR-CT vs CCTA þ CTP, AUC 0.93 vs
0.92, P ¼.13).53 Interestingly, the diagnostic accuracy was significantly
improved when FFR-CTor CTP was added to each combination (CCTA
þ FFR-CT þ CTP vs CCTA þ FFR-CT, AUC 0.92 vs 0.88, P ¼.03; CTA þ
FFR-CT þ CTP vs CCTA þ CTP, AUC 0.92 vs 0.88, P ¼.02).41 This sug-
gests the potential incremental value of an integrative assessment of
CCTA, FFR-CT, and CTP, as seen in the complementary prognostic
value among invasive pressure and flow indexes in predicting clinical
outcomes.54,55



Table 2. Natural history of coronary atherosclerosis assessed by FFR and FFR-CT.

FFR FFR-CT

Reference, year Clinical outcomes Follow-up
duration

Results Reference,
year

Clinical outcomes Follow-up
duration

Results

Xaplanteris et
al,13 2018
(FAME II trial)

Composite of death
from any cause, MI, or
urgent
revascularization

60.5 mo
(59.8-61.7)

FFR >0.80: 15.7%
FFR �0.80: 27.0%

Nørgaard et
al,60 2018

Composite of all-cause
death, MI, hospitalization
for unstable angina, and
unplanned
revascularization

24 mo (8-41) FFR-CT >0.80: 3.9%
FFR-CT �0.80: 9.4%

Barbato et al,59

2016
Composite of
cardiovascular death,
target vessel MI, and
ischemic-driven TVR

23 � 2 mo HR, 0.87; 95% CI,
0.83-0.91 per FFR
0.05 increase

Yang et al,61

2023
Composite of
cardiovascular death,
target vessel MI, and
clinically driven TVR

10.1 y (9.3-10.2) HR 0.75 (0.61 – 0.92)
per FFR-CT 0.05
increase

FFR, fractional flow reserve; FFR-CT, fractional flow reserve derived from coronary computed tomography angiography; HR, hazard ratio; MI, myocardial infarction; TVR,
target vessel revascularization.
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Prognostic value of CT-based noninvasive physiological
assessment

Association of CT-based functional significance with clinical outcomes

The established diagnostic value of CT-based physiological
assessment for detecting low FFR raises the question of whether they
also provide additional and independent prognostic information, aid-
ing in more effective treatment decision-making. Nakamura et al56 re-
ported that abnormal perfusion identified by dynamic CTP was
associated with a higher risk of major adverse cardiac events (MACE)
independent of CCTA stenosis (hazard ratio [HR], 5.4; 95% CI, 1.7-16.7)
and demonstrated incremental prognostic value over CCTA. In the
5-year follow-up of the NXT trial, the risk of MACE was higher in pa-
tients with FFR-CT �0.80 than those with FFR-CT >0.80 (HR, 5.5; 95%
CI, 1.6-19), and the predictability for MACE was superior to that of
CCTA stenosis (AUC 0.71 vs 0.52; P <.001).57 In the ADVANCE registry,
which prospectively enrolled 5083 patients from 38 international sites,
1-year follow-up data indicated a trend toward a higher rate of all-cause
death or myocardial infarction (MI) in patients with FFR-CT �0.80 than
with FFR-CT >0.80 (1.2% vs 0.6%, P ¼.06).58 This association became
significant in the recently reported 3-year follow-up data of 900 patients
from 3 Danish sites. A meta-analysis further supports the prognostic
value of FFR-CT.29 Nørgaard et al29 conducted a systematic
meta-analysis involving 5460 patients with available prespecified 1-year
hard outcomes. The risk of all-cause death or MI was significantly higher
in 3334 patients with FFR-CT �0.80 than in 2126 patients with FFR-CT
>0.80 (1.4% vs 0.6%; relative risk [RR], 2.31; 95% CI, 1.29-4.13). Addi-
tionally, FFR-CTshowed a risk continuum for death or MI (RR, 1.67; 95%
CI, 1.47-1.87, per 0.10 FFR-CT decrease).
Natural history of coronary atherosclerosis according to FFR-CT strata

