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Simple Summary: Dried blood spot (DBS) sampling is a microsampling technique that
involves collecting small volumes of blood on absorbent paper for later analysis. It of-
fers several advantages, including minimal invasiveness, reduced blood volume require-
ments, and enhanced analyte stability. While widely used in human medicine for neonatal
screening, diagnostics, pharmacokinetics, forensics, and infectious disease surveillance, its
application in veterinary medicine remains limited. However, DBS sampling holds great
potential in veterinary pharmacokinetic research by minimizing animal discomfort and
simplifying sample handling. This study investigated the feasibility of using DBS sampling
to quantify ketamine, medetomidine, and lidocaine levels in cats and horses undergoing
surgery. The primary objectives were to develop a standardized DBS collection protocol,
optimize LC-MS/MS analytical methods, and compare DBS with plasma samples.

Abstract: Dried blood spot (DBS) sampling has emerged as a promising microsampling tech-
nique in biomedical and clinical research, offering advantages such as reduced invasiveness,
minimal blood volume requirements, and enhanced analyte stability. Although well estab-
lished in human medicine for neonatal screening and diagnostic applications, its potential
in veterinary pharmacology remains underexplored. This study investigated the feasibility
of using DBS samples to quantify anesthetic agents—ketamine and medetomidine in cats
and lidocaine in horses—during routine surgical procedures at a veterinary teaching hos-
pital. A standardized DBS collection protocol was developed, and LC-MS/MS methods
were validated for the quantification of target analytes in both DBS and plasma samples.
These methods were subsequently applied to real samples collected during anesthesia to
conduct pharmacokinetic analyses. Comparative evaluations, including Bland–Altman
analysis, assessed the suitability of DBS samples for pharmacokinetic studies in veterinary
medicine. Preliminary results indicated satisfactory agreement for medetomidine, meeting
EMA guidelines, with 75.6% of mean values falling within ±20% of paired measurements.
Results for ketamine (46.9%) were promising but require further optimization, while those
for lidocaine (21.4%) highlighted the need for additional investigation. These findings
underscore the potential of DBS sampling as a minimally invasive alternative for pharma-
cokinetic studies in veterinary medicine, particularly for medetomidine, while identifying
areas for further methodological refinement. Future research should optimize DBS tech-
niques and expand their application to other drugs and species, broadening their impact
on veterinary pharmacology.
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1. Introduction
Currently, dried blood spot (DBS) sampling is recognized as a versatile microsampling

technique in which small volumes of blood are collected on absorbent paper and dried for
subsequent laboratory analysis. This method offers significant advantages over traditional
approaches, including reduced invasiveness, minimal blood volume requirements, and
improved analyte stability during storage and transport [1,2]. Furthermore, its cost-effective
logistics favor the increasing adoption of DBS sampling across diverse fields of biomedical
and clinical science [3–6].

In human medicine, DBS sampling is widely used for neonatal screening to detect
rare genetic and metabolic disorders [6–9]. It is also employed in diagnostics, toxicoki-
netic and pharmacokinetic studies, clinical pharmacology, forensic science, and doping
analysis [10–15]. Additional applications of DBS include infectious disease surveillance
and therapeutic drug monitoring [13,16,17].

Despite being a well-established sampling method in human medicine, the use of
DBS in veterinary medicine remains limited, providing scope for further exploration.
Current research on the application of DBS in veterinary medicine predominantly focuses
on virology, immunology, pharmacology, and toxicology [18–28].

However, in veterinary pharmacology, DBS offers a promising, minimally invasive
alternative to plasma for pharmacokinetic research [10], reducing animal discomfort and
addressing ethical considerations, thereby facilitating the approval of study protocols.
While plasma and serum are traditionally considered the gold standard for pharmacoki-
netic studies, DBS samples offers a viable alternative that simplifies sample handling and
minimizes logistical challenges. By overcoming these barriers, DBS sampling may expand
research opportunities and improve the feasibility of pharmacokinetic investigations in
veterinary settings.

This study aimed to assess the feasibility of using DBS samples for the quantification of
three anesthetic agents, ketamine, medetomidine, and lidocaine, in cats and horses under-
going routine surgical procedures at our veterinary teaching hospital. In this exploratory
study, our goal was to develop a standardized DBS collection protocol, optimize liquid
chromatography-coupled tandem mass spectrometry (LC-MS/MS) methods for both DBS
and plasma samples, and perform comparative analyses to evaluate the applicability of this
technique for pharmacokinetic studies. The preliminary findings of this investigation may
provide valuable insights into the feasibility and reliability of DBS as a microsampling ap-
proach for veterinary applications, offering insights into how this method can be improved
for this particular context.

