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Abstract

In 2009, a new strain of H1N1 influenza A virus caused a pandemic, and its descendant strains are causing seasonal epidem-
ics worldwide. Given the high mutation rate of influenza viruses, variant strains having different amino acids on hemagglu-
tinin (HA) continuously emerge. To prepare vaccine strains for the next influenza seasons, it is an urgent task to predict
which variants will be selected in the viral population. An analysis of 24,681 pairs of an amino acid sequence of HA of
H1N1pdm2009 viruses and its patient age showed that the empirical fixation probability of new amino acids on HA signifi-
cantly differed depending on their frequencies in the population, patient age distributions, and epitope flags. The selective
advantage of a variant strain having a new amino acid was modeled by linear combinations of patients age distributions
and epitope flags, and then the fixation probability of the new amino acid was modeled using Kimura’s formula for advanta-
geous selection. The parameters of models were estimated from the sequence data and models were tested with four-fold
cross validations. The frequency of new amino acids alone can achieve high sensitivity, specificity, and precision in predict-
ing the fixation of a new amino acid of which frequency is more than 0.11. The estimated parameter suggested that viruses
with a new amino acid having a frequency in the population higher than 0.11 have a significantly higher selective advantage
compared to viruses with the old amino acid at the same position. The model considering the Z-value of patient age rank-
sums of new amino acids predicted amino acid substitutions on HA with a sensitivity of 0.78, specificity of 0.86, and preci-
sion of 0.83, showing significant improvement compared to the constant selective advantage model, which used only the
frequency of the amino acid. These results suggested that H1N1 viruses tend to be selected in the adult population, and fre-
quency of viruses having new amino acids and their patient ages are useful to predict amino acid substitutions on HA.

Key words: fixation probability; amino acid substitution; patient age distribution; advantageous selection; hemagglutinin;
H1N1 influenza virus.

1. Introduction

There are one billion seasonal influenza cases, with three to
five million severe cases and around 409 thousand influenza-

related deaths annually (World Health Organization 2019). The
seasonal influenza is caused by two subtypes of influenza A vi-
ruses, H1N1 and H3N2, and two strains of influenza B viruses
circulating in the human population. Quadrivalent vaccines,
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containing two strains from type A viruses and two strains from
type B, or trivalent vaccines, containing two from type A viruses
and one type B strain, are used to reduce the risk of severe
symptoms caused by seasonal influenza (World Health
Organization 2020).

The hemagglutinin (HA), the major antigen of influenza A vi-
ruses, undergoes adaptive evolution that alters their antigenicity
in human population. This antigenic evolution is caused by a
process where human immunity selects variant strains antigeni-
cally different from strains that have been circulating in the past
(Smith et al. 2004). Amino acid substitutions on epitope regions
on HA are responsible for the difference in antigenicity (Koel et
al. 2013). HA of subtype H3N2 has five epitope regions (Wilson
and Cox 1990), while H1N1 HA has four epitope regions (Igarashi
et al. 2010). It is known that epitope regions on HA show positive
selection, under which non-synonymous mutations occurred
more frequently than synonymous mutations (Bush et al. 1999a;
Suzuki 2008). The adaptive evolution of circulating influenza
strains can be observed using genomic sequences stored in pub-
lic databases in real time (Neher and Bedford 2015).

Different age groups have different adaptive immune pro-
files against influenza viruses. An individual’s immunity is
known to be mostly affected by the first infection in life, and
this phenomenon is called the original antigenic sin (Francis et
al. 1947; Davenport et al. 1955; Francis, 1960; Lessler et al. 2012;
Nachbagauer et al. 2017). Using a mathematical model,
Kucharski and Gog (2012) demonstrated that the more influence
the original antigenic sin has on current immunity against sea-
sonal influenza, the more it alters the age distribution of immu-
nity. Gostic et al. (2016) showed that the subtype with which an
individual was infected first in life affected the severity of infec-
tions with H5N1 and H7N9. Using data on vaccine efficacy,
Arevalo et al. (2020) showed that severity of H1N1 and H3N2 in-
fluenza infections was reduced depending on the subtype that
the individual was first infected with.

The driving force of the adaptive evolution of seasonal influ-
enza viruses is immunity in the human population, which are dif-
ferent depending on age groups. Several studies have developed
computational models to predict influenza strains that would be-
come dominant in subsequent seasons. Bush et al. (1999b) pre-
dicted strains that became dominant in next seasons by using
positively selected codons. Ito et al. (2011) used statistics on the
number of different amino acids from past strains to predict fu-
ture dominant strains of H3N2 viruses. Physicochemical proper-
ties of amino acids on HA have also been used to predict the
antigenic variations of H3N2 (Du et al. 2012; Suzuki 2013; Cui et al.
2014; Suzuki 2015). (Steinbrück et al. 2014) combined serological
data with the phylogenetic tree of HA to predict suitable vaccine
strains. (Łuksza and Lässig 2014) developed a model to estimate
the fitness of H3N2 strains using adaptive mutations on epitopes
and deleterious mutations outside the epitopes on HA. Neher et
al. (2014) used the shape of genealogical tree to predict progenitor
lineage of the upcoming season. Huddleston et al. (2020) devel-
oped a model to predict the frequency of an H3N2 strain in the fu-
ture using its current frequency and fitness, determined by the
antigenic novelty of epitopes and the mutational load in non-
epitopes of HA. See a review paper by Morris et al. (2018) for a
comprehensive list of previous models attempting to predict the
evolution of influenza viruses. However, none of these previous
studies considered the age distribution of patients to predict the
evolution of influenza viruses.

Given the high mutation rate of influenza viruses, variant
strains having different amino acids on HA continuously
emerge during seasonal epidemics (Fitch et al. 1991). However,

only a limited number of new amino acids become fixed in the
viral population and most of them become extinct. The proba-
bility that a new allele becomes fixed is called fixation probabil-
ity. The relationship between allele frequency and fixation
probability was investigated in conditions under neutral evolu-
tion (Kimura 1955), adaptive evolution (Kimura 1962), nearly
neutral evolution (Ohta 1992), and various relaxed assumptions
(Gerrish and Lenski 1998; Gavrilets and Gibson 2002; Wilke 2003;
Lambert 2006; Patwa and Wahl, 2008). There are a few previous
works studying the fixation probability of variant strains of in-
fluenza viruses. (Steinbrück and McHardy 2011) analyzed the al-
lele frequency of H3N2 viruses over time and showed that
alleles that increases in frequency more rapidly were more
likely to become fixed, and this phenomenon was later con-
firmed by computer simulations (Castro et al. 2020). (Strelkowa
and Lässig 2012) found that non-synonymous mutations on
non-epitope regions of HA reduced the fixation probability of
strains. Illingworth and Mustonen (2012) modeled the effect of
linkage disequilibrium on the selection of alleles in adaptive
evolution, and they estimated the influence of interference by
other alleles in the evolution of H3N2 strains.

In this article, we investigate the relationships between fixa-
tion probabilities of new amino acids on HA and their frequen-
cies, patient age distributions, and epitope flags. We construct
mathematical models of the selective advantage of a new amino
acid using patient age distributions and the epitope flags, then
calculate the fixation probability using Kimura’s formula for ad-
vantageous selection. The model parameters are estimated by
maximizing the likelihood of fixation and extinction events ob-
served in the HA sequence data of H1N1 influenza viruses circu-
lating from 2009 to 2020. We evaluate the predictability of models
using training-test cross-validations. Based on the results, we dis-
cuss the importance of the distribution of patient ages in predict-
ing adaptive evolution of seasonal influenza viruses.

2. Materials and methods
2.1 Sequence data

We downloaded complete HA sequences of influenza A H1N1
pandemic 2009 viruses isolated from humans during March
2009 to May 2020 from the Global Initiative on Sharing All
Influenza Data (GISAID) (Shu and McCauley 2017). The HA
sequences that had metadata about ages of patients were se-
lected and used for subsequent analyses. As a result, we
obtained a total of 24,681 unique pairs of an amino acid se-
quence and the age of its patient. To investigate temporal
change in the frequency of amino acids on HA, the sequences
were grouped into four-month sliding windows. A total of 130
four-month sliding windows were obtained. The first sliding
window contains HA sequences from March to June 2009, the
second contains those from April to July 2009, and the last con-
tains those from February to May 2020. The four-month sliding
windows contain an average of 741,58 sequences with a mini-
mum of 47 and a maximum of 4,347 sequences. The temporal
change in the number of sequences in each four-month window
is shown in Supplementary Fig. S1A. The patient age distribu-
tion for each year from March 2009 to May 2020 is shown in
Supplementary Fig. S1B.

