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Abstract

The use of Cannabis is gaining greater social acceptance for its beneficial medicinal and

recreational uses. With this acceptance has come new opportunities for crop management,

selective breeding, and the potential for targeted genetic manipulation. However, as an agri-

cultural product Cannabis lags far behind other domesticated plants in knowledge of the

genes and genetic variation that influence plant traits of interest such as growth form and

chemical composition. Despite this lack of information, there are substantial publicly avail-

able resources that document phenotypic traits believed to be associated with particular

Cannabis varieties. Such databases could be a valuable resource for developing a greater

understanding of genes underlying phenotypic variation if combined with appropriate

genetic information. To test this potential, we collated phenotypic data from information

available through multiple online databases. We then produced a Cannabis SNP database

from 845 strains to examine genome wide associations in conjunction with our assembled

phenotypic traits. Our goal was not to locate Cannabis-specific genetic variation that corre-

lates with phenotypic variation as such, but rather to examine the potential utility of these

databases more broadly for future, explicit genome wide association studies (GWAS), either

in stand-alone analyses or to complement other types of data. For this reason, we examined

a very broad array of phenotypic traits. In total, we performed 201 distinct association tests

using web-derived phenotype data appended to 290 uniquely named Cannabis strains. Our

results indicated that chemical phenotypes, such as tetrahydrocannabinol (THC) and can-

nabidiol (CBD) content, may have sufficiently high-quality information available through

web-based sources to allow for genetic association inferences. In many cases, variation in

chemical traits correlated with genetic variation in or near biologically reasonable candidate

genes, including several not previously implicated in Cannabis chemical variation. As with

chemical phenotypes, we found that publicly available data on growth traits such as height,

area of growth, and floral yield may be precise enough for use in future association studies.

In contrast, phenotypic information for subjective traits such as taste, physiological affect,

neurological affect, and medicinal use appeared less reliable. These results are consistent

with the high degree of subjectivity for such trait data found on internet databases, and
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suggest that future work on these important but less easily quantifiable characteristics of

Cannabis may require dedicated, controlled phenotyping.

Introduction

One of the major goals of plant breeding research in domesticated species is to understand the

genetic basis of traits important in their biology or commercial utilization [1, 2]. This knowl-

edge can lead to strategies for improving yields or nutritional quality, reducing susceptibly to

herbivores and pathogens, or facilitating easier growing and harvest. Of particular utility are

association studies whereby segregating genetic variation among strains or individuals of a

particular crop are found to correlate with one or more phenotypes of interest [3, 4]. Knowl-

edge of such genetic variation can improve our understanding of underlying molecular path-

ways that influence phenotypic traits, and can be important targets for genetic manipulation.

Plant breeders have focused on a large diversity of domesticated plant species and there are

hundreds of studies using association approaches to understand the genetic or genomic basis

of crop development and phenotypic traits [5, 6]. One benefit of examining the underlying

genetic basis of phenotypic variation in domesticated plants is that such variation can be desig-

nated clearly and precisely under carefully controlled conditions, making these plants particu-

larly amenable to genome wide association studies (GWAS, [4, 6]). Domesticated plants also

have a long and rich history of phenotypic observation producing a strong foundation on

which contemporary GWAS can be based [5].

Starting in the 1970s and 80s with national laws to decriminalize possession of small

amounts of Cannabis (aka ‘marijuana’), there has been rapid acceptance of this plant for

medicinal and recreational purposes. Accordingly, it has transitioned from an ‘illegal weed’ to

a valuable agricultural product, with predicted retail sales for 2021 estimated to be worth $11.9

to $17.1 billion dollars in the United States alone [7]. Despite this shift in acceptance, as well as

clear monetary incentives, Cannabis lags behind other agricultural products in our under-

standing of its underlying genetic architecture and how genetic variation influences pheno-

typic variation [8]. A large reason for this lag is attributable to a lack of clear and consistent

knowledge of phenotypes within and between Cannabis strains [9].

There are hundreds of distinctly named Cannabis strains in existence. However, given its

history of elicit use, it remains unclear how much overlap among these strains exists [10]. Fur-

thermore, many of these ‘strains’ are likely to be early generation hybrids between older varie-

ties of Cannabis [11]. Regardless of the number of true-breeding, distinct strains of Cannabis
in cultivation today, it is clear that among these plants there exists a good deal of phenotypic

variation [12]. Of most interest is variation in the relative proportions of tetrahydrocannabinol

(THC) and cannabidiol (CBD), as these chemicals are what give this plant most of its medici-

nal and psychotropic qualities. Understanding variation in plant production of other com-

pounds such as cannabinol (CBN) is also of some importance [13].

The likelihood of finding genetic variation that correlates with a phenotype of interest

depends on a number of factors, but one of the most important is the quality of the phenotypic

data. More specifically, it is essential that described phenotypes of genotyped samples are accu-

rately characterized, if confident genetic associations are to be found [14]. To date, there have

been few efforts to systematically phenotype different strains of Cannabis. What little work has

been done have focused on chemical compositions, particularly THC, CBD, and CBN quantity

[15–17]. However, there is substantial trait information for Cannabis strains available online

PLOS ONE Examining the potential of online phenotypic information for Cannabis genetic association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0247607 February 23, 2021 2 / 18

https://doi.org/10.1371/journal.pone.0247607


through various commercial and open websites (some of which are listed in the Materials and

Methods section). The information on these websites ranges from THC, CBD, and CBN quan-

tities to the impact of the strain on individual mental state to taste or odor of the strain. This

information is available for a wide number of individual strains and can be collated by viewing

the websites. It is possible that Cannabis may even have some benefit over traditional crops

regarding phenotypic data availability due to the greater spirit of openness and historical shar-

ing of information among Cannabis growers [18].