2. Materials and Methods
2.1. Chemicals, Reagents, and Materials

Analytical standards of medetomidine, medetomidine-d4, ketamine, ketamine-d4,
lidocaine, and lidocaine-d10 were purchased from Toronto Research Chemicals (Toronto,
ON, Canada). Acetonitrile, methanol, and formic acid (all of LC-MS grade), as well as
ethyl acetate and dichloromethane, were obtained from Merck (Milan, Italy). Ultrapure
water was freshly produced in-house using the Sartorius, Arium® Ultrapure Water Systems
(Varedo, Italy). Whatman 903 Protein Saver Cards (Whatman, UK), purchased from Merck
(Milano, Italy), were used for spotting the blood samples.
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Drug-free blood collected from healthy cats and horses was used for method develop-
ment and validation.

2.2. Stock Solutions and Working Solutions

Each pure compound was prepared at a concentration of 1000 µg/mL by dissolving
10 mg in 10 mL of solvent—acetonitrile for ketamine and methanol for medetomidine—in
precise volumetric flasks. A 1000 µg/mL stock solution of medetomidine-d3 was similarly
prepared by dissolving 10 mg of the labeled compound in 10 mL of methanol. A 10 µg/mL
solution of ketamine-d4 in methanol was obtained by a 10-fold dilution of its 100 µg/mL
stock solution in acetonitrile. The lidocaine stock solution (100 µg/mL) was prepared by
diluting 1 mL of a 1000 µg/mL solution with 9 mL of methanol. Similarly, the lidocaine-d10

stock solution (10 µg/mL) was prepared by a 10-fold dilution of the 100 µg/mL solution.
All stock solutions were stored at −20 ◦C in the dark.

Working solutions used for spiking calibrators and quality control (QC) samples, as well
as those of internal standards, were freshly prepared by serial dilution on the day of analysis.

2.3. Investigated Drugs and Study Designs Employed
2.3.1. Ketamine

The study involving ketamine was approved by the Animal Welfare Committee of
the University of Bologna (Protocol No. 294336, dated 4 December 2020). This study
enrolled seven male cats aged between three and four years, presented to the veterinary
teaching hospital for castration procedures and treated with 20 µg/kg of medetomidine
and 10 mg/kg of ketamine, both administered intramuscularly, to achieve sedation and
muscle relaxation. Blood samples were collected at 10, 15, 20, 30, 45, and 60 min after drug
administration. Venous blood collection via catheter and DBS sampling from the auricular
pinna were performed simultaneously, as described in Section 2.4. A total of 38 plasma and
38 DBS samples were obtained. For three subjects, DBS samples at the two final time points
could not be collected; therefore, the corresponding plasma samples were also excluded
from the evaluations.

2.3.2. Medetomidine

The medetomidine study, approved by the Animal Welfare Committee of the Univer-
sity of Bologna (Protocol No. 211643, dated 18 September 2019), involved seven male cats
serving as semen donors. These cats were sedated with an intramuscular dose of 130 µg/kg
of medetomidine administered into the area between the semitendinosus and semimem-
branosus muscles. Blood samples for plasma medetomidine analysis were collected at 10,
15, 20, 30, 45, 60, 75, 90, and 120 min from a cephalic catheter (n = 56), with simultaneous
DBS sampling (n = 48) from the auricular pinna. Only the time points available for both
matrices (n = 48) were included in the statistical analysis.

2.3.3. Lidocaine

Six healthy horses (three geldings and three mares), aged between 1 and 11 years
and classified as ASA Class ≤ 2 according to the American Society of Anesthesiologists
(ASA) classification, were included in the study. The horses were admitted to the university
teaching hospital for elective surgical procedures. The study was approved by the Animal
Welfare Committee of the University of Bologna (Protocol No. 56507, dated 2 March 2023).
The participants were initially subjected to general anesthesia (the detailed protocol is
reported in Supplementary Materials Section S1). After confirming the adequacy of the
anesthetic plan by assessing key reflexes and muscle relaxation, lidocaine infusion was
initiated at a rate of 0.05 mg/kg/min using a syringe pump (Agilia Injectomat, Fresenius
Kabi Italia, Verona, Italy). The blood and DBS sampling procedure was carried out at 5,
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10, 30, 30, 45, and 60 min during lidocaine infusion. After 60 min, the lidocaine infusion
was stopped, and subsequent samples were collected at 5, 10, 30, and 60 min after the
interruption. It was not possible to collect samples at all time points for all patients;
therefore, the total number of plasma and DBS samples was 54 each.