2.2 Tracking frequencies of newly emerged amino acids

Amino acid substitution is a process where an allele having a
new amino acid at a residue position on a protein becomes fixed
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and those having the other amino acids at the position become
extinct. To track the transition from an old amino acid to a new
amino acid at a position on HA, we calculated frequencies of
amino acids on each position for each sliding window.
Historically, an allele is called fixed when its frequency becomes
1.0, and extinct when it becomes 0.0. In this study, however, we
relax the condition of fixation and consider an amino acid as
fixed when its frequency exceeds 0.95 in a sliding window. The
reason for this relaxation is that variant strains with other
amino acids than the new amino acid emerge from time to
time, and there is almost no chance for the frequency to become
1.0. The condition for extinction remains the same as the histor-
ical definition, where an allele becomes extinct at a frequency
of 0.0. For each residue position on HA, an amino acid in a win-
dow is called old if the amino acid has just become fixed in the
current window or it has been old in its preceding windows.
After a fixation event, the other amino acids found at this posi-
tion are considered as new amino acids. An old amino acid
remains old, even though its frequency drops below 0.95, until
another amino acid becomes fixed at its position. When an old
amino acid has been substituted by another amino acid and
appears after the substitution, it is considered as a new amino
acid. In the first window, the old amino acid at each position is
defined by its consensus amino acid.

2.3 Months from emergence and frequency of amino
acids

For each new amino acid, a set of consecutive four-month slid-
ing windows from its emergence to its fixation or extinction
was identified. Frequencies of the new amino acid in these win-
dows were recorded with its evolutionary outcome, that is, fixa-
tion or extinction. We stratified amino acids in the identified
four-month sliding windows into strata of frequency ranges
with a width of 0.1 starting with (0.0, 0.1] and ending with (0.9,
1.0] according to their frequencies. For each frequency range,
the evolutionary outcomes of new amino acids of which fre-
quencies at a time point were within the range were collected
and used to calculate the empirical fixation probabilities. The
empirical fixation probability of new amino acids within each
frequency range was calculated as the number of new amino
acids that later became fixed divided by the total number of
new amino acids. Amino acids in which their outcomes have
not yet been determined were excluded from the calculation.
Amino acids with frequencies higher than 95% were excluded
from the analysis because they were considered to have already
been fixed. The 95 per cent binomial confidence intervals of fix-
ation probabilities were calculated by the method of Clopper
and Pearson (1934).

2.4 Comparison of patient age distributions between
new and old amino acids

We define the transition phase of an amino acid substitution as
the period from its emergence to its fixation. For each new
amino acid at a position on HA that later became fixed, sequen-
ces in each four-month sliding window during its transition
phase were divided into three groups: those having the new
amino acid that later became fixed at the position, those having
new amino acids which later became extinct, and those having
the old amino acid. The age of patients of sequences in each
group was collected. Patient ages of sequences with the new
amino acids that later became fixed and those with old amino
acids at the position were compared using the two-tailed

Wilcoxon rank-sum test, with a null hypothesis that the distri-
bution of patient ages of sequences with the new amino acid
that later became fixed are the same as those of the old amino
acid. The resulting P-values from the two-tailed Wilcoxon rank-
sum test were adjusted by Bonferroni’s correction. Cohen’s d
(Cohen 1992) was used to estimate the effect size of having a
new amino acid on median patient ages for fixed amino acid
substitution.

2.5 Relationship between empirical fixation probability
and patient ages and epitope flags

For each four-month sliding window that contains at least one
new amino acid, the evolutionary outcomes of all new amino
acids were collected. To exclude four-month sliding windows
that had extremely small numbers of sequences, four-month
sliding windows containing less than sixty sequences, the first
percentile of numbers of sequences of all windows, were ex-
cluded from the analyses. We set a threshold on the minimum
frequency of a new amino acid in a four-month sliding window
to be included in the calculation of the empirical fixation proba-
bility. The threshold was set to 0.11 in order to have a total em-
pirical fixation probability of 0.5 (Supplementary Fig. S2A). This
ensures that the number of four-month sliding windows con-
sisting of new amino acids which became fixed is almost equal
to the number of those which became extinct. However, new
amino acids that became extinct would naturally appear in less
numbers of windows compared to those that became fixed.
Thus, the number of unique new amino acids may not be equal.
See Section 4 for the reason for setting a threshold.

For each new amino acid of which frequency among all
sequences at its position is more than 0.11 in a four-month slid-
ing window, the profile of the new amino acid was defined as
follows. The profile of new amino acid i in a four-month sliding
window is represented by a combination of three variables
ðfi; ai; eiÞ, where fi is the frequency of i in the four-month sliding
window, ai is its patient age statistic, and ei is its epitope flag.
We used the epitope information of HA of H1N1 viruses accord-
ing to Igarashi et al. (2010). Epitope flag ei ¼ 1 if i is a new amino
acid in an epitope region on HA and ei ¼ 0 otherwise.

We stratified profiles of new amino acids in all four-month
sliding windows according to patient age statistic ai and epitope
flag ei. The patient age statistics involved the median patient
age of the new amino acids, median patient ages of old amino
acids, differences of median patient ages between new and old
amino acids and differences of distribution of patient ages be-
tween new and old amino acids, which are defined as follows.

Let X and Y be sets of patient ages of amino acid sequences
with a new amino acid and an old amino acid at a position, re-
spectively. The median age difference, a:diff , is defined by

a:diff ¼medianðXÞ–medianðYÞ:

As another statistic for the difference in distributions of pa-
tient ages between a new amino acid and an old amino acid at
the same position, we considered the z-value of the W statistic
under its normal approximation, which is used in the Wilcoxon
rank-sum test with continuity correction (Hollander et al. 2014).
The z-value of rank-sum of a new amino acid, a:wilcox, is de-
fined by

a:wilcox ¼
PjXj

i¼0 rankðxiÞ � lX

rX
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Here, xi represents an element of X and rankðxÞ represents
the rank of x in X [ Y, and jXj and jYj represent sizes of X and Y,
respectively. The lX and rX are the expected mean and the
standard deviation of the sum of ranks of x in X, which are
obtained by

lX ¼
jXjðjXj þ jYj þ 1Þ

2
; and

rX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXjjYjðjXj þ jYj þ 1Þ

12

r
:

The empirical fixation probability for each stratum was cal-
culated from the number of profiles of new amino acids that
later became fixed and those that later became extinct.

2.6 Model of fixation probability

We use Kimura’s formula for advantageous selection (Kimura
1962) to represent the fixation probability of a new amino acid.
Thus, the fixation probability of a new amino acid at a residue
position on HA, Pfixðf ;NsÞ, is given by

Pf ix f ; Ns
� �

¼ 1� e–4Nsf

1� e–4Ns ; (1)

where N is the effective population size, s is the selective advan-
tage of the amino acid, and f ð0 � f � 1Þ is the frequency of vi-
ruses having the new amino acid at the position on HA in the
viral population. We assume that N is constant over time to use
formula (1) as the first approximation for its simplicity. This
constant assumption of viral population is discussed in detail in
the Section 4.

Let si be the selective advantage of viruses that have new
amino acid i at a position on HA over those having the other
amino acids at the same position. In this study, we hypothe-
sized that si can be represented as a linear combination of fac-
tors associated with survival in the human population. By
assuming a constant effective population N, the product of
Nand selective advantage si are expressed as

Nsi ¼ Caai þ Ceei þ C0; (2)

where ai is an age statistic representing how effectively the
viruses with new amino acid i can infect adults compared to
those with the old amino acid at the same position, ei is the
epitope flag of the position expressing whether or not the po-
sition is epitope of HA. Ca, Ce, and C0 represent coefficients for
the age statistic, the epitope flag, and the intercept,
respectively.

Combinations of age statistics a:dif fi, a:wilcoxi, and epitope
flag ei for a new amino acid i yield a total of six models.