In this paper we examine the utility of publicly available phenotypic information provided

by growers and breeders for understanding the genetic architecture of traits important in Can-
nabis agricultural production and use. It was not our goal to explicitly perform genetic associa-

tion studies to locate genetic variation that correlates with specific phenotypic traits. Rather

our aim was to employ a GWAS analytical framework to test the feasibility of using available

online phenotypic data in future work, possibly in conjunction with other datasets. Our ability

to locate statistically robust genetic variants associated with one or more phenotypes was con-

sidered as evidence in support of this aim. If and when we did locate significant associations

with a phenotype, we secondarily wanted to assess the ‘reasonability’ of these associations.

Such reasonability was determined based on physically proximate genes (to the variant of

interest) and a review of these genes’ known biological function(s) in Cannabis or other plant

species. Finally, we wanted to compare different categories of phenotypic data to determine if

some traits are more amenable to GWAS than others, when considering the use of publicly

available strain phenotypic information.

To these ends, we produced 201 web-based phenotypic character catalogs, 46 of which were

based on quantitative measures of chemical content, specifically THC, CBD and CBN. The

other 155 trait catalogs included 29 growth phenotypes (e.g. height, grow area, yield, grow

time, etc.), 80 physiological or neurological affect phenotypes (e.g. paranoia, dry mouth, etc.),

18 taste phenotypes (e.g. ‘orange’, ‘lemon’, ‘berry’, etc.), eight phenotypes tied to origin of

strain (sativa vs. indica), and 30 medicinal uses (e.g. headaches, cramps, insomnia, etc.). We

then used publicly available next-generation sequence data from 845 distinct Cannabis strains

to produce a single nucleotide polymorphism (SNP) database for testing genetic associations

in conjunction with our 201 scored phenotype catalogs.

Materials and methods

Generation of the phenotypic trait data set

We manually collected phenotypic traits from three popular Cannabis websites: ‘I Love Grow-

ing Marijuana’ (ILGM; https://www.ilovegrowingmarijuana.com/), CannaSOS (CSOS; https://

cannasos.com/) and Leafly (Lly; https://www.leafly.com/). We also examined the websites

Grow Marijuana (https://grow-marijuana.com/), NCSM (https://www.ncsm.nl/english/), All-

bud (https://www.allbud.com/), Wikileaf (https://www.wikileaf.com/) and Cannabis.info

(https://www.cannabis.info/en/), for information on Cannabis strain phenotypes, but settled

on the three sites mentioned above because of maximum overlap of strains and complete phe-

notypic datasets. All of the websites had substantial amounts of data for THC, CBD and CBN

content in different strains as well as anecdotal information about medicinal uses, adverse

effects and taste. There was also information on the growing conditions and growth traits of

many strains. No two websites completely overlapped in the data they provided, and THC,

CBD, and CBN levels for a given strain often varied from website to website. Additionally,

there was some variability for the data on growth traits as well as anecdotal information.

We examined the three above mentioned websites for information in several trait categories

for as many strains as possible that overlapped with strains for which we had genetic data (see
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below). Next, we scored and compiled strain-specific phenotypes for these traits (traits and

our scoring system phenotypes are given in S1 Table). In all, of the 845 Cannabis strains for

which we had genetic data, there were 290 strains that also had consistent and extensive phe-

notype data (S2 Table).

For THC, CBD and CBN content we performed two kinds of analyses. First, we analyzed

the given values for CBD, THC, CBN and the ratio of CBN:THC (called ‘ratio’ in our tables)

for each website individually. Second, where possible, we averaged values across websites (i.e.,

either three of three, or two or three websites, depending on strain information available). We

examined associations for non-chemical traits from each website individually.

Generation of SNP database

Paired reads from targeted amplicon sequencing of genomic DNA from 845 Cannabis samples

have been made available by Phylos Bioscience (https://phylos.bio/), under BioProject

PRJNA347566 (NCBI-SRA; https://www.ncbi.nlm.nih.gov/sra). These samples were all

sequenced on an Illumina NextSeq 500. We downloaded the raw reads for each sample using

the ‘fastq-dump’ function of the SRA Toolkit (v. 2.8.1–3). After downloading, we used Trim

Galore (https://github.com/FelixKrueger/TrimGalore) to remove sequencing adaptors and

trim bases from read ends with quality scores (Q score) less than 20. Next, we removed reads

that were less than 30 bases long, in addition to any resulting unpaired reads.

To produce our variant dataset for association analyses, we first mapped the trimmed reads

to the Cannabis sativa reference genome ASM341772v2 (genome accession number:

GCA_003417725.2, [19]) using the program BWA-MEM v. 0.7.15 with default settings [20].

We then identified and removed read duplicates using the tool MarkDuplicates from Picard v.