2.4. Sample Collection
2.4.1. Plasma

Blood (0.5 mL) samples collected from the cephalic catheter in cats and from the jugular
vein in horses were drawn and deposited into tubes containing EDTA. From each tube, an
aliquot was taken using a capillary to estimate hematocrit (Hct) levels via packed cell volume
(PCV). The remaining blood was then centrifuged at 4 ◦C at 2000× g for 10 min to obtain
plasma for target analyte quantification and stored at −20 ◦C until the LC-MS/MS analysis.

Immediately after each blood draw, the catheters were flushed with saline solution
(NaCl 0.9%) to prevent blood coagulation within the catheter.

2.4.2. DBS

For all three drugs under investigation, DBS samples were collected from the auricular
pinna (left or right side, chosen randomly) simultaneously with the blood collection using
the procedure described below. First, the site was cleaned with gauze soaked in saline
solution (NaCl 0.9%). Then, a small incision was made on the ear skin using a 22G needle
(Microlance, Becton Dickinson S.A., Italia, Milan, Italy) to produce a drop of blood. In
cases where the patient exhibited vasoconstriction, an alcohol wipe was applied to induce
vasodilation, followed by a second cleaning with saline solution (NaCl 0.9%) to prevent any
interference with sample analysis. Gentle massaging of the area was performed to enhance
perfusion, ensuring an adequate blood flow and producing a drop of sufficient size.

The first drop of blood was discarded to avoid contamination with intracellular or
interstitial fluids. The subsequent drop was collected using a calibrated micropipette to
obtain a precise volume of 20 µL. This sample was then deposited onto Whatman 903 filter
paper, ensuring placement at the center of the designated circle and aiming for a uniform
distribution of the blood.

Dried blood spot samples were left to dry at room temperature, away from heat
sources, with care taken to prevent contamination. After the final collection, all samples
were allowed to dry for 2 h and then stored in plastic bags at room temperature, protected
from light, for up to 24 h before analysis. A representative image of the DBS sampling
procedure is shown in Figure 1.

 
Figure 1. The blood samples were taken by pricking the cat’s ear with a needle. A 20 µL volume was
collected using a P20 Gilson Pipette and deposited onto Whatman Protein Saver 903 paper.
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2.5. Sample Preparation
2.5.1. Plasma Extraction

For ketamine extraction, 200 µL of feline plasma was transferred into a 0.5 mL Eppen-
dorf microtube containing 20 µL of water and 200 µL of internal standard ketamine-d4 solu-
tion in acetonitrile (1 µg/mL). The microtubes were vortexed for 30 s and then centrifuged
at 21,000× g for 10 min at 20 ◦C. Following centrifugation, 100 µL of the supernatant was
transferred into a chromatography vial, diluted with 200 µL of water containing 0.1%
formic acid, and subsequently injected into the LC-MS/MS system.

Medetomidine in cat plasma was extracted following the procedure described here [29].
Briefly, 200 µL of feline plasma was spiked with 20 µL of medetomidine-d4 internal standard
(0.5 µg/mL), mixed with 1 mL of ethyl acetate, and centrifuged at 21,000× g for 15 min
at 4 ◦C. The supernatant was evaporated under a gentle nitrogen stream at 40 ◦C, and the
resulting dry residue was reconstituted in 300 µL of mobile phase (40:60, v/v, water with
0.1% formic acid and acetonitrile) and injected in the analytical system.

For lidocaine extraction, 200 µL of equine plasma was transferred into an Eppendorf
microtube containing 400 µL of an 70:30 (v/v) acetonitrile/zinc sulfate (0.1 M) aqueous
solution, along with 20 µL of lidocaine-d10 at a concentration of 0.5 µg/mL in water. The
mixture was vortexed for 30 s and centrifuged at 21,000× g for 10 min at 20 ◦C. Following
centrifugation, 50 µL of the supernatant was transferred into a chromatography vial and
diluted with 200 µL of water adjusted to pH with 0.1% formic acid. The final prepared
sample was injected into the LC-MS/MS system for analysis.