(M1)Nsi ¼ C0,
(M2)Nsi ¼ Caa:dif fi þ C0,
(M3)Nsi ¼ Caa:wilcoxi þ C0,
(M4)Nsi ¼ Ceei þ C0,
(M5)Nsi ¼ Caa:dif fi þ Ceei þ C0,
(M6)Nsi ¼ Caa:wilcoxi þ Ceei þ C0

Suppose F ¼ fðf F
1 ; a

F
1; e

F
1Þ; ðf F

2 ; a
F
2; e

F
2Þ; . . . ; ðf F

n ; a
F
n; e

F
nÞg is a set of

profiles of new amino acids that later became fixed
andE ¼ fðf E

1 ; a
E
1 ; e

E
1Þ; ðf E

2 ; a
E
2 ; e

E
2Þ; . . . ; ðf E

m; a
E
m; e

E
mÞg is a set of those

that later became extinct. The likelihood of coefficients
h ¼ ðCa;Ce;C0Þis given by

L hð Þ ¼
Qn

i¼1 Pfix f F
i ;NsF

i

� �� �Qm
j¼1 1� Pfix f E

j ;NsE
j

� �� �

¼
Yn

i¼1

1� expð�4NsF
if F

iÞ
1� expð�4NsF

iÞ
Ym

j¼1
1�
ð1� expð�4NsE

jf E
jÞÞ

1� expð�4NsE
jÞ

 !

¼
Yn

i¼1

1� exp �4 CaaF
i þ CeeF

i þ C0

� �
f F

i

� �
1� exp �4 CaaF

i þ CeeF
i þ C0ð Þð Þ

Ym

j¼1
1�
ð1� expð�4ðCaaE

j þ CeeE
j þ C0Þf E

jÞÞ
1� expð�4ðCaaE

j þ CeeE
j þ C0ÞÞ

 !

The maximum likelihood estimation of h ¼ ðCa;Ce;C0Þwas
performed by maximizing the logarithm of LðhÞ. The optim func-
tion in R software was used for the maximization of log likeli-
hood (Bélisle 1992). The 95 per cent confidence intervals for
each parameter were obtained by the profile likelihood methods
(Pawitan 2001).

2.7 Evaluation of models

The models of fixation probability were evaluated by four-fold
cross-validation prediction tests. From March 2009 to May 2020,
there were sixty-two new amino acids exceeding a frequency of
0.11, of which nineteen resulted in fixation and forty-three
resulted in extinction (Supplementary File 1). The nineteen
fixed amino acids were considered as positive samples,
F ¼ Dþ1 [ Dþ2 [ � � � [ Dþ19, consisting of 304 profiles in total. The
forty-three extinct amino acids were considered as negative
samples, E ¼ D–

1 [ D–
2 [ � � � [ D–

43, consisting of 286 profiles in to-
tal. Because it can take longer than four months for an amino
acid to reach fixation or extinction, the same new amino acid
appears in multiple profiles from different four-month windows
during the course of its evolutionary trajectory. For this reason,
the number of profiles exceeds the number of fixed amino acids
and extinct amino acids.

New amino acids at different positions may evolve in an al-
most perfect linkage disequilibrium. If profiles of an amino acid
substitution in a test set is linked to another amino acid substi-
tution in training set, the result of the cross-validation test may
be affected by the shared information of a single evolutionary
event. To avoid sharing information of the linked amino acid
substitution between the training set and the test set in cross-
validation tests, groups of amino acid substitutions that are al-
most in perfect linkage disequilibrium were identified using
correlation coefficient squared r2 based on linkage disequilib-
rium coefficient (Sved and Hill 2018).

Suppose we have a new amino acid, A, at a position of HA
and a new amino acid, B, at another position. Let pðAÞ and pðBÞ
denote the frequency of allele A and B in the population,
respectively.

The square of correlation coefficient between two alleles, r2,
which is commonly used to measure linkage disequilibrium of a
pair of alleles at two loci, is defined bY

r2 ABð Þ ¼ p ABð Þ � p Að Þp Bð Þ
� �2

p Að Þ 1� p Að Þ
� �

pðBÞð1� p Bð ÞÞ

r2 of one means that the pair are in perfect linkage disequilib-
rium. To identify groups of linked new amino acids, pairwise r2
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between all new amino acids occurring during overlapping peri-
ods were calculated. Highly linked new amino acids, defined by
having pairwise r2 of more than 0.75 are grouped together using
DBSCAN algorithm (Sander et al. 1998). The cutoff value for r2 of
0.75 was selected so that all synchronized pairs of fixed new
amino acids, visually identified from Supplementary Fig. S11,
were grouped together and that the total number of groups
remained as large as possible (Supplementary Fig. S3). Using the
cutoff value, a total of forty-nine groups of amino acid substitu-
tions, each of which consists of new amino acids that are al-
most in perfect linkage disequilibrium with another amino acid
in the group, were identified.

Finally, in order to perform cross-validation, the forty-nine
groups were randomly assigned to four datasets, three of which
consisting of twelve groups and the other consisting of thirteen
groups (Fig. 1). For each random assignment, profiles in three of
the datasets were used as training set to estimate parameters of
each model by maximizing log likelihood to the observed evolu-
tionary outcomes. The other dataset was used as test set to
evaluate the predictability of the model. Four cross-validation
tests were conducted in each random assignment and this pro-
cess was repeated 100 times. The cross-validation was per-
formed 400 times in total. The grouping of profiles prior to
cross-validation ensured that no fixation or extinction events of
the same amino acids or amino acids in linkage disequilibrium
were shared between the training and test data during cross-
validation. Akaike information criterion (AIC) values of models
were calculated from the log likelihood estimation of the train-
ing set. Figure 1 shows the schematic diagram of cross-valida-
tion tests.

In each prediction test, the model predicts a new amino acid
to become fixed if Pfixfor its profile in its four-month sliding win-
dow is greater than 0.5, and extinct if otherwise. Sensitivity,
specificity, precision, and Youden’s index of each model were
calculated from the number of true-positive predictions (tp),
true-negative predictions (tn), false-positive predictions (fp), and

false-negative predictions (fn) as follows:

Sensitivity ¼ tp
tpþ fn

;

Specificity ¼ tn
tnþ fp

;

Precision ¼ tp
tpþ fp

;

Youden’s index ¼ Sensitivity þ Specificity – 1

2.8 Timing of amino acid substitutions in different
birth-year groups

The timing of amino acid substitutions in different birth-year
groups was visualized as follows. For each new amino acid that
later become fixed, amino acid sequences during its transition
phases were divided into ten-year bins according to the year when
patients were born. The frequency of sequences having the new
amino acid at the position among those having new and old amino
acids was calculated for each birth-year group in each four-month
sliding window. The frequency of a new amino acid for a birth-year
group equals zero when the new amino acid has not yet been
found at its position on HA of viruses isolated from patients in the
birth-year group. The frequency becomes one when viruses having
the old amino acid at the position on HA was completely replaced
by those having new amino acid in patients of the birth-year group.

The dominant amino acids on HA of the H1N1 strains circu-
lating before the 2009 pandemic were determined from amino
acid sequences obtained from GISAID database.

3. Results
3.1 Empirical fixation probability of new amino acids
on HA

From March 2009 to May 2020, HA had a total of 4,580 new
amino acids at 491 amino acid positions, which cover 89 per

Figure 1. Schematic diagram of cross-validation tests.
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cent of residues of the molecule. Figure 2A shows trajectories of
frequencies in four-month sliding windows of all these amino
acids. For some amino acids, it took twelve months to become
fixed while some took fifty-four months. Most of the new amino
acids became extinct shortly after their emergence, while a few
of them remained for more than seventy months. Of 4,580 new
amino acids, nineteen resulted in fixation (solid lines) while the
others became extinct (dotted lines). The empirical fixation
probability of all new amino acids was 0.004. However, the em-
pirical fixation probability increased as the frequency of new
amino acids increased (Fig. 2B). Supplementary Table S1 shows
the number of fixed and extinct amino acid trajectories that
reached a frequency of 0.10 and those that did not reach the fre-
quency. The number of fixed and extinct amino acid trajectories
is dependent on whether the frequency of viruses having new
amino acids have exceeded 0.10 or not (p < 10�16 with v2 test).
The fixation probabilities exceeded the mid-point value of each
frequency range of the new amino acids when the frequency is
above 0.10. The lower 95 per cent confidence intervals of fixa-
tion probabilities for the frequency ranges within 0.20 to 0.55
exceeded the mid-point values of those frequency ranges.