1.77 (http://broadinstitute.github.io/picard/). This was followed by indel realignment using

IndelRealigner from the Genome Analysis Toolkit (‘GATK’) v. 3.8 [21]. Independently for

each sample, we called variant sites using GATK’s HaplotypeCaller (specific flags:—emitRef-

Confidence GVCF,—variant_index_type LINEAR,—variant_index_parameter 128000 -rf

BadCigar). The resulting gVCFs (one per sample) were then combined and the samples collec-

tively genotyped using GATK’s GenotypeGVCFs function. This gave us 84,503 raw variants in

total.

After the samples were combined, we removed any variant that was not a bi-allelic, single

nucleotide polymorphism (SNP). This left us with 61,393 variants. We then removed SNPs

that had a quality by depth less than 20 (QD < 20.0), Fisher strand bias greater than 60

(FS > 60.0), mapping quality less than 45 (MQ < 45.0), mapping quality rank sum less than

-0.2 (MQRankSum < -0.2), read position rank sum less than -1 (ReadPosRankSum < -1.0),

and a strand odds ratio greater than 2 (SOR > 2.0). All filtering options were based on the

developer’s recommended cutoffs, with more stringent adjustments for FS, MQ, MQRankSum

and ReadPosRankSum based on the observed distributions for these parameters. Finally, we

used PLINK v. 1.90b6.6 [22] to remove linked SNPs with a pairwise squared correlation (r2)

greater than 50% within sliding windows of 50 SNPs at 10 SNP increments between windows

[23]. The remaining dataset of 4,351 SNPs was used for all subsequent association analyses.

Association analyses

Our phenotype trait matrix was combined with our SNP data for analysis with Plink v.

1.90b6.6 [22]. We then performed basic association tests comparing allele frequencies in a

‘case’ and ‘control’ framework. To establish what constituted the case vs. control for each phe-

notype, we used a reciprocal approach whereby we sequentially assigned the top 5%, 10%, 25%

and 50% of a phenotype as the case samples and all other samples as the controls. We also
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performed the reciprocal analyses, sequentially examining the bottom 5%, 10%, 25% and 50%

of the phenotype for the same characterizations. A list of the Plink runs we performed can be

found in the S3 Table.

Analysis of association results

For this study, we considered two major factors that could contribute to the false detection of

associations, or conversely failure to detect an association. First, the phenotype as presented

might be too complex or ambiguous for consistent results across strains (for example, “para-

noid”, S1 Table). This would likely result in a failure to detect any associations with our gener-

ated SNP dataset. Second, the SNP data itself might not be of sufficiently high quality, failing

to include the genetic variation needed for associations to be made. As the original genetic

data derives from targeted amplicon sequencing, it is almost certain that important genetic

variation contributing to phenotypic differences between strains is absent from our analyses.

While there was little we could do to resolve this second issue, we did attempt to resolve the

first concern. Specifically, as phenotypic data for the strains we used here was somewhat sparse

(as indicated by the case sizes), we applied four different approaches to the discovery of signifi-

cant associations (henceforth, referred to as ‘Methods 1–4’).

Basic association analyses (Method 1). Although it is controversial, the statistical cutoff

for significance of a GWAS is traditionally placed at p� 5x10-8 [24–26]. However, in this

study we wanted to compare the association of SNPs with phenotypes having some quantita-

tive precision (e.g. CBD and THC content) to potentially imprecisely defined phenotypes (e.g.

effects, tastes, etc.). As our primary goal was to assess whether associations were possible to

make with the datasets used here, we initially set our association cutoff value to a more conser-

vative value of p� 10−9, recognizing that this would likely reduce our ability to identify vari-

ants of smaller effect [24]. This cutoff value attempts to balance the retention of true positives

while eliminating false positives and is a good threshold for association discovery in many

cases. These basic analyses constitute our ‘Method 1’ for discovering significant associations.

Significance within phenotype categories (Methods 2 & 3). Another potential indication

of a true, biological association is the frequency that a particular SNP is identified as significant

in separate tests. Separate tests in this study would be tests involving information from differ-

ent websites, or tests involving different coding schemes. For example, a SNP identified in one

test for CBD is likely to be less biologically relevant than a SNP identified in multiple tests

involving CBD. There are two ways to determine such overlap. The first is within specific tests

for a particular trait category and the second is more broadly across categories. In the first

case, all SNPs with significant scores at or below the cutoff (p� 10−9) appearing in three or

more tests for a particular phenotypic subcategory (e.g., THC content, taste, etc.) were consid-

ered significant (‘Method 2’). Subcategories are listed in Table 1. In the second case, all SNPs

that were significant three or more times at the cutoff (p� 10−9) for any test associated with a

phenotype either within the chemical or non-chemical categories were considered (‘Method

3’). A comparison of SNPs found to be significant via Method 3 also allowed us to consider

SNPs with potential pleiotropic effects (i.e. these genetic variants could potentially be influenc-

ing more than one phenotype). To do this, for each SNP found to be significant via Method 3,

we determined whether it appeared in more than one phenotypic test subcategory (as indi-

cated in Table 1).

Subsampling and bootstrap analyses (Method 4). It is well established that imbalances

in the numbers of case and control samples may affect association study results [27, 28]. To

partially account for this, we used a bootstrap approach to generate subsampled control data-

sets with equal numbers of case and control samples. Samples were randomly selected without
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replacement using a custom Perl script, utilizing a Fisher Yates shuffle [29]. We then ran an

association test comparing allele frequencies between the case and control samples in Plink.