2.5.2. DBS Extraction

For each dried blood spot (dried for a minimum of 24 h at room temperature), the entire
section of the filter (Whatman Protein Saver 903) containing the whole blood spot, equivalent
to 20 µL, was excised and transferred into a 1.5 mL Eppendorf microtube. The cut spot was
combined with 300 µL of water and 20 µL of an aqueous solution of the respective internal
standard (ketamine-d4 at a concentration of 1 µg/mL, medetomidine-d4 at a concentration
of 0.1 µg/mL, or lidocaine-d10 at a concentration of 0.5 µg/mL) and vortexed for 30 s.
Subsequently, 700 µL organic solvent (acetonitrile for ketamine and lidocaine and methanol
containing 0.1% of formic acid for medetomidine) was added, followed by an additional 30 s
vortex mixing. Samples were then placed in an ultrasonic bath for 1 h. Following sonication,
samples were centrifuged at 21,000× g for 10 min at 20 ◦C.

For medetomidine, 850 µL of the supernatant was collected and evaporated to dryness
under nitrogen at 45 ◦C. The dry residue was subsequently reconstituted in 200 µL of
mobile phase (H20 + 0.1% AF:ACN 40:60 v/v) and transferred to an LC vial.

For the other compounds, the supernatants were diluted 2× (for lidocaine) and 7×
(for ketamine) in an LC vial containing ultrapure water acidified with 0.1% formic acid and
injected into the LC-MS/MS system.

2.6. Drug Quantification

Drug quantification was performed using a liquid chromatography tandem mass spec-
trometry (LC–MS/MS) approach. The LC system consisted of a Waters Acquity UPLC®

binary pump (Waters, Milford, MA, USA) equipped with an ACQUITY UPLC BEH C18
column (1.7 µm, 2.1 × 50 mm) and a corresponding precolumn. The column temperature was
maintained at 40 ◦C for the analysis of medetomidine and ketamine and at 35 ◦C for lidocaine.

For the three compounds, water with 0.1% formic acid (A) and acetonitrile (B) were
used as mobile phases under various programmed conditions, as shown in Table 1. Ex-
tracted samples were maintained at 20 ◦C in the autosampler, and 10 µL aliquots from each
vial were injected into the analytical system.
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Table 1. Chromatographic gradients for ketamine, medetomidine, and lidocaine.

Ketamine

Time (min) Flow (mL/min) % A % B

0.00 0.300 90 10
1.00 0.300 90 10
1.80 0.300 5 95
3.00 0.300 5 95
3.50 0.300 90 10
4.00 0.300 90 10

Medetomidine

Time (min) Flow (mL/min) % A % B

0.00 0.350 40 60
1.00 0.350 5 95
2.70 0.350 5 95
3.00 0.350 40 60
3.50 0.350 40 60

Lidocaine

Time (min) Flow (mL/min) % A % B

0.00 0.400 65 35
0.20 0.400 65 35
0.80 0.400 5 95
2.50 0.400 5 95
3.00 0.400 65 35
4.00 0.400 65 35

The LC was interfaced with a Waters XEVO TQ-S Micro triple quadrupole mass
spectrometer (Waters, Milford, MA, USA), operating in positive electrospray ionization
(ESI+) and in multiple reaction monitoring (MRM) mode. The capillary voltage was set to
0.5 kV for medetomidine, 3.0 kV for ketamine, and 0.75 kV for lidocaine, while the source
and desolvation temperatures were set 150 ◦C and 600 ◦C, respectively, for all analytes. The
cone gas was set to 50 L/h and desolvation gas to 900 L/h; argon was used as a collision gas.
The analyte-dependent MS/MS parameters were optimized by simultaneously infusing
the LC mobile phase and standard solutions of each analyte into the mass spectrometer.
The most abundant transitions for the three analytes and their internal standards were
identified and are reported in Table 2, along with their corresponding cone voltage and
collision energy values. Data acquisition and analysis was performed using MassLynx
4.2 software (Waters, Milford, MA, USA).