Neutral evolution is an evolutionary process where every new
allele becomes fixed with an equal chance. It is known that the fix-
ation probability of a strain would be equal to its frequency under
neutral evolution (Kimura 1955). If the fixation of amino acid sub-
stitutions occurs under neutral evolution, the fixation probability
will fall upon the neutral line (dashed line in Fig. 2B). The excess of
the empirical fixation probability indicates that the fixation of new
amino acids on HA is under adaptive evolution where viral or envi-
ronmental factors increase their chance of becoming fixed.

3.2 Fixation of new amino acids on HA

As of December 2020, nineteen new amino acids on HA have be-
come fixed since the beginning of the pandemic in 2009 (Table

1). Of nineteen fixations, two occurred at position 185 on HA.
These eighteen fixed positions spread across the HA1 domain
with three exceptions occurring on HA2 (positions 374, 451, and
499). Seven (36.84%) out of nineteen substitutions occurred on
one of the four distinct antigenic sites, Sa, Sb, Ca, and Cb
(Igarashi et al. 2010).

Of nineteen fixed new amino acids, seventeen had higher
median patient ages than old amino acids during their transi-
tion phases (Table 1). Exceptions were amino acid substitutions
at positions 74 and 164. Arginine (R) at position 74 had the same
median age as Serine (S). Threonine (T) at position 164 had
lower median patient age than S. The median patient ages of vi-
ruses having the fixed new amino acids was higher than those
of the old amino acids by an average of 4.4 years. Viruses having
fourteen fixed new amino acids (73.68%) had significantly
higher patient ages than those having the old amino acids at
the same position during their transition phases. Cohen’s d ef-
fect size based on the nineteen pairs of median patient ages of
new amino acid and old amino acid in Table 1 was estimated to
be 1.11, with 95 per cent CI from 0.45 to 1.77. The effect sizes are
considered as negligible, small, medium, and large when
d < 0:2, d < 0:5, d < 0:8, and d � 0:8, respectively (Cohen 1992).
Thus, we can reject a null hypothesis that the effect of having a
new amino acid on median patient age is negligible in fixed
amino acid substitutions. This result indicated that viruses that
had been selected by human immunity had non-negligible ex-
cess infectivity to the adult population. The patient ages of vi-
ruses having new amino acids may be used as an indicator for
viral fitness driving the amino acid substitutions.

3.3 Factors associated with fixation probability

Figure 3 shows empirical fixation probabilities of new amino
acids stratified by attributes in their profiles. Empirical fixation
probabilities of new amino acids varied with median patient
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Figure 2. The frequency of new amino acids on HA and their empirical fixation probability. (A) Trajectories of the frequency of new amino acids in the population from
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ages (Fig. 3A and 3B). Supplementary Table S2 shows the num-
ber of fixed and extinct new amino acid profiles having median
patient ages between 25 and 35 and those of the others. The
number of fixed and extinct new amino acid profiles is depen-
dent on whether their median patient ages are between 25 and
35 or not (P < 10�15 with v2 test). Supplementary Table S3
shows the number of fixed and extinct new amino acid profiles
in which median patient ages of old amino acids are less than
or equal to 15 and those of the others. The number of fixed and
extinct new amino acid profiles is dependent on whether the
old amino acids have a median patient age less than or equal to
15 or not (P < 10�9 with v2 test). These results indicated that
new amino acids tended to become fixed when the viruses with
the new amino acids infected the population with a median age
between 25 and 35 or when the viruses having the old amino
acids at the corresponding positions infected the population
with a median age from 0 to 15.

We further investigated the correlation between empirical
fixation probabilities and the excess infectivity of strains with
new amino acids to the adult population over strains with old
amino acids (Fig. 3C and 3D). The excess infectivity of the new
strains to the adult population was measured by comparing pa-
tient age distributions of amino acid sequences with new amino
acids and old amino acids at the same positions on HA.

Empirical fixation probabilities of new amino acids were
positively correlated with the excess of median patient ages of
new amino acids with respect to those of old amino acids (Fig.
3C). Pearson’s correlation coefficient between fixation probabil-
ity and excess in median patient ages was 0.94 (P < 10�3). The
empirical fixation probability was also positively correlated
with the z-value of rank-sums of the patient ages of new amino

acids (Fig. 3D), with a correlation coefficient of 0.95 (P < 10�2).
Supplementary Fig. S5A shows a scatterplot of fixation probabil-
ity versus excess in median patient ages with its regression line.
Supplementary Fig. S5B shows a scatterplot of fixation probabil-
ity versus z-value of rank-sums of the patient ages of new
amino acids with its regression line. Supplementary Fig. S5A
and 5B correspond to Fig. 3C and D, respectively. Both results in-
dicated that fixation probabilities of new amino acids increased
when viruses having the new amino acids on HA infected the
population with a higher age than those infected with viruses
with old amino acids at the corresponding positions.

Figure 3E shows empirical fixation probabilities of new
amino acids stratified with epitope flags of their positions. The
empirical fixation probability of new amino acids at epitope
positions was 0.66 with a 95 per cent binomial confidence inter-
val of 0.57 to 0.74. On the other hand, the empirical fixation
probability of new amino acids at non-epitope positions was
0.48 with a 95 per cent binomial confidence interval of 0.43 to
0.52. The fixation probability of new amino acids at epitope
positions was significantly higher than that of new amino acids
at non-epitope positions (P < 10�3 with v2 test).

3.4 Models of fixation probability

Table 2 shows results of the maximum likelihood estimation of
parameters of models using profiles having frequencies more
than 0.11 in the dataset (see Section 4 for details). Model M1,
which assumes Ns is constant, has a maximum log likelihood of
–260.441 and an AIC of 522.882. The maximum likelihood in-
creased when we included age statistics, a:diff (M2) or a:wilcox
(M3), and the AIC decreased to 503.345 and 505.310, respectively.

Table 1. Amino acid substitutions on HA and median patient ages during their transition phases.

Position Epitope Transition
phase

Duration
(month)

Old amino acids New amino acids Difference
between

median pa-
tient agesb

(year)

P-value

Amino acid
(n)

Median pa-
tient age
(Q1, Q3)a

(year)

Amino acid
(n)

Median pa-
tient age
(Q1, Q3)a

(year)

203 Ca 2009.03–2009.09 6 S (211) 18 (9, 31) T (632) 20 (11, 33) 2 �1
374 – 2009.03–2011.04 25 E (1747) 19 (10, 31) K (984) 21 (8, 36.25) 2 0.6538
451 – 2009.04–2012.08 40 S (2468) 19 (9, 31) N (691) 23 (10, 41) 4 0.0002***

185 Sb 2009.10–2012.08 34 S (1647) 19 (9, 31) T (669) 23 (9, 41) 4 0.0004***

97 – 2009.04–2013.05 49 D (2654) 19 (9, 32) N (1056) 24 (8, 41) 5 0.0002***

499 – 2011.07–2013.05 22 E (482) 22 (8, 37) K (437) 28 (9, 43) 6 0.0262*

283 – 2012.03–2013.06 15 K (345) 21 (7, 37) E (453) 28 (10, 44) 7 0.0141*

163 Sa 2012.07–2013.11 16 K (464) 26 (6, 40.25) Q (303) 30 (16.5, 44) 4 0.0208*

256 – 2012.07–2013.11 16 A (588) 25 (6, 41) T (308) 29 (16, 44) 4 0.0231*

84 – 2014.08–2016.06 22 S (1176) 23 (5, 47) N (3900) 31 (7, 51) 8 5.13� 10-6***

216 – 2014.10–2016.06 20 I (1467) 23 (5, 47) T (3579) 32 (7, 52) 9 6.33� 10-9***

162 Sa 2015.05–2016.06 13 S (852) 20 (4, 43) N (3568) 32 (7, 52) 12 8.81� 10-14***

295 – 2016.09–2017.09 12 I (958) 25 (5, 47) V (399) 29 (5, 51) 4 �1
74 Cb 2016.09–2017.10 13 S (971) 24 (5, 47) R (583) 24 (4, 48) 0 �1
164 Sa 2016.10–2017.10 12 S (1082) 27 (5, 48) T (385) 19 (3, 47) –8 0.1883
183 – 2014.08–2019.02 54 S (8713) 27 (5, 49) P (6392) 28 (6, 52) 1 4.51� 10-5***

260 – 2017.06–2020.01 31 N (7413) 22 (5, 48) D (6020) 33 (8, 55) 11 6.50� 10-48***

185 Sb 2015.09–2020.02 53 T (13718) 28 (5, 51) I (5088) 30 (6, 53) 2 0.0072**

129 – 2017.06–2020.02 32 N (8764) 26 (5, 50) D (4718) 32 (7, 54) 6 1.58� 10-18***

aQ1 and Q3 represent the first and third quartiles of patient ages, respectively.
bThe difference in median patient age is calculated by subtracting the median patient age of old amino acid from the median patient age of new amino acid.
*P < 0:05 by two-sided Wilcoxon rank-sum test adjusted by Bonferroni’s correction with n ¼ 19.
**P < 0:01 as above.
***P < 0:001 as above.
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When we added the epitope flag e (M4), the maximum likeli-
hood also increased, and the model’s AIC decreased to 512.886.
The increase in maximum likelihood from the constant advan-
tage model (M1) when modeled with epitope flags (M4) was

smaller than the increases when modeled with patient age sta-
tistics (M2 and M3).