This subsampling and subsequent association analysis was run 100 times and variants found

to have significant associations with a phenotype (with a threshold of p� 10−9), in at least 95%

of the runs were considered further (‘Method 4’).

Biology of significant SNPs

Genes in proximity to significant SNPs. For any SNPs with a phenotypic association that

met or exceeded our significance threshold, we next used information from the annotated

Cannabis reference genome (Cannabis sativa, ASM341772v2; accession number:

GCA_003417725.2) to locate all genes within 25 Kb both upstream and downstream of the var-

iant (50 Kb windows in total). In some cases, there were no annotated genes within this span,

while in other cases there were as many as seven genes. When one or more genes were present,

we conducted a literature survey to assess the likelihood that the gene(s) could have an effect

on our phenotype of interest.

Chromosomal location of significant SNPs. The causative gene or genes for a specific

trait can be as distant as two million base pairs from the associated SNP [30]. Therefore, we

also wanted to examine which chromosomes that significantly associated SNPs were found on.

In particular we were interested in the known chromosomal locations of genes involved in

THC and CBD synthesis in Cannabis [31, 32]. For all significantly associated SNPs we deter-

mined its level of significance and the chromosome it was located on. For chemical traits we

clustered SNPs into those related to THC content, CBD content, CBN content, and the ratio of

THC:CBD. For non-chemical traits we clustered the SNPs into ‘side effect’ phenotypes, ‘taste’

phenotypes, ‘medical’ phenotypes, ‘growth’ phenotypes, and sativa:indica hybrid ratio.

GO term analysis. To further examine how phenotypes may be impacted by the genetic

variation identified, we utilized all genes found to be within 25Kb of a significantly associated

SNP (Method 1). This gene list was compiled using UNIPROT (https://www.uniprot.org/),

and then fed into the Panther gene list analyzer (http://www.pantherdb.org/). We examined

the gene categories and GO annotations for the categories using Panther by generating histo-

grams of the nearest child terms (i.e. more narrowly defined categories) in four parent GO

Table 1. Phenotype categories.

Category Number of tests

Major category 1 –Chemical 49

Subcategory 1.1 –CBD content 14

Subcategory 1.2 –THC content 11

Subcategory 1.3 –CBN content 7

Subcategory 1.4 –ratio of CBD to THC 17

Major category 2 –non-Chemical 165

Subcategory 2.1 –Growth traits 29

Subcategory 2.2 –Taste traits 18

Subcategory 2.3 –Affect traits 80

Subcategory 2.4 –Medical traits 30

Subcategory 2.5 –Sativa/Indica traits 8

Chemical and non-chemical phenotypic categories examined in this study for association methods 2 and 3. Also

given are the number of tests run for each (Method 2). For the two major categories (chemical and non-chemical;

Method 3), the number of tests run is the sum of each subcategory for that phenotype.

https://doi.org/10.1371/journal.pone.0247607.t001
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categories: ‘molecular function’, ‘cellular component’, ‘biological process’, and ‘protein class’.

We also examined GO terms that were over-represented to determine if any categories of

genes showed strong genetic associations with phenotypes. This was done in Panther, with

Fisher’s exact test and Bonferonni correction.

Results and discussion

The genomics of Cannabis is becoming an increasingly active research topic in plant biology

[9, 33–41]. These studies have used genomic level information (e.g. whole genome sequencing,

targeted genome sequencing, transcriptome sequencing, etc.) to explore the role of genetic var-

iation in differences observed among the hundreds of distinct Cannabis strains. This research

has predominately relied on correlated phenotyping of the sequenced plants, a reasonable but

challenging task for large numbers of different strains. Furthermore, the traits investigated

have predominately been readily quantifiable phenotypes such as chemical composition. Less

well studied are more qualitative phenotypes such as taste and mental state alteration. Such

phenotypic traits likely present a greater challenge for determining correlative genetic varia-

tion associated with them. However, given the uses of Cannabis for medicinal and recreation

purposes, variation of such traits will remain important to understand at a genetic level.

The goals of this study were threefold. First, we wanted to establish if online databases pro-

viding Cannabis phenotypic data are sufficiently consistent to allow significant genetic associa-

tions to be found. Secondly, we wanted to assess whether any candidate SNPs uncovered were

‘reasonable’ as determined by their genomic location in proximity to genes known to influence

the correlated phenotype in Cannabis or other plant species. Predominately, we expected that

a phenotypic data set with little or no utility would show either a lack of association at any level

or associations that, based on genomic position and gene proximity, had little or no support in

the literature for a probable influence on the phenotype of interest. Conversely, high-quality

phenotypic data should produce confident associations in genomic regions with genes likely to

influence the focal phenotype. Finally, we wanted to determine what types of phenotype traits

(e.g. chemical vs. non-chemical), were most amenable to performing association studies in a

genome-wide context with information from available online databases.