Table 2. Optimized MS/MS transitions, cone voltage, and collision energy for medetomidine,
ketamine, lidocaine, and their internal standards.

Analyte MRM Transition (m/z) Cone Voltage (V) Collision Energy (eV)

Ketamine 238.1 > 124.9 20 26
Ketamine-d4 242.0 > 129.0 20 26
Medetomidine 201.1> 94.9 28 18
Medetomidine-d4 204.1 > 97.9 28 18
Lidocaine 235.1 > 85.9 30 17
Lidocaine-d10 245.1 > 95.9 30 18

In this exploratory phase of the study, the developed analytical methods for quantify-
ing the studied drugs in plasma and DBS were preliminarily performed in accordance with
the European Medicine Agency ICH M10 guidelines [30]. For each study, the considered
parameters included selectivity, calibration range, lower limit of quantification (LLOQ),
accuracy, precision (coefficient of variation, CV%), and carry-over. Calibrators and quality
control (QC) samples were prepared with both plasma and whole blood by spiking 200 µL
aliquots of each matrix with 10 µL of working solutions containing the target analyte at the
corresponding concentrations. To avoid hemolysis caused by organic solvents, working
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solutions intended for whole blood were prepared in water. After spiking, the samples were
gently mixed and allowed to equilibrate for 30 min at room temperature. Subsequently,
20 µL of the spiked blood was aliquoted and applied to the Whatman card for the prepara-
tion of the calibration curve for DBS. Calibration curves were constructed using the linear
equation y = ax + b, with a weighting factor of 1/x applied to account for heteroscedasticity
across the concentration range.

Briefly, the LLOQ was defined as the lowest concentration measured in the samples
that could be detected with a signal-to-noise (S/N) ratio ≥ 10 and acceptable accuracy
(within ±20%) and precision (CV < 20%) after the injection of four replicates. Accuracy,
expressed as the relative difference between measured value and expected concentration,
was evaluated at each QC level and considered acceptable if within ±15% of the nominal
concentration. Similarly, precision, defined as the coefficient of variation (CV%) among
repeated individual measures, had to be <15% for each QC level.

The calibrators, LLOQ, and QC samples (in bold) for each compound in plasma and
DBS are reported in Table 3.

Table 3. Concentrations of the calibrators (n = 5 for ketamine; n = 6 for medetomidine and lidocaine)
and three QC levels prepared for each target analyte in DBS and plasma.

Plasma DBS

Level Ketamine
(ng/mL)

Medetomidine
(ng/mL)

Lidocaine
(ng/mL)

Ketamine
(ng/mL)

Medetomidine
(ng/mL)

Lidocaine
(ng/mL)

1 (+QC) 250 1 100 250 1 250
2 500 5 250 500 5 500
3 (+QC) 1000 20 500 1000 20 1000
4 2500 50 1000 2500 50 2500
5 (+QC) 5000 100 2500 5000 100 5000
6 - 200 5000 - 200 10,000

Carry-over contamination was evaluated by analyzing six drug-free plasma or DBS
samples after the injection of the highest calibrators. The analytical response in the blank
samples had to be below 20% of the LLOQ.

2.7. Statistical Analysis

Statistical analyses were conducted using MedCalc® version 23.0.9 (MedCalc Software,
Ostend, Belgium). Outliers were identified by assessing the ratios of paired plasma and DBS
concentrations for each analyte before performing Deming regression; any ratio falling outside
1.5 times the interquartile range was considered an outlier [31]. Additionally, samples with
concentrations below the LLOQ were excluded from the analysis [32]. The correlation between
analyte concentrations in plasma and DBS was evaluated using Deming regression, which
accounts for measurement errors in both variables [31]. These errors were derived from the
inter-assay coefficient of variation obtained during assay validation for both plasma and DBS
samples. The extent of correlation was determined using the Pearson correlation coefficient
(r). Predicted plasma concentrations were calculated from observed DBS concentrations using
the Deming regression equation: predicted plasma = m + b × DBS, where m represents the
intercept and b the slope of the regression line.

The agreement between observed and predicted plasma concentrations was assessed
following the European Medicines Agency ICH M10 guidelines, which require that at least
67% of the samples show a difference of less than 20% between observed and predicted
plasma concentrations [30]. Finally, the differences between observed and predicted plasma
concentrations were visualized using Bland–Altman plots.
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Bland–Altman plots were generated after filtering out values below the LLOQ. Addi-
tionally, separate plots were created by excluding values below 10 ng/mL for medetomidine
and 500 ng/mL for ketamine and lidocaine.