In light of the current evidence for the association of FFR-CT with
clinical outcomes, it is important to comprehend the natural history of
coronary atherosclerosis based on FFR-CT in patients who have de-
ferred revascularization. This understanding is key to determining the
efficacy of FFR-CT-based treatment decision-making. Clinical outcomes
in patients with deferral of PCI are presented in Table 213,59-61 ac-
cording to binary and continuous FFR and FFR-CT. In the 5-year
follow-up of the FAME II study, the composite of death, MI, or urgent
revascularization was 15.7% and 27.0% in medically treated patients
with FFR >0.80 and FFR �0.80, respectively.13 Similarly, Nørgaard et
al60 investigated the clinical outcomes relative to FFR-CT and treatment
types in a real-world registry of stable patients with CAD undergoing
CCTA and FFR-CT analysis. They found that the composite rate of
death, MI, or urgent revascularization over a median follow-up duration
of 24 months was 9.4% in medically treated patients with an FFR-CT
�0.80, compared with 3.9% in those with an FFR-CT >0.80.60 The
relationship of continuous FFR-CT with outcomes in deferred vessels
was also found to be similar to that of FFR. Barbato et al59 prospectively
tracked outcomes of medically treated patients across a whole range of
FFR, finding that an increase in 0.05 of FFR was associated with 13% risk
reduction for MACE (HR, 0.87; 95% CI, 0.83-0.91). In deferred vessels
following FFR-CT measurement from the DISCOVER-FLOW study, a
similar risk continuumwas observed for the composite of cardiovascular
death, target vessel MI, and target vessel revascularization (HR, 0.75;
95%CI, 0.61-0.92, per FFR-CT 0.05 increase).61 Althoughmore data are
required for the direct comparison, the current evidence suggests that
the prognostic implications of FFR-CT might be similar to those of FFR,
justifying the decision to perform or defer PCI based on low FFR-CT.
Utilizing FFR-CT in clinical settings: Outside and inside the
catheterization laboratory

Clinical impact of FFR-CT on downstream testing

Prior studies have evaluated the clinical efficacy of FFR-CT, adding
to standard care in the management of patients with CAD. In the
PLATFORM study, patients with new-onset stable chest pain were
randomly assigned either to usual testing or to CCTA with FFR-CT. The
CCTA with FFR-CT group showed a significantly lower rate of ICA with
negative findings compared to the usual testing group (73.3% vs 12.4%;
P <.001), and there were no significant differences in the rates of death,
MI, and unplanned revascularization at 1 year between the 2 groups.62

In the ADVANCE registry, the addition of FFR-CT to CCTA led to a
reclassification of clinical management strategies in about two-thirds of
cases and was significantly associated with fewer negative ICA.63

Another observational study directly compared the efficacy of FFR-CT
with myocardial perfusion imaging, showing that FFR-CT usage
reduced downstream ICA utilization (absolute risk difference: –4.2%;
95% CI, –6.9 to –1.6) and was associated with a lower rate of no
obstructive lesions on ICA (absolute difference: –12.8%; 95% CI, –22.2
to –3.4) and a higher rate of coronary revascularization (absolute dif-
ference: 14.1%; 95% CI, 3.3-4.9).64 In the FORECAST trial, 1400 pa-
tients with stable chest pain were randomized to either standard care or
CCTA with selective FFR-CT. Although the primary end points, total
cardiac costs, and clinical outcomes were not different between the 2
groups, the CCTA with selective FFR-CT group showed a lower rate of
ICA (19% vs 25%, P ¼.01). These findings support the beneficial impact
of FFR-CT on treatment decision-making before ICA. The recently
published PRECISE trial further highlighted the impact of FFR-CT on
clinical practice. A total of 2103 patients with stable symptoms of CAD
across 65 international sites were randomized to either a precision