Factors effecting the utility of internet phenotypes

Fig 1 shows the total number of significant SNPs across all tests for each of the four association

detection methods, considering chemical and non-chemical traits separately. A comparison of

the results from chemical and non-chemical traits across these different methods is illustrative

of the quality of internet-based phenotypic data. In our most basic approach (Method 1) we

carried out simple genome-wide associations attempting to correlate Cannabis phenotypic

variation with genetic variation in a ‘case’ vs. ‘control’ framework. We performed 201 distinct

trait association tests, 155 of which were for non-chemical traits (i.e. not THC, CBN or CBD

based) and 46 of which were for chemical traits (THC, CBD and CBN content; S1 & S3

Tables). For the least stringent method of extracting associations (Method 1), there were over

900 significant SNPs (p� 10−9) across all tests, with about half of the tests yielding significant

SNP associations. The number of SNPs associated with chemical and non-chemical traits was

roughly proportional to the number of tests performed suggesting randomness in these results.

Furthermore, within the non-chemical traits we could subdivide these into growth, affect,

medicinal, and taste traits. The number of significant associations in each of these subcatego-

ries of non-chemical traits was again proportional to the number of tests within this category,

further suggesting an element of randomness.
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In many of our Method 1 analyses, either the case or control sample sizes were relatively

small. Comparisons between the number of significant associations and sample sizes (S1 & S2

Figs) showed a U shape where phenotypes with very small case or control numbers (< 10) had

a high number of SNPs correlated with the trait of interest. From our literature survey of genes

around significant SNPs when the case or control samples were small, it became apparent that

these variants were difficult to interpret and reasoned that associations with small case/control

sizes were in many respects random. This suggests that phenotypic information with this

structure has limited utility for genetic association studies.

Assessing the presence of significantly associated SNPs across multiple tests within a sub-

category (Method 2), allowed us to reduce our list of ~900 SNPs considerably (Tables 2 & 3).

For chemical-based tests there were 11 associated SNPs across all subcategories and none for

non-chemical tests. For Method 3, when compared across tests there were 61 significantly

associated SNPs for the chemical category and 33 for the non-chemical category (Tables 2 &

3). Because there were three times as many non-chemical traits as chemical traits, these results

suggest that the chemical traits may be more stable for association analyses than the more

anecdotal non-chemical traits. Additionally, of the 33 SNPs identified for the non-chemical

traits, a third of these are linked to growth, suggesting that within the non-chemical category,

plant growth data from the internet could have some utility in association studies. Considering

the 94 variants found using Method 3, 29 were determined to be significant in more than one

phenotypic test subcategory, suggesting possible pleiotropic effects (S5 Table).

Fig 1. Significant SNPS relative to analytical method. Shown are the numbers of significant SNP associations for the

four methods outlined in the text. For Method 1 the bars are broken for convenience of display. The number of

significant SNPs for each Method/category combination is given above its respective bar. The dark orange shading for

Methods 3 and 4 in the non-chemical category indicates the number of SNPs significant for the subcategory ‘growth

traits’.

https://doi.org/10.1371/journal.pone.0247607.g001
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When we required that a variant be significant in more than one test (Methods 2 and 3), the

number of phenotype-associated SNPs found diminished substantially (Fig 1). We also saw

differences comparing the consolidation of phenotypes into refined subcategories (Method 2)

versus the coarser merging of phenotypes into two major categories (chemical traits and non-

chemical traits; Method 3). Generally, these results indicate that broader classes of phenotypes

may better facilitate the identification of biologically relevant genetic variation in Cannabis.
However, this comes at the cost of losing precision in understanding potential molecular rela-

tionships between genotypes and phenotypes.

Our second, complementary approach to reducing the large number of significantly corre-

lated SNPs was to repeatedly subsample the overrepresented category and normalize sample

sizes between ‘cases’ and ‘controls’ (Method 4). Combining this with a bootstrapping approach

allowed us to focus on another conservatively determined subset of SNPs (Fig 1, Table 4).

After these bootstrap analyses, there were ten significant chemical and 13 significant non-

Table 2. Genes with significant associations for chemical traits.

Method 2 Method 3

Uncharacterized (6X) Uncharacterized (9X)

receptor-like protein EIX2 receptor-like protein EIX2 (2X)

protodermal factor 1-like protodermal factor 1-like

protein FAR1-RELATED SEQUENCE protein FAR1-RELATED SEQUENCE (2X)

FAD/NAD(P)-binding oxidoreductase family protein FAD/NAD(P)-binding oxidoreductase family protein

CDPK-related kinase 4 CDPK-related kinase 4

ARF guanine-nucleotide exchange factor GNL2 (2X)

Aspartic peptidase domain containing protein

AT-hook motif nuclear-localized protein 1-like

Bulb-type lectin domain containing protein

calcium-dependent protein kinase 13 (2X)

Endochitinase-like

Endonuclease/exonuclease/phosphatase (5X)

Fatty Acid-binding Proteins (FABPs)

fibroin heavy chain

Glycoside hydrolase

hypothetical protein (7X)

LRR domain containing protein

N-terminal acetyltransferase A, auxiliary subunit

O-fucosyltransferase 28-like

proteasome adapter and scaffold protein ECM29 (2X)

protein NYNRIN-like (2X)

receptor-like protein Cf-9

Ribonuclease H-like domain containing protein

Serine/threonine protein kinase (3X)

Sodium/sulfate symporter

stemmadenine O-acetyltransferase-like (2X)

Voltage dependent potassium channel

Best gene hits in proximity to significant SNPs for chemical traits using Methods 2 and 3. All best hits were to the

Cannabis sativa genome and annotation. The numbers in parentheses after a gene name indicate the number of

significantly associated SNPs that fell near this gene (when greater than 1). Additional information for each gene is

available in S4 Table.

https://doi.org/10.1371/journal.pone.0247607.t002
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chemical SNPs. Within the significant non-chemical SNPs, 50% were for growth traits. Again,

given that there are three times as many non-chemical as chemical traits, these results indicate

that chemical traits from the internet may be of sufficient quality for use in association studies.