3. Results
Once the chromatographic conditions for each compound and its internal standard

were optimized, their retention times (1.35 min for medetomidine, 1.89 min for ketamine,
and 1.48 min for lidocaine) were determined by injecting individual pure solutions at
a concentration of 100 ng/mL. Figure S1, included in the Supplementary Materials, shows
representative chromatograms of each target analyte in both matrices. The selectivity of the
method was determined by analyzing blank plasma and DBS samples, confirmed by the
absence of chromatographic signals at the same elution time as the target analytes.

For medetomidine, the LLOQ was 1 ng/mL in plasma and DBS. For ketamine, the
LLOQ was 250 ng/mL in both plasma and DBS, and for lidocaine, the LLOQ was 100 ng/mL
in plasma and 250 ng/mL in DBS. Calibration curves in both plasma and DBS, prepared
on separate testing days, consistently exhibited a coefficient of determination (R2) ≥ 0.99.
Furthermore, calibrators always fell within ±15% of the expected value, demonstrating the
linearity of the method across the validated concentration ranges.

For ketamine, calibration curves covered a range of 250–5000 ng/mL in both
plasma and whole blood; for lidocaine, a range of 100–5000 ng/mL for plasma and
250–10,000 ng/mL in whole blood; and for medetomidine, a range of 1–200 ng/mL for both
matrices. For all the analyses, accuracy at each QC level was within ±15% of the nominal
concentration, and precision was less than 15% at each QC level as per EMA criteria. The
absence of carry-over contamination was confirmed by analyzing drug-free plasma and
DBS samples following the injection of the highest calibrators. In the blank samples, the
response was found to be lower than 20%, specifically around 8% for ketamine, 3% for
medetomidine, and 12% for lidocaine.

The concentration–time curves obtained from plasma and DBS samples for the three
analytes are presented in Figure S2 of the Supplementary Materials.

The paired plasma and DBS concentration ratios with corresponding outliers (one
for medetomidine, four for ketamine, and two for lidocaine), are shown in Figure S3 and
reported as Supplementary Materials. Figure 2 also presents the Deming regressions with
Pearson correlation coefficients (r) for medetomidine, ketamine, and lidocaine. The 95%
confidence intervals (CIs) for the slope were 0.8059–0.9362 for medetomidine, 0.3292–0.7759
for ketamine, and 0.1405–0.5982 for lidocaine. DBS concentrations were corrected for bias
using Deming regression equations to derive corresponding plasma concentrations.

Figure 2. Deming regression for medetomidine (n = 47), ketamine (n = 35), and lidocaine (n = 54).
Pearson’s correlation coefficient is denoted as r. The blue line represents the line of identity (X = Y),
the red line depicts the Deming regression line accounting for measurement error in both variables,
and the red circles correspond to individual paired observations.
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Agreement between derived and observed plasma values was assessed using
Bland–Altman plots.

The results of the first set of Bland–Altman plots did not indicate good agreement for
ketamine and lidocaine (plots are reported in Figure S4 as Supplementary Materials). As
a result, further plots were generated by filtering out values below 10 ng/mL for medetomi-
dine and below 500 ng/mL for ketamine and lidocaine. The Bland–Altman plots obtained
using the new cut-off for analytes reported in Figure 3 show a limited proportional bias for
medetomidine (A) and ketamine (B). The lidocaine plot (C) shows a clear proportional bias,
as indicated by the downward trend in the plot with increasing mean values. This indicates
that the differences between the measurements systematically decrease as the mean of the
measurements increases. The percentage of samples of each drug where the difference of the
two measurements falls within ±20% of the mean values of the two measurements is 75.6%
for medetomidine, 46.9% for ketamine, and 21.4% for lidocaine.

Figure 3. Bland–Altman plots evaluating the agreement between the derived plasma and observed
plasma concentrations for medetomidine, ketamine, and lidocaine. The solid green lines, positioned
on either side of the solid blue line (representing the mean percentage error), indicate the 20%
acceptable bias range. The pink line represents the mean difference (or bias) between the two
methods, showing the average difference between the two sets of measurements. The orange lines
represent the lower limits of agreement, calculated as the mean difference minus 1.96 times the
standard deviation, defining the lower boundary for 95% of the differences. The blue lines show the
variability of individual data points, including the standard deviation at each measurement point.
Individual paired differences are shown as small circles, and the brown dotted lines represent the
limits of agreement, defined as the mean difference ± 1.96 standard deviations.