When Ns was modeled using a combination of a patient age
statistic and the epitope flag (M5 and M6), we observed further
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Figure 3. Empirical fixation probabilities of new amino acids stratified with (A) the median patient ages of sequences having new amino acids, (B) median patient ages
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increases in the maximum likelihood and decreases in AIC. The
AIC of M5 was 494.298, which is lower than those of its simpler
models M2 and M4. Similarly, the AIC of M6 was 493.761, which
is lower than those of its simpler models M3 and M4. Models us-
ing a combination of a patient age statistic and epitope flag
seemed to be better to represent the selective advantage of vi-
ruses than those using either parameter alone.

In the maximum likelihood estimation of M6 in Table 2, the 95
per cent CI for C0 contains zero, which means that the intercept
may not necessarily be positive in M6. The epitope flag in our
model takes the value of zero or one. The term Cee always takes a
non-negative value if Ce is positive. The average of Ns can become
positive even if C0 takes a negative value. The lower bound of 95
per cent CI for C0 for M6 would be positive if we used epitope flags
of –1 and þ1. The small positive value of the lower bound of 95
per cent CI for M5 can be explained by the same reason.

3.5 Linkage disequilibrium among amino acids

Table 3 shows groups of new amino acids that are almost in
perfect linkage disequilibrium. Groups of linked amino acids

were identified using correlation coefficient squared r2 based on
the frequency of the amino acids. Using a cutoff value of r2 at
0.75, a total of forty-nine groups of amino acid substitutions,
each of which consists of new amino acids that are almost in
perfect linkage disequilibrium with another amino acid in the
group, were identified in the sixty-two sets of new amino acid
profiles. The grouping information of amino acid profiles were
provided in Supplementary File S1 with profiles of all new
amino acids.

3.6 Evaluation by cross-validation

We evaluated the predictability of models using four-fold cross-
validation tests. Table 4 shows the means and the standard
deviations of AIC and maximum log likelihood for training sets
and the means and the standard deviations of sensitivity, spe-
cificity, precision, and Youden’s index for test sets in the cross-
validations. The models were sorted in the descending order of
Youden’s indices, which is the sum of sensitivity and specificity
minus one. The confusion matrices for each cross-validation
test in Table 4 is provided in Supplementary File S2.

Table 2. Maximum likelihood estimation of parameters of six models.

Model Ca(95% CI) Ce (95% CI) C0(95% CI) Maximum log likelihood AIC DAICa

(M6) Ns ¼ Caa:wilcoxþ Ceeþ C0 0.126 (0.073, 0.185) 0.572 (0.265, 0.922) 0.115 (-0.012, 0.243) –243.881 493.761 0
(M5) Ns ¼ Caa:diff þ Ceeþ C0 0.032 (0.018, 0.047) 0.521 (0.206, 0.870) 0.141 (0.016, 0.265) –244.149 494.298 0.537
(M2) Ns ¼ Caa:diff þ C0 0.031 (0.018, 0.045) �b 0.228 (0.115, 0.329) –249.672 503.345 9.584
(M3) Ns ¼ Caa:wilcoxþ C0 0.119 (0.065, 0.175) – 0.217 (0.102, 0.333) –250.655 505.310 11.549
(M4) Ns ¼ Ceeþ C0 – 0.526 (0.219, 0.867) 0.225 (0.109, 0.343) –254.443 512.886 19.125
(M1) Ns ¼ C0 – – 0.313 (0.207, 0.421) –260.441 522.882 29.121

aDAIC is calculated by subtracting AIC of M6 from the AIC of the model.
bThe hyphens indicate the model does not use that parameter.

Table 3. New amino acids identified as being almost in perfect linkage disequilibrium.

Group no. Profile set Substitution Outcome Emergence month Outcome month r2

3 Dþ3 S185T Fixed 2009–10 2012–08 0.9592
Dþ4 S451N Fixed 2009–04 2012–08

5 Dþ6 E499K Fixed 2011–07 2013–05 0.7943
Dþ7 K283E Fixed 2012–03 2013–06

6 Dþ8 K163Q Fixed 2012–07 2013–11 0.9797
Dþ9 A256T Fixed 2012–07 2013–11

8 Dþ11 S162N Fixed 2015–05 2016–06 0.9689
Dþ12 I216T Fixed 2014–10 2016–06

9 Dþ13 I295V Fixed 2016–09 2017–09 0.9893
Dþ14 S74R Fixed 2016–09 2017–10

13 Dþ18 N129D Fixed 2017–06 2020–02 0.7528
Dþ19 T185I Fixed 2015–09 2020–02

24 D�11 I216V Extinct 2010–08 2012–08 0.8785
D�27 R205K Extinct 2009–03 2014–04

25 D�12 E356A Extinct 2010–10 2012–08 0.7829
D�21 H138Q Extinct 2010–10 2013–06

27 D�14 S69T Extinct 2011–09 2013–01 0.9506
D�15 N260D Extinct 2011–07 2013–01

34 D�23 A197T Extinct 2010–07 2013–07 0.9247
D�25 S143G Extinct 2010–08 2013–11

45 D�36 R45G Extinct 2017–06 2019–05 0.9504 with D�37

D�37 P282A Extinct 2017–07 2019–05 0.9558 with D�39

D�39 I298V Extinct 2017–07 2019–08 0.936 with D�36

47 D�40 E68D Extinct 2018–07 2020–02 0.9175
D�41 S121N Extinct 2017–08 2020–02
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Consistent with Table 2, model M6 had the best AIC for train-
ing sets, followed by M5. However, model M3 had the highest
mean Youden’s index of 0.64 with a mean sensitivity of 0.78 and
a mean specificity of 0.86. The model M2 had the second highest
Youden’s index of 0.63 with a mean sensitivity of 0.79 and a spe-
cificity of 0.84. The model M1, in which we assume Ns is con-
stant, had the third highest Youden’s index of 0.62 with a mean
sensitivity of 0.76 and mean specificity of 0.86. Models M6, M4,
and M5 had lower Youden’s indices than M1.

Youden’s indices of M3 and M2 have a mean of 0.64 with a
standard deviation of 0.11 and a mean of 0.63 with a standard
deviation of 0.12, respectively. The difference between the
Youden’s indices of the models becomes clear when a result us-
ing a model for each test is compared to the result using M1 in a
pair-wise manner. Supplementary Fig. S6 shows the distribu-
tion of excess Youden’s indices of M2, M3, M4, M5, and M6 over
M1 in 400 cross-validation tests. Panel A in Supplementary Fig.
S6 clearly shows that the excess Youden’s index of M3 over M1
was distributed more in the positive side than the negative side.
Paired two-sided Wilcoxon rank-sum test adjusted by
Bonferroni’s correction shows that the Youden’s indices of M3
and M2 is significantly larger than that of M1 with P-values of
5.76 3 1020

2 and 0.003, respectively. There is no significant differ-
ence between the Youden’s indices of M6 and M4, compared to
M1 (P � 1:000 and P ¼ 0:218, respectively). The Youden’s indices
of M5 is significantly lower than that of M1 (P ¼ 4:01� 10�5).
These results indicate that the predictability of the fixation of
new amino acids is significantly improved compared to the con-
stant advantage model, M1, when Ns is modeled using a:wilcox
or a:diff with an intercept.