Table 3. Genes with significant associations for non-chemical traits.

Method 2 Method 3

No Significant SNPs ARF guanine-nucleotide exchange factor GNL2 (8X)

Cysteine-rich RLK (RECEPTOR-like protein kinase) 8

floral homeotic protein APETALA 2-like isoform X1

myosin tail region-interacting protein MTI1-like (2X)

neurofilament medium polypeptide

noncoding (2X)

nucleolar and coiled-body phosphoprotein 1-like

probable methyltransferase PMT24 (2X)

receptor-like protein EIX2 (4X)

stemmadenine O-acetyltransferase-like

tRNA (cytosine(34)-C(5))-methyltransferase-like (2X)

tyrosine N-monooxygenase-like (2X)

uncharacterized protein (6X)

Best gene hits in proximity to significant SNPs for non-chemical traits using Methods 2 and 3. All best hits were to

the Cannabis sativa genome and annotation. The numbers in parentheses after a gene name indicate the number of

significantly associated SNPs that fell near this gene (when greater than 1). Additional information for each gene is

available in S4 Table.

https://doi.org/10.1371/journal.pone.0247607.t003

Table 4. Significant associations using Method 4.

Chemical non-Chemical

non-coding (2X) noncoding (2X)

receptor-like protein Cf-9 [Cannabis sativa] floral homeotic protein APETALA 2-like isoform X1

[Cannabis sativa]

calcium-dependent protein kinase CDPK 13 (2X)

[Cannabis sativa]

aspartate carbamoyltransferase [Trema orientale]

enolase-like [Cannabis sativa] ornithine carbamoyltransferase

putative Peroxidase 48 [Cannabis sativa] glycosyltransferase At5g20260 isoform X2 [Cannabis sativa]

uncharacterized protein (2X) [Cannabis sativa] swi5-dependent recombination DNA repair protein 1

homolog [Cannabis sativa]

voltage dependent potassium channel [Trema
orientale]a

midasin-like [Cannabis sativa]

major facilitator [Parasponia andersonii]
NEDD8-conjugating enzyme Ubc12 isoform X2 [Cannabis
sativa]

NYNRIN-like [Brassica rapa]

gag-pol polyprotein [Glycine max]

Transposon Ty3-G Gag-Pol polyprotein [Vitis vinifera]

List of genes from chemical and non-chemical SNPs that had significant p values and passed bootstrap tests. All

chemical-associated genes were either with THC and/or CBD except ‘voltage dependent potassium channel’. The

numbers in parentheses after a gene name indicate the number of significantly associated SNPs that fell near this

gene (when greater than 1). In brackets [] are the species’ genome models used to identify the protein.
a Association with CBN.

https://doi.org/10.1371/journal.pone.0247607.t004
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Similarly, the large proportion of significant SNPs for non-chemical growth traits indicates

that this phenotype data may also be stable, and potentially useful in association studies. Given

that such traits are to a large extent quantitative, this result is not surprising. Internet based

phenotypic data for other non-chemical traits such as mental affect, medicinal utility and taste

categories appeared inadequate for association analyses. To what extent this is due to the qual-

ity of online data versus the likely complex genetic underpinnings of such traits remains to be

determined.

SNPs associated with chemical content phenotypes

Genes we determined were associated with chemical phenotypes are given in Tables 2 and 4

(also see S4 Table). If the basic analytic approach we have used here has any biological validity,

then we have established associations of THC/CBD phenotypes with several novel candidate

genes annotated in the Cannabis genome. Four of the significant SNPs detected by Method 4

are in genes that have roles in plant physiology peripherally or are directly connected to plant

secondary compound production (Table 4). The enzyme Enolase has an upstream function in

THC and CBD synthesis [42]. Likewise, Peroxidase has also been implicated in the synthesis

pathways of these chemicals [43]. CDPK’s and receptor-like protein Cf-9 have been implicated

in plant stress systems and in this way may be implicated in plant secondary compound syn-

thesis. All of the genes in the list were detected in tests for CBD and THC with one exception.

The potassium channel gene in the list was detected using data from CBN content. While the

other genes in the list are reasonable candidates for biosynthetic pathways to CBD and THC,

the potassium channel gene is odd. It is interesting though that the majority of associations are

detected with tests for THC and CBD and not for CBN as the latter is not a product of gene

interactions in the Cannabis genome. Rather, CBN content is the result of environmental

breakdown byproducts. We suggest here that the CBN tests could serve as a control for the

other chemical tests as it should not show association with gene SNPs. In this respect it is also

noteworthy that two of the associated SNPs with THC/CBD content were in non-coding

regions, or positions in the genome that might turn out to be regulatory. Furthermore, many

of the significant SNPs we examine here were in or near retrotransposons which are scattered

throughout the Cannabis genome [31].