4. Discussion
Although DBS microsampling is widely used across various fields due to its well-known

advantages [2,12,15,33], it presents challenges such as optimizing sample collection procedures;
addressing analytical issues like spotting volume, hematocrit, and spot inhomogeneity; and
a lack of specific regulatory guidelines for assay validation [34–36]. Various studies offer
strategies to address these challenges and guide DBS protocol development [4,5,37–42].

However, in veterinary medicine, the use of DBS sampling remains limited, especially
for pharmacokinetic studies in companion animals. While previous research has explored
DBS for biobanking and metabolomics [24] and for use in pharmacokinetic studies on
laboratory animals such as rats [43,44], to our knowledge, no studies have yet applied
this technique to real-world veterinary pharmacokinetic settings. Therefore, this study
focused on evaluating the suitability of this microsampling technique for pharmacokinetic
studies. For ethical reasons, we used patient-derived data by collecting samples from
patients undergoing surgery at our veterinary teaching hospital. Specifically, we compared
DBS concentrations of the anesthetic agents medetomidine, ketamine, and lidocaine with
plasma levels to better understand the correlation between these two sampling methods.

Crucial to this study was the standardization of the DBS collection protocol in cats for
medetomidine and ketamine studies and in horses for the lidocaine study. The developed
strategy involved collecting a fixed volume of whole blood, corresponding to 20 µL, using
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a calibrated laboratory pipette, which was then deposited onto the filter card. After drying
for the necessary time, the entire spot was cut and extracted. This strategy was optimized to
minimize or reduce potential hematocrit effects. To optimize the DBS extraction procedure
for all the considered drugs, various organic solvents, including acetonitrile, methanol,
ethyl acetate, and dichloromethane, were tested in different proportions with the addition
of varying percentages of formic acid. The best results for ketamine and medetomidine
were achieved by first extracting the spot with 30% water and then adding the organic
solvent. For medetomidine extraction from DBS, as well as plasma, it was necessary to
concentrate the drug by drying at 45 ◦C under nitrogen, followed by reconstitution in the
mobile phase. The plasma extraction procedures for ketamine and medetomidine were
adopted from our previous studies [29,45] with slight modifications.

The optimal chromatographic results for lidocaine extraction from plasma were
achieved using a mixture of acetonitrile and 0.1 M zinc sulfate in water at a 70:30 (v/v) ratio.
For the LC-MS/MS method optimization, various tests were performed using different
combinations of mobile phases, gradients, and analytical columns. The best results in
terms of peak shape and analytical response for the three target analytes and their internal
standards were obtained with a BEH C18 (1.7 µm, 2.1 × 50 mm) column under different
gradient conditions (reported in Table 1).

In this study, the DBS microsampling technique and LC-MS/MS methods were applied
to three distinct groups of animals undergoing anesthesia with different protocols. The
primary objective was to investigate the quantification of ketamine and medetomidine
in cats, as well as lidocaine in horses, using DBS samples obtained from patients and to
compare the results with those obtained from plasma samples. This work aimed to gain
further insights into the behavior of these drugs in dried matrices and to assess the potential
of DBS as a viable technique for pharmacokinetic investigations in veterinary medicine.