Figure 1.
Revascularization rate according to fractional flow reserve (FFR) and fractional flow reserve derived from coronary computed tomography angiography (FFR-CT). In the
DISCOVER-FLOW, the first-in-human study where the diagnostic accuracy of FFR-CT was demonstrated, the actual revascularization rate after FFR and FFR-CT measurement is pre-
sented. PCI, percutaneous coronary intervention.
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strategy group or a usual testing group. In the precision strategy group,
CCTA with selective FFR-CT was performed except for those with
minimal risk scores, whereas site-selected stress testing or catheteriza-
tion was conducted in the usual testing group. During the median 11.8
months of follow-up, the precision strategy group showed significantly
lower rates of catheterization with no obstructive lesions (2.6.% vs
10.2%; HR, 0.24; 95% CI, 0.16-0.36), whereas the rates of death or MI
were similar between the 2 groups.65 Consequently, current evidence
indicates that FFR-CT can reduce unnecessary downstream ICA without
increasing adverse clinical events or total cost. This benefit may be
attributed to the advantages of coronary physiology-based ap-
proaches. Figure 1 illustrates similar PCI trends according to FFR and
FFR-CT values in the DISCOVER-FLOW study. Given that a significantly
lower rate of PCI was observed in the FFR-guided treatment than the
intravascular ultrasound-guided treatment (44.4% vs 65.3%) with similar
clinical outcomes in the FLAVOUR trial,66 similar characteristics of
FFR-CT can be expected. Thus, the accumulating evidence supports
Figure 2.
Association of ΔFFR-CTwith plaque quantity and quality. In the lesion-level analysis of the
of both MLA <4 mm2 and PB �70%) and high-risk plaque (ie, the number of adverse plaqu
napkin-ring sign] �2) according to the quartile of ΔFFR-CT is shown. FFR-CT, fractional flow re
area; PB, plaque burden.
the use of FFR-CT to avoid unnecessary invasive procedures during
CAD management.
Lesion-specific hemodynamic assessment in the selection of target
lesion for PCI

Although FFR or FFR-CT are per-vessel indexes that provide infor-
mation on the functional significance of a target vessel, PCI is a lesion-
specific treatment, and selecting the appropriate target lesion is crucial
in the catheterization laboratory.67,68 The beneficial effect of PCI is
associated not only with the presence of functional significance but also
with physiological focal disease and/or a higher local physiological
severity.69-72 Sakai et al73 reported that the prevalence of optical
coherence tomography-derived lipid-rich plaque or thin-cap fibroa-
theroma was significantly higher in physiological focal disease, whereas
calcifications were more predominant in physiological diffuse disease.
DISCOVER-FLOW study, the prevalence of high-atherosclerotic burden (ie, the presence
e characteristics [low-attenuation plaque, positive remodeling, spotty calcification, and
serve derived from coronary computed tomography angiography; MLA, minimum lumen



Figure 3.
Representative case. At the time of index coronary computed tomography angiography (CCTA), the lesion in left anterior descending coronary artery showed intermediate stenosis
with spotty calcification (left panel) and adverse hemodynamic characteristics (mid panel). The patient had acute myocardial infarction 655 days after CCTA, and the angiogram revealed
the progression of the lesion with rupture. APS, axial plaque stress; DS, diameter stenosis; FFR-CT, fractional flow reserve derived from coronary computed tomography angiography;
LAP, low-attenuation plaque; MI, myocardial infarction; NRS, napkin-ring sign; PR, positive remodeling; SC, spotty calcification; WSS, wall shear stress.
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Furthermore, Sato et al74 recently showed that the benefit of revascu-
larization might be present in lesions with both FFR-CT �0.80 and
high-risk plaque, whereas it may be diminished in lesions with FFR-CT
�0.80 without high-risk plaque. This finding aligns with the post hoc
analysis of the FAME II study, which indicated that MI events were
predicted by high wall shear stress in medically treated patients with
low FFR,75 suggesting that identifying lesion-specific plaque and he-
modynamic characteristics is important for optimizing post-PCI out-
comes, even in vessels with low FFR. From this perspective, one of the
strengths of FFR-CT analysis is its ability to derive FFR-CT at any point
on the target vessel, enabling physicians to obtain lesion-specific
physiological information for each lesion prior to the procedure.76,77