In Table 4, a new amino acid was predicted to become fixed
when Pfix is higher than a threshold of 0.5. We further investi-
gated the effect of the threshold of Pfix, s, on the prediction of
the fixation of new amino acids. For each model, sensitivity and
specificity for predicting the fixation of new amino acids were
obtained by using different thresholdss from zero to one in
cross-validation tests. The sensitivities and specificities were
averaged over 400 cross-validation tests for each threshold for
each model. Supplementary Fig. S4 shows the receiver operat-
ing characteristic (ROC) curve created from the resulting sensi-
tivities and specificities. Points around the lower left corner
correspond to cross-validation tests using s ffi 1 and points
around the upper right correspond to cross-validation tests us-
ing s ffi 0. The cross on the curve of M3 represents the sensitivity
and specificity of M3 when s equals 0.5, which is shown in Table

4. The ROC curve of M3 reached the maximum distance from
the diagonal line when s equals 0.43 (circle). This threshold in-
creased Youden’s index of M3 to 0.656 from 0.646 which is
obtained when s equals 0.5. The order of the furthest distances
from the diagonal line was the same as the order of Youden’s
indices in Table 4. These results indicated that M3 had the high-
est predictive power when using a threshold of 0.43. The choice
of threshold for Pfix faces the trade-off between the sensitivity
and specificity, and the value should be determined by consid-
ering the purpose of prediction.

3.7 The fixation probability of a new amino acid on HA

Figure 4A shows the three-dimensional surface plot of the fixa-
tion probability of a new amino acid on HA based on model M3
with its parameters in Table 2. The fixation probability of a new
amino acid increases as its frequency increases, as expected
from the property of formula (1). The fixation probability starts
from zero when the frequency equals zero, as shown in green,
and it approaches one when the frequency approaches one,
shown in blue. The fixation probability also increases as the z-
value of the rank-sum of patient ages of the new amino acid
becomes larger, as one can observe an increase in height when
looking at a band of the same color in the increasing direction
of the z-value of the age rank-sum. This result indicates that vi-
ruses with a new amino acid on HA obtain additional chance to
become fixed, when they can infect elderly patients more effec-
tively than the viruses with the old amino acid at the same posi-
tion. In other words, new strains’ excess infectivity to adult
population over old strains increases their chances to become
fixed in addition to its chance of fixation gained from how large
a fraction of the population they are currently infecting. Figure
4B shows the same information as Fig. 4A in a two-dimensional
figure. The lines in Fig. 4B represent the fixation probabilities at
values of a:wilcox from –5 to 5 with a step of 1.

3.8 Timing of selection of new amino acids in different
birth-year groups

Figure 5 shows the time evolution of frequencies of amino acid
sequences having the nineteen fixed new amino acids on HA in
different birth-year groups during their transition phases.
Panels A–S in the figure correspond to amino acid substitutions
shown in Table 1 in the same order. We assume that the

Table 4. Results of cross-validation tests.

Training Test

Model AIC Maximum log
likelihood

Sensitivity Specificity Precision Youden’s index P-value
(n ¼ 400)

(M3) Ns ¼ Caa:wilcoxþ C0 374.27 6 45.02 –185.13 6 22.51 0.78 6 0.09 0.86 6 0.11 0.83 6 0.17 0.64 6 0.11 5.76� 10-20***
(M2) Ns ¼ Caa:diff þ C0 373.00 6 44.65 –184.50 6 22.33 0.79 6 0.10 0.84 6 0.11 0.81 6 0.17 0.63 6 0.12 0.003**

(M1) Ns ¼ C0 388.27 6 42.33 –193.13 6 21.17 0.76 6 0.08 0.86 6 0.11 0.83 6 0.18 0.62 6 0.11 –
(M6) Ns ¼ Caa:wilcoxþ Ceeþ C0 366.35 6 43.52 –179.17 6 21.76 0.77 6 0.11 0.84 6 0.11 0.80 6 0.18 0.61 6 0.14 �1.000
(M4) Ns ¼ Ceeþ C0 381.72 6 40.84 –187.86 6 20.42 0.75 6 0.10 0.85 6 0.11 0.81 6 0.18 0.6 6 0.13 0.218
(M5) Ns ¼ Caa:diff þ Ceeþ C0 366.92 6 43.41 –179.46 6 21.71 0.77 6 0.11 0.82 6 0.11 0.79 6 0.18 0.59 6 0.14 4.01� 10-5***

All values, except P values, are presented as mean 6 standard deviation in 400 cross-validation tests.
*P < 0:05 by two-sided paired Wilcoxon rank-sum test adjusted by Bonferroni’s correction with n ¼ 5 with a null hypothesis that the model’s Youden’s indices are the

same as those of M1.
**P < 0:01 as above.
***P < 0:001 as above.
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patients were first exposed to the dominant strain of the H1N1
viruses circulating in the year when they were born.

The transitions from old amino acids to new amino acids
showed different timings of emergence and fixation depending
on birth-year groups (Fig. 5). Amino acid T at position 203 on HA
has had frequencies of more than 0.30 in all birth-year groups
since the first four-month sliding window starting from March
2009 (Supplementary Fig. S8A). The next three fixed new amino
acids, lysine (K) at position 374, asparagine (N) at position 451,
and T at position 185 exceeded a frequency of 0.10 first in the
youngest birth-year groups followed by others (Supplementary
Fig. S7B, S7C, and S7D). Amino acid N at position 97 exceeded a
frequency of 0.10 and 0.30 first in the second oldest birth-year
groups (Supplementary Figs. S7E and S8E). However, the ten-
dency is not clear because of the drop in the frequency of new
amino acid in the middle of its transition phase (Fig. 5E).

After 2011, we observed a general tendency that new amino
acids exceeded a frequency of 0.30 earliest in the old and mid-
dle-aged birth-year groups (Supplementary Fig. S8). These are K
at position 499 (Supplementary Fig. S8F), glutamic acid (E) at po-
sition 283 (Supplementary Fig. S8G), glutamine (Q) at position
163 (Supplementary Fig. S8H), T at position 256 (Supplementary
Fig. S8I), N at position 84 (Supplementary Fig. S8J), T at position
216 (Supplementary Fig. S8K), N at position 162 (Supplementary
Fig. S8L), V at position 295 (Supplementary Fig. S8M), R at posi-
tion 74 (Supplementary Fig. S8N), T at position 164
(Supplementary Fig. S8O), proline (P) at position 183
(Supplementary Fig. 8P), aspartic acid (D) at position 260
(Supplementary Fig. S8Q), isoleucine (I) at position 185
(Supplementary Fig. S8R), and D at position 129 (Supplementary
Fig. S8S).

Supplementary Fig S10 shows a clear trend that the fixation
starts from old birth-year groups, followed by the middle-aged
birth-year groups and ended with the young birth-year groups
for all the nineteen fixed amino acids (see Section 2 for the

definition of fixation in this study). Despite this general ten-
dency, three new amino acids became fixed quite early in the
youngest birth-year group (Supplementary Fig. S10B, S10C,
S10D). However, the timing of overturn, when the frequency of
a new amino acid exceeds 0.50 in a birth-year group did not
show a clear tendency (Supplementary Fig. S9).

Some amino acid substitutions were associated with the
dominant amino acids of the viruses circulating in the year
when patients were born. For example, the transition from K to
Q at position 163 on HA appeared earlier in patients born in
1940–50 than those born in 1930–40 (Fig. 5H). Precisely, the tim-
ings when Q at position 163 on HA first exceeded a frequency of
0.30 in patients born in 1940–50 preceded those born in 1930–40
by seven months (Supplementary Fig. S8H). The dominant
amino acid at position 163 on HA of viruses circulating during
1940–50 was K (Fig. 5H). In contrast, as shown in the black bars
in Fig. 5H, the dominant amino acid at position 163 on HA of vi-
ruses circulating during 1930–40 was neither K nor Q. Patients
born in 1940–50 may be first exposed to viruses having K at posi-
tion 163. The substitution from K to Q at position 163 may have
selective advantage in patients born in 1940–50. On the other
hand, the birth-year group in 1930–40 may be first exposed by
viruses having a different amino acid other than Q or K at posi-
tion 163. The viruses having Q at position 163 may not have
large advantage compared to viruses having K at this position
in the birth-year group of 1930–40. The difference in the timings
of amino acid substitutions between the two birth-year groups
may be attributed to the different amino acids at this position
on HA of viruses that first infected to patients of the two birth-
year groups.