Of additional note, we did not detect SNPs directly associated with the gene Tetrahydrocan-

nabinolic acid (THCA) synthase, which encodes the enzyme responsible for catalyzing the

conversion of cannabigerolic acid (CBGA) to THC [44]. Equally compelling, we also did not

detect SNPs associated with Cannabidiolic acid synthase, an enzyme that catalyzes the forma-

tion of cannabidiolate, a carboxylated precursor of cannabidiol (CBD, [45]). SNPs within or in

proximity to these genes and several others involved in the synthesis of THC and CBD are

present in our genetic data. If we assume that genetic variation influencing chemical pheno-

types is segregating at relatively high frequency, and correspondingly, is likely to be repre-

sented in this database, then the absence of SNPs associated with these genes suggests it is not

variation in these regions that directly effects the THC or CBD content of a plant. Rather we

suggest that the genetic architecture of THC and CBD phenotypes is more complex than just

changing the structures or regulation of the THC/CBD end products. This inference is sup-

ported by an analysis of the function of genes that are associated with the phenotypes used in

this study (see below).

SNPs associated with non-chemical phenotypes

As indicated above, non-chemical traits appeared less stable with respect to attempts to dis-

cover associations except possibly for growth traits such as height, time to flowering, yield and
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growth area. As a consequence, we will discuss here the SNP associations with growth traits

(Tables 3 and 4). The association of a floral homeotic gene (APETALA 2) with growth pheno-

types is interesting in that this gene is responsible for hormone regulation specifically in the

floral structures of plants [46]. Such roles would include regulation of growth rates and other

growth-related phenotypes. Several other significant SNP related traits like carbamoyletrans-

ferases and glycosyltransferase are involved in very basic cellular synthesis pathways and plant

secondary metabolism. The involvement of these genes in plant growth is of interest too.

Finally, several growth traits are associated with proteins involved in transposon regulation in

plants (NYNRIN) or are genes in transposons themselves (gag-pol polyprotein and Transpo-

son Ty3-G Gag-Pol polyprotein). The involvement of transposons and repetitive genome con-

tent in the phytochemistry of Cannabis has recently been established [41, 47, 48], and the

detection of SNPs in these genomic regions could also be of biological significance.

Chromosomal location of significant SNPs

Brodie and colleagues [30] demonstrated that the causative locus of a trait can be located rela-

tively distant from the associated SNP. To examine this possibility, we analyzed the chromo-

somal location of all of the significant SNPs in our study. Overall, there were over 200 SNPs

associated with non-chemical traits and tests and over 700 SNPs associated with chemical traits

and tests. The chromosomal location of these significant traits and their significance are

shown in Fig 2. When we examined the top 5% of SNPs by statistical significance, most were

chemical (29 out of 40 SNPs). Interestingly, the ‘medical’ category of SNPs made up the

Fig 2. Graph of chromosomal location and SNP significance. Chromosome number is listed at the top. Below the

dotted line are the top 5% most significant SNPs. The trait categories are listed in the box at the lower left along with

their respective symbol colors. Chemical categories are: ‘cbd’, ‘thc’, ‘cbn’, and ‘ratio’. Non-chemical categories are: ‘I/S’

(the ratio if ‘indica’ to ‘sativa’), ‘taste’, ‘effect’, ‘medical’, and ‘grow’. At the bottom we tally the number of SNPs that

have p values in the top 5% most significant SNPs (top value: chemical categories, bottom value: non-chemical

categories).

https://doi.org/10.1371/journal.pone.0247607.g002
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majority of the non-chemical, highly significant SNPs (7/11). The high frequency of chemical

trait associated SNPs that were highly significant is evidence that the genetic variants segregat-

ing with chemical traits were more readily detected than with non-chemical trait. We also did

not detect highly significant CBN SNP associations with chromosomes, which was consistent

with our earlier observations.

Three chromosomes (3, 6 and 8), harbored the majority of the chemical SNPs. This result is

interesting because of the co-location of known THC and CBD synthesis genes on these chro-

mosomes. The THCA synthase and CBDA synthase genes (genes coding for enzymes involved

in the last step of THC and CBD respectively), are located on Chromosome 6 and indeed there

is also considerable duplication of these genes in the Cannabis genome on Chromosome 6 [19,

49]. Chromosome 8 also appears to contain genes relevant to total cannabinoid content and to

specific cannabinoid synthesis. Chromosome 3 is known to have genes involved in both THC

and CBG synthesis. On the other hand, both Grassa et al. [31], and Welling et al. [32], suggest

that Chromosome 9 could be a major chromosome affecting cannabinoid synthesis, and we

find no chemical but three highly significant non-chemical trait associated SNPs on this

chromosome.

GO classification of associated SNPS

Using the large number of significantly associated SNPs found using Method 1, we combined

the genes associated with these SNPs and categorized the related GO terms. The distribution

of children GO categories linked to these genes are shown in Fig 3, where the most abundant

GO terms for the four parent categories are plotted against the number of times they appear in

the gene lists. These results demonstrate interesting trends for the associated genes of both

major categories of phenotypes. For instance, the top two molecular function children GO

terms are ‘binding’ and ‘catalytic activity’, both of which are important in gene regulation. The

top two biological process children terms are ‘metabolic process’ and ‘biological regulation’,

both of which are involved in regulating the amount of gene product. Finally, ‘hydrolases’ and

‘oxidoreductases’ are the two most represented protein classes and both of these classes of pro-

teins are involved in plant secondary compound metabolism.