Among various local hemodynamic indexes, ΔFFR-CT, defined as the
difference in FFR-CT across the lesions, is a simplified index that can be
used as an indicator of local hemodynamic environment, representative
of shear stress or pressure gradient acting on the plaque.78 It also
correlates with the presence of high disease burden and adverse pla-
que characteristics, generally regarded as a marker of plaque vulnera-
bility (Figure 2). The prognostic value ofΔFFR-CT has been described in
functionally significant vessels. In the post hoc analysis of the EMERALD
study comparing plaque and hemodynamic characteristics between
culprit and nonculprit lesions in patients with acute coronary syndrome
(ACS), high ΔFFR-CT was associated with a higher risk of ACS culprit
lesions among those with FFR-CT �0.80.78 A representative case
illustrating the prognostic value of ΔFFR-CT in predicting ACS is pre-
sented in Figure 3. In a lesion-level outcome analysis of the
DISCOVER-FLOW study, ΔFFR-CTshowed a risk continuum for 10-year
target lesion failure, independent of lesion stenosis and adverse plaque
characteristics.61 In a post hoc analysis of the ADVANCE registry, Takagi
et al79 reported that ΔFFR-CTwas an indicator of early revascularization
and suggested that ΔFFR-CT >0.13 was related to an increase in
revascularization to ICA ratio in patients with obstructive lesion and
FFR-CT �0.80. Therefore, acquiring noninvasive local hemodynamics
such as ΔFFR-CT could provide additional lesion-specific prognostic
information beyond functional significance and may help in defining
appropriate PCI target lesions before ICA.
Limitations and future perspectives in CT-based physiological
assessment

Although CCTA and CT-based physiological assessment have
widely been adopted with their advancement in enhanced resolu-
tion, improved diagnostic accuracy, and reduction in radiation dose,
it is important to recognize their inherent limitations. The image
quality of CCTA is limited when evaluating heavily calcified lesions
or in-stent segments due to blooming artifacts. Additionally, despite
its excellent NPV, the PPV of CCTA is relatively low, which may lead
to unnecessary referral for excessive downstream testing.80,81 It is
also crucial to note that not all patients are suitable for CT-based
physiological assessment. For instance, the rejection rate of
FFR-CT analysis was 2.9% in the ADVANCE registry and as high as
33% in the PROMISE trial.82 Section thickness and heart rate have
been identified as predictors of unsuccessful FFR-CT analysis.83

Moreover, CTP is not recommended for patients with severe obesity
and those who have implantable cardioverter-defibrillator and
pacemaker leads due to the potential for unreliable results.19 The
requirement for additional adenosine and contrast injections is a
limitation of CTP that hinders its integration into routine clinical
practice. The additional time needed for CT-based physiological
assessment, as compared with CCTA alone, could delay clinical
decision-making, which may be unsuitable in urgent clinical settings.
Thus, understanding and appropriately using these technologies in
consideration of both their strengths and limitations, is vital in daily
practice.

Upcoming studies will further provide insights into the efficacy of
CT-based physiological assessment. The DYNAMITE trial
(NCT04709900) aims to assess 3-year MACE following CAD man-
agement using CCTA combined with dynamic CTP or FFR-CT vs
standard care. The ACCURATE II trial (NCT05824520) will compare
1-year MACE in patients with FFR-CT �0.80, treated with either
optimal medical therapy alone or combined with PCI. Additionally,
the P4 study (NCT05253677) will evaluate the noninferiority of CT-
based PCI against IVUS-based PCI in patients with myocardial
ischemia, in terms of 1-year MACE. These studies are expected to
provide clinical evidence on the effectiveness of CCTA and CT-
based physiological assessment in guiding treatment decisions for
patients with CAD.
Conclusion

Noninvasive physiological assessment using CCTA has enhanced
the diagnostic performance of CCTA in predicting functional signifi-
cance. By offering additional prognostic value over CCTA, it has been
demonstrated to reduce unnecessary invasive procedures. Moreover,
noninvasive lesion-specific hemodynamic assessments could further
assist in identifying target lesions that may benefit from revasculariza-
tion in the catheterization laboratory. Therefore, understanding and
appropriate use of CT-based physiological indexes will aid in selecting
treatment strategies and optimizing the management of patients with
CAD.
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