Some amino acid substitutions may be associated with the
disappearance of H1N1 viruses in the human population during
1957 to 1977, which is the period between the year of the Asian
flu pandemic in 1957 and the year of the Russian flu pandemic
in 1977. For example, the transition from S to N at position
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Figure 5. Timing of amino acid substitutions in different birth-year groups. Panels A–S in the figure correspond to amino acid substitutions shown in Table 1 in the

same order. In each panel, X-axis represents the first month of a four-month sliding window, and Y-axis represents the birth-year of patients. The population of

patients were grouped into ten-year birth-year groups. Each cell in a heatmap is color-coded according to the frequency of viruses having the fixed new amino acid in

the population of a birth-year group at Y-axis in a four-month sliding window starting at the month on the X-axis. A cell is green if the frequency of new amino acid in

the birth-year group is zero, and it is blue if the frequency in the birth-year group is one, as shown in the color key in the legend. Cells with no data are represented in

white. The horizontal bars on the left of each heatmap represent the dominant amino acid at the corresponding position on HA of viruses circulating in the year on the

Y-axis. The color of a bar on the left of each heatmap represents the dominant amino acid at the same position on HA of viruses circulating in the year when patients

were born. A green bar indicates the circulation of viruses having the old amino acid at the substituted position on HA in the year when patients were born, and a blue

bar indicates the circulation of viruses having the new amino acid at the same position. A bar with grey or black color indicates the circulation of viruses having a dom-

inant amino acid different from both the old and new amino acids at the substituted position in the year when the patients were born. Amino acid substitutions with

an asterisk represent substitutions which occurred at an epitope position.
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84 on HA appeared earlier in patients born in 1950–60 than
those born in 1940–50 (Fig. 5J). Precisely, the first sliding window
in which N at position 84 on HA exceeded a frequency of 0.30 in
patients born in 1950–60 was five months earlier than that in
patients born in 1940–50 (Supplementary Fig. S8J). The same
tendency can be found for frequencies of 0.10 and 0.50
(Supplementary Figs. S7J and S9J). The amino acid substitution
from S to N at position 84 may have immunological disadvan-
tage because most population have firstly exposed to viruses
having N at position 84, as shown in the blue bars in Fig. 5J. Due
to the absence of H1N1 during 1957–77, a considerable number
of patients of birth-year groups 1950–60 and 1960–70 are likely
to be first infected with H2N2 influenza viruses. Viruses having
N at position 84 on HA may have less immunological disadvan-
tage in these birth-year groups, resulting in an earlier transition
from S to N at this position than the birth-year group of 1940–
1950. We can also explain the delay in transition from K to Q in
163 in patients of the birth-year group 1950–60 by the absence of
H1N1 strain during 1957–77.

When we considered the whole period of transition, the age
distributions of patients infected with viruses having the new
amino acids were not significantly different from those of old
amino acids at positions 203, 374, 295, 74, and 164 on HA (Table
1). However, when observing the timing of amino acid substitu-
tions in different birth-year groups, amino acid substitutions at
positions 295, 74, and 164 still followed a general tendency of
beginning in the old and middle-aged birth-year groups and
ending in the youngest birth-year groups (Fig. 5N, 5O, and 5P).
This suggests that, even though age distributions of patients
may not significantly differ between viruses having new and
old amino acids when considering the whole transition period,
the new amino acid’s distributions of patient ages in each win-
dow still tend to be skewed towards people in older birth-year
groups for these amino acid substitutions.

4. Discussion

In this study, we investigated the patient age distributions and
fixation probabilities of new amino acids on HA of 2009 pan-
demic strains of H1N1 influenza viruses. The empirical proba-
bility that a new amino acid on HA later became fixed in the
viral population was only 0.004. The empirical fixation probabil-
ity significantly increased when the frequency of viruses having
new amino acids exceeded 0.1. The empirical fixation probabil-
ity also significantly increased when the viruses having the new
amino acids more effectively infected the adult age population
from twenty-five to thirty-five years old than the viruses with
old amino acids at the same position. Based on these observa-
tions, we modeled fixation probability of a new amino acid us-
ing Kimura’s formula of advantageous selection. The selective
advantage of a new amino acid was modeled by a linear combi-
nation of patient age distributions and epitope flags. The
parameters of models were estimated by maximizing the likeli-
hood of parameters from profiles of fixed and extinct new
amino acids from 2009 to 2020. Four-fold cross-validation tests
revealed that the model using the difference in patient age dis-
tribution and frequency of new amino acid predicted amino
acid substitutions on HA with a sensitivity of 0.78, specificity of
0.86, and precision of 0.83.

When we looked at trajectories of new amino acids that
emerged on HA of H1N1 viruses from March 2009 to May 2020,
the empirical fixation probability of a new amino acid was only
0.004 (Fig. 2). It means that a frequency of 0.996 of the new
amino acids that appeared on HA went extinct. If we look at

relationship between the frequency of a new amino acid and its
empirical fixation probability in a four-month sliding window,
the empirical fixation probability became different, because the
fixed new amino acids can be counted multiple times in differ-
ent four-month sliding windows. A new amino acid having a
frequency no more than 0.11 in a four-month sliding window
had an empirical fixation probability of 0.02 (Supplementary
Fig. S2B). This means that a new amino acid having a frequency
below 0.11 in a four-month sliding window had almost no
chance to becoming fixed later. In contrast, a new amino acid
having frequencies more than 0.11 in a four-month sliding win-
dow had an empirical fixation probability close to 0.50
(Supplementary Fig. S2A). It means that a new amino acid hav-
ing a frequency more than 0.11 in a four-month sliding window
would have equal chance of becoming either fixed or extinct.
Thus, the prediction of fixation of a new amino acid having a
frequency more than 0.11 in a four-month sliding window,
which have an empirical probability close to 0.50, is the most
difficult setting to predict the fixation of new amino acids. For
this reason, we focused on the prediction of the fixation of new
amino acids which exceeded a frequency of 0.11 in a four-
month sliding window.

Our study found that the frequency of new amino acids
alone can achieve high sensitivity, specificity, and precision in
predicting the fixation of a new amino acid of which frequency
is more than 0.11 in a four-month sliding window. Model M1,
which modeled the fixation probability of a new amino acid us-
ing its current frequency under the assumption of a constant
selective advantage, predicted the fixation of a new amino acid
with an average sensitivity of 0.76, specificity of 0.86, and preci-
sion of 0.83 in four-fold cross-validations (Table 4). This result
suggested that the fixation probability of a new amino acid is
largely attributed to its frequency. The constant for the selective
advantage, C0, was estimated to be 0.313 with its confidence
intervals of from 0.207 to 0.421 by the maximum likelihood
method (Table 2). Since positive coefficient for Kimura’s for-
mula indicates advantageous selection, we can conclude that
viruses with a new amino acid having a frequency higher than
0.11 in a four-month sliding window has a significantly higher
selective advantage compared to viruses with the old amino
acid at the same position.

The predictability of the fixation of a new amino acid was
significantly improved by considering the Z-value of patient age
rank-sums of new amino acids compared to the constant selec-
tive advantage model in cross-validation tests. Youden’s index,
which is the sum of sensitivity and specificity minus one, was
significantly improved in model M3 from model M1 (Table 4).
The coefficient for a:wilcox, Ca, was estimated to be 0.119 with
its confidence intervals of from 0.065 to 0.175 by the maximum
likelihood method (Table 2). Since a:wilcox represents the excess
infectivity to the adult population of viruses having new amino
acids compared to those having old amino acids, this result sug-
gests that inclusion of age statistics of viruses significantly im-
proved the prediction of the fixation of a new amino acid. This
result is consistent with the current understanding of the mech-
anism of evolution of influenza viruses, in which new strains
are selected by the immunity of people who were infected with
and recovered from strains circulating previously (Ferguson et
al. 2003).

The proportion of adults who have been infected with influ-
enza viruses is higher than that of children, because adults
have more chance of being exposed to the viruses due to their
longer time since birth compared to children. Therefore, viruses
having different antigenicity from viruses that have been
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circulating before can have a higher advantage in adult popula-
tion than in child population. In other words, the advantage of a
new amino acid that alter the antigenicity of HA over its old
amino acid in the child population can be lower compared with
the advantage in adult population. We think that this is the
main reason why a statistic of patient age distributions im-
proved the accuracy of the prediction of amino acid substitu-
tions. In addition to this straightforward interpretation, we can
consider another explanation. Viruses infecting adults are more
likely to be spread globally than children as adults are more
likely to travel long distances (Bedford et al. 2015). This is an al-
ternative explanation of the phenomena, but a clear trend that
the fixation starts from old birth-year groups, followed by the
middle-aged birth-year groups and ended with the young birth
year groups (Supplementary Fig. S10) supports the first interpre-
tation that the higher selective advantage in adult population is
attributed to the immunity from previous infections.