We also tested the list for over-representation of GO terms in the GO parent categories.

The Cellular Component parent category had no significant over-representation, while Molec-

ular Function and Biological Process did at two-fold enrichment. The Biological Process over-

representation is for ‘cellular metabolic processes’ and the Molecular Function over-represen-

tation is for ‘organellar processes’. These results suggest that regulation of chemical composi-

tion (THC and CBD) may be connected to the cellular metabolic processes of the plant cells

and also associated with organellar function. It is well known that both THC and CBD have

effects on and in organelles, particularly mitochondria where they bind to membranes and dis-

rupt mitochondrial function [50]. It is possible that the suite of genes we show associations

with THC and CBD levels are involved in mediating or regulating organellar function when

interacting with these chemicals.

Conclusions

This study set out to assess the potential utility of web-based information from a large number

of Cannabis strains for determining genetic associations with some of this plant’s important

phenotypic traits. We found that internet sources of strain-specific information that is readily

quantifiable such as chemical composition (i.e. THC and CBD content) and growth traits

might be potentially useful for association studies. However, phenotypic information that is

more qualitative or relies on anecdotal descriptions is likely insufficiently precise for useful
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association analyses. This result suggests that more precise measurement of traits such as yield,

medicinal, or side effects would be needed in order to perform genetic association studies for

Cannabis non-chemical traits.

If the associations we have detected for chemical traits like THC and CBD content using

this approach have any biological significance, then we can also conclude that genetic variation

influencing these phenotypes occurs outside the genes within the synthetic pathways of THC

and CBD. The genes effected by these variants may be involved in the quantity of these chemi-

cals produced by Cannabis plants, or might be involved in more mundane cellular processes

like organellar properties or cellular metabolism properties. At the very least, the SNPs we

detected for chemical (and a handful of non-chemical traits) may be linked to the known can-

nabinoid synthesis genes on Chromosomes 3, 6 and 8.

Overall, web based chemical content data appears to have potential utility for gene associa-

tion studies considering THC and CBD content. In the future, more directed and precise

chemical concentration data might enhance detection of other chemical traits such as ratios

and CBN content. Such data will additionally provide more precise inferences for the traits

successfully examined here. Some such studies of chemical makeup have been reported [16]

and these should add more precision to association studies in the future. As well as dedicated

phenotyping for the purposes of association studies, web-based data may also continue to have

Fig 3. Bar graphs showing the number of proteins (Y axis) in various GO categories and protein classes for the

indicated significant GO categories. Molecular Function GO terms are binding-GO:0005488, catalytic activity-

GO:0003844, molecular transduction-GO:0060089-transcription regulation-GO: 0140110 and transporter activity-

GO:005215. Cellular Component GO terms are Cell-GO:0005623, extracellular region-0005576, membrane-

GO:0016020, organelle-GO:0043226 and protein containing complex-GO:003299. Biological Process GO terms are

biological regulation-GO-0065007, cellular organization-GO0071840, cellular process-GO:0009987, developmental

process-GO:0032502, localization-GO:0051179, metabolic process-GO:0008152, reproduction-GO-0000003, response

to stimulus-GO:0050896. Protein Class GO terms are hydrolase-PC00121, isomerase-PC00135, ligase-PC00142, lyase-

PC00144, nucleic acid binding-PC00171, transferase-PC00220 and transporter-PC00227.

https://doi.org/10.1371/journal.pone.0247607.g003
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utility in this field. Specifically, websites should make a concerted effort to work with growers

and other interested parties to compile the best and most precise information possible.

Supporting information

S1 Fig. Graph of case size (X axis) versus -log of significance level of SNPs in this study.

We have divided the space into Case Size slivers. A is between 0 and 10, B between 10 and 25,

C between 25 and 50, D between 50 and 100 and E between 100 and 150.

(TIF)

S2 Fig. Graph of percent of cases versus percent significant (cutoff set at p < 10−9; see

text). The boxes indicate two ranges over which we are confident of reasonable results. The

read box indicates the range of the most stringent approach we took.

(TIF)

S1 Table. Phenotypes and scoring system. The phenotypic traits examined in this study, clas-

sified by category. Also given are the binary (case vs. control) trait scoring definitions used for

each phenotype.

(XLSX)

S2 Table. Cannabis strains. The list of Cannabis strains used for trait associations in this

study. The strains listed had both phenotypic data available through one or more of the web-

sites listed in the methods, as well as genetic data available. Also given is each strain’s

NCBI-SRA BioSample ID (https://www.ncbi.nlm.nih.gov/sra).

(XLSX)

S3 Table. Association test information. The websites, traits and phenotypes of the 201 basic

association tests performed in this study. The sizes of the case category and the p values of the

most significant SNP (‘most sign’) are also given in the table.

(XLSX)

S4 Table. Significant SNP data. Extended data for all SNPs determined to be significant using

Methods 2 and 3.

(XLSX)

S5 Table. Possible pleiotropic SNPs. SNPs determined to be significantly associated with

more than one phenotypic trait (from Method 3).

(XLSX)
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