Preliminary results from the experiments and statistical analyses showed satisfactory
outcomes for medetomidine, where 75.6% of the samples exhibited a difference of less than
20% between observed and predicted plasma concentrations, which is in agreement with
ICH M10 guidelines [30]. On the other hand, ketamine and lidocaine did not meet this
criterion. Given the differences in sample collection sites for plasma and DBS samples,
as well as potential physiological variations, additional thresholds for agreement were
explored. Specifically, the variability in agreement between observed and predicted plasma
concentrations was assessed using broader thresholds of ±30% and ±40%. This approach
provided a more comprehensive evaluation of the method’s applicability considering
various physiological differences. When a ±40% difference was applied, 62.9% of the
samples from the ketamine study met the threshold. However, for lidocaine investigations,
the results remained unsatisfactory, even when considering differences of ±30% and ±40%.
In this context, this preliminary research provided valuable insights into the compounds
for which DBS could be a suitable microsampling technique, such as medetomidine and, if
considering a ±40% difference, ketamine. These findings underscore the need for further
investigations into the suitability of DBS for quantifying lidocaine and ketamine. In humans,
lidocaine exhibits concentration-dependent binding to plasma proteins, particularly α1-acid
glycoprotein (AAG) [46,47]. As lidocaine concentrations increase, AAG sites become
saturated, resulting in a greater proportion of free (unbound) drug. Because free lidocaine
partitions differently between plasma and blood cells, its distribution into whole blood
increases at higher total concentrations. Consequently, DBS samples may overestimate
plasma concentrations at high lidocaine levels and underestimate them at lower levels, as
reflected in the trend observed in the Bland–Altman plot. Additionally, species-specific
hematological differences may influence DBS performance. According to reference intervals
established by our clinical pathology service—following international guidelines [48] and
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based on data from 120 animals per species—healthy horses generally exhibit higher
hematocrit levels (32–52%) than healthy cats (32–48%). We hypothesize that this elevated
hematocrit may limit blood spread on filter paper, leading to a denser matrix and potentially
uneven analyte distribution. Although punching the entire spot mitigates sampling bias,
the increased viscosity and stronger adhesion of equine blood to the paper substrate may
still compromise extraction efficiency. Therefore, in future studies, it will be essential to
include hematocrit assessment at each sampling time point to better account for its potential
impact on sample quality and analyte distribution.

To the best of our knowledge, no studies have described the red blood cell partitioning
of medetomidine and lidocaine in either cats or horses. In contrast, the distributions
of other agents—such as the alpha-2 agonist romifidine and the dissociative anesthetic
ketamine—have been previously investigated in horses [49,50]. This highlights the need
for further research to characterize the disposition of medetomidine and lidocaine across
different species and compartments. Another limitation of this study is the lack of external
validation for the DBS-to-plasma concentration conversion. While Deming regression and
Bland–Altman analysis were performed on patient samples, the model was not tested on
an independent validation set. Incorporating such validation in future research would help
differentiate analytical variability from biological or matrix-related effects.

The site of blood collection may also influence drug distribution. In large animals, such
as horses, sampling from the jugular vein versus the auricular pina—even when performed
simultaneously—may result in differences in analyte concentrations. To address this issue,
future research can benefit from a study design in which blood for both plasma and DBS is
collected from the same site. Obtaining a DBS from the jugular vein would allow for a more
direct comparison with plasma samples collected from the same site. Furthermore, it may be
interesting to develop a method for quantifying lidocaine in red blood cells to better understand
the behavior of this drug in equine whole blood, red blood cells, and plasma. Findings from
these additional evaluations may provide valuable insights into the feasibility and reliability of
DBS as a microsampling technique for lidocaine quantification in research studies on horses.

5. Conclusions
In conclusion, this study explored the potential of dried blood spots as a viable and

minimally invasive alternative to plasma for pharmacokinetic research in veterinary ap-
plications involving anesthetics. The validated LC-MS/MS methods for both DBS and
plasma samples demonstrated effective quantification of ketamine and medetomidine in
cats, as well as lidocaine in horses. The preliminary results were satisfactory for medetomi-
dine, promising for ketamine, and highlighted the need for further investigation regarding
lidocaine. The standardized and optimized DBS collection protocol established in this
study provides a robust foundation for future research, enhancing the applicability of
this microsampling technique in pharmacological studies in both small and large animals.
These findings pave the way for broader investigations and the potential adoption of DBS
sampling in veterinary pharmacology, offering an efficient and innovative approach to
expand our understanding of drug pharmacokinetics in diverse animal populations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/vetsci12050488/s1. Section S1. Detailed protocol of gen-
eral anesthesia of the 6 horses enrolled in the study. Figure S1. Representative chromatograms of target
analytes obtained from plasma (left) and DBS (right) samples collected 30 min post-administration.
Figure S2. Concentration–time profiles of medetomidine, ketamine and lidocaine in plasma and DBS.
Figure S3. Box-and-whisker plots of plasma to DBS concentration ratios for medetomidine, ketamine,
and lidocaine., Figure S4. Bland-Altman plots evaluating the agreement between the derived plasma
and observed plasma concentrations for medetomidine, ketamine, and lidocaine.
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