Since influenza viruses are transmitted among individuals
of different age groups, the difference in the age distributions
between new amino acids and old amino acids were not sup-
posed to differ largely. As shown in Supplementary Fig S1B, the
distributions of patient ages of GISAID sequences are bimodal,
with one mode in the child population younger than ffiteen
years old, and another mode in the adult population older than
15, especially after 2012. The number of fixed and extinct new
amino acid profiles in Supplementary Table S2 is dependent on
whether their median patient ages are between 25 and 35 or not
(P < 10�15 with v2 test). Furthermore, the number of fixed and
extinct new amino acid profiles in Supplementary Table S3 is
dependent on whether the old amino acids have a median pa-
tient age less than or equal to 15 or not (P < 10�9 with v2 test).
The most probable hypothesis we have for the bimodal distribu-
tion is as the following. In the younger population who have not
experienced influenza infections, the viruses with old amino
acids can infect as effectively as viruses with new amino acids.
The number of infections in the younger population decreases
as patient age increases because of acquisition of immunity by
the first exposure to influenza viruses. In the adult population
who has experienced previous exposures, on the other hand, vi-
ruses having new amino acids is more infectious than those
having old amino acids because of the original antigenic sin.
The first mode in the patient age distribution is formed by the
first influenza infection in life and the second mode was formed
from the second or subsequent influenza infections. This is our
best explanation for the results obtained in this study.

It is known that the 2009 pandemic strain shows cross-reac-
tivity with the Spanish flu and Russian flu strains (Garten et al.
2009; Itoh et al. 2009). An individual’s immunity profile against
influenza is highly affected by their first infection in their child-
hood (Francis et al. 1947). Some strains having a new amino
acid on HA seemed to have an advantage in infecting patients
who were infected with the viruses having the old amino acid
in their first infection. Examples of these amino acid substitu-
tions include K163Q (Fig. 5H). Some amino acid substitutions
may be associated with the disappearance of H1N1 viruses in
the human population during 1957 to 1977, which is the period
between the year of the Asian flu pandemic in 1957, caused by a
strain of H2N2 viruses, and the year of the Russian flu pandemic
in 1977, caused by a strain of H1N1 viruses. A considerable num-
ber of patients of birth-year groups 1950–60 and 1960–70 are
likely to be first infected with H2N2 influenza viruses. Viruses
having the S84N substitution have less immunological disad-
vantage in these birth-year groups compared with the birth-
year group of 1940–50, resulting in the different timings of

transition from S to N (Fig. 5J). Selections of these strains can be
explained as an effect of the original antigenic sin.

We found that epitope flags of substituted positions did not
largely contribute to the prediction of amino acid substitutions
in cross-validation tests. From nineteen fixed amino substitu-
tions on HA observed in this study, only seven (36.84%) occurred
on its epitope regions (Table 1). It has been suggested that
amino acid substitutions on nonepitope regions compensate
the fitness cost of substitutions on epitope regions
(Kryazhimskiy et al. 2011; Koel et al. 2013; Yokoyama et al.
2017). However, 90.5 per cent of amino acid substitutions on the
HA1 domain of H3N2 viruses were known to have occurred at
its epitope region (Shih et al. 2007). A possible reason for the
small contribution of epitope flags in prediction is that the posi-
tions of epitopes we used in this study have been determined
from H1N1 viruses before the 2009 pandemic (Igarashi et al.
2010). The epitope for the 2009 pandemic strain may differ from
the epitope for previous seasonal strains circulating before 2009
pandemic. In fact, Ren et al. (2015) showed that antigenic
regions cover a larger area than regions previously defined as
the epitope. The same was true for H3N2 (Lees et al. 2010).
Further studies are required for a wider characterization of epi-
tope sites on HA of influenza viruses.

The human influenza shows seasonality, and the population
of the viruses fluctuates depending on the time of year.
Although the assumption of constant effective population size
may not be valid for the population genetics of seasonal influ-
enza viruses, we use this Kimura’s formula under the assump-
tion of constant effective population size for its simplicity. It is
suggested that the fixation probability increases when the effec-
tive population size is growing (Fisher 1930). This means the fix-
ation probability predicted from our model would be
underestimated during influenza seasons when the number of
new cases is growing. Even so, the model has achieved high pre-
dictability in cross-validation tests, indicating that the error
may be marginal and an acceptable trade-off for the model’s
simplicity. However, for more precise predictions, the method
may adopt fixation probability models that take into account
changing population sizes (Lambert 2006).

Synchronized substitutions were observed at positions 451
and 185, positions 499 and 283, positions 163 and 256, positions
84, 216, and 162, positions 295 and 74, and positions 185 and 129
(Supplementary Fig. S11). Fixations of the synchronized amino
acids may be hitchhiking substitutions, which do not contribute
to the increase in viral fitness but became fixed due to the selec-
tive advantage gained from another substitution on HA of the
same strain (Barton 2000; Smith et al. 2004). For example, transi-
tions from S to N at position 84, I to T at position 216, and S to N
at position 162 occurred simultaneously (Supplementary Fig.
S11). H1N1 strains circulating before the 2009 pandemic had S at
position 162 on their HA (Fig. 5L). Since position 162 is located in
the epitope region Sa (Table 1), viruses having N at this position
may have had selective advantage over viruses having S at this
position. In contrast, S at position 84 and I at position 216 of the
2009 pandemic strain were different from amino acids at these
positions on HA of H1N1 strain circulating before the 2009 pan-
demic (Fig. 5J and 5K). These two substitutions may not have a
selective advantage in terms of antigenicity, and there is a pos-
sibility of hitchhiking substitutions of S162N. Another explana-
tion of the synchronized transitions of amino acids is that the
fixations can occur through synergistic epistasis between sev-
eral mutations (Neverov et al. 2015). Viruses with a new amino
acid with slow transition may initially lack large advantage over
viruses with an old amino acid at the same position. These
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viruses became fixed when they gained a synergistic advantage
from another new amino acid on HA. For example, the slow
transition from D to N at position 97 have become fixed when
viruses have additional new amino acids at positions 499 and
283.

One of the limitations of our method is that the model can
only predict the evolutionary outcome of new amino acids.
Thus, the model cannot predict the time it takes before they be-
came fixed in viral population. Each year, WHO makes recom-
mendations for vaccine strains by reviewing the circulation and
spread of new strains through their global influenza surveil-
lance network (Russell et al. 2008). The recommendation of vac-
cine strains must be decided eight months before the season
starts for the vaccine development and production process
(World Health Organization 2007). Our method can predict the
fixation of a new amino acid accurately once its frequency
exceeds 0.11. The time for a new amino acid to become fixed or
extinct after exceeding a frequency of 0.11 had a mean of
18.8 months with a standard deviation of 13.6 months
(Supplementary File 3). Assuming that the time to fixation or
extinction after exceeding a frequency of 0.11 follows a normal
distribution with a mean of 18.8 months and a standard devia-
tion of 13.6 months, we can get the prediction by our model
eight months earlier than its fixation or extinction for 79% of
new amino acids that exceed a frequency of 0.11 in a four-
month sliding window. Thus, the applicability of our method to
the actual vaccine selection process is not largely restricted by
the limitation due to the lack of a mechanism for predicting the
timing of fixation.

The applicability of our method to H3N2 viruses should be
tested in the future. Most studies to predict amino acid substitu-
tions have targeted H3N2 viruses as sequence data are available
from its emergence in 1968 (Agor and Ozaltin 2018; Klingen et
al. 2018). H1N1 viruses emerged in the Spanish flu pandemic in
1918 (Cohen 2010), disappeared in 1957, and re-emerged in the
Russian flu in 1977, and were replaced with a swine flu strain in
the 2009 pandemic (Girard et al. 2010). In contrast, H3N2 viruses
have been circulating in the human population since its pan-
demic in 1968. The structure of the population having immunity
against H3N2 viruses may be simpler than that of H1N1 viruses.
However, due to the limitation of patient age information of
amino acid sequences of past H3N2 viruses, our method can be
applicable only to the fixation of new amino acids that have
been observed recently